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Abstract

Diffusion models are distinguished by their exceptional generative performance, particularly in pro-
ducing high-quality samples through iterative denoising. While current theory suggests that the number
of denoising steps required for accurate sample generation should scale linearly with data dimension, this
does not reflect the practical efficiency of widely used algorithms like Denoising Diffusion Probabilistic
Models (DDPM). This paper investigates the effectiveness of diffusion models in learning Gaussian Mix-
ture Models (GMMs). Our main result shows that, with perfect score estimates, DDPM requires at most
Õ(1/ε) iterations to achieve an ε-accurate distribution in total variation (TV) distance, independent of
both the ambient dimension d and the number of components K, up to logarithmic factors. Furthermore,
this result remains robust to score estimation errors. These findings highlight the remarkable effectiveness
of diffusion models for GMMs, even in high-dimensional settings, sheding lights on their capabilities.
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1 Introduction
Diffusion models have garnered significant attention for their remarkable generative capabilities, producing
high-quality samples with enhanced stability (Diakonikolas et al., 2018; Dhariwal and Nichol, 2021; Song
et al., 2020c; Ramesh et al., 2022). Compared to methods like Generative Adversarial Networks (GANs)
and Variational Autoencoders (VAEs), which generate samples in a single forward pass, diffusion models
are designed to iteratively denoise samples over hundreds or thousands of steps. A prominent example is
the widely used Denoising Diffusion Probabilistic Models (DDPM) sampler (Ho et al., 2020). The current
theory suggests the number of denoising steps required for accurate sample generation should scale at least
linearly with the data dimension (Chen et al., 2022; Benton et al., 2024) in order to learn the distribution
accurately. While various acceleration schemes have been proposed in literature (see, e.g. Li and Cai (2024);
Li et al. (2024a); Li and Jiao (2024); Wu et al. (2024b); Huang et al. (2024b,a); Taheri and Lederer (2025)),
in practical applications such as high-resolution image synthesis, where the dimensionality of the data can be
extremely large, DDPM often requires far fewer steps than predicted by theory while maintaining excellent
sample quality.

This gap between theoretical complexity bounds and empirical performance has inspired a strand of
recent research, investigating whether diffusion models have implicitly exploited structural properties of
real-world data to circumvent worst-case complexity bounds. A growing line of works have shed light on
this question by showing that diffusion models, in its original form, can automatically adapt to the intrinsic
dimension of the target distribution without explicitly modeling its low-dimensional structure. Notably, prior
work has examined cases where the data lies in low-dimensional linear spaces, low-dimensional manifolds, or
distributions whose support have small covering number (Li and Yan, 2024a; Tang and Yang, 2024; Huang
et al., 2024c; Potaptchik et al., 2024; Liang et al., 2025). In this work, we take a different perspective, and
explore this question by focusing on a fundamental and well-studied statistical model: Gaussian Mixture
Models (GMMs). GMMs serve as a cornerstone of statistical modeling and have been widely used to
approximate complex distributions. Formally, we consider the setting where the target distribution is a
mixture of isotropic Gaussians:

X0 ∼
K∑

k=1

πkN (µk, σ
2Id), (1)

where {πk} are mixture weights satisfying πk ∈ (0, 1) and
∑K

k=1 πk = 1. The study of Gaussian Mixture
Models (GMMs) dates back to Pearson (1894), and a vast body of literature has since explored various aspects
of GMMs, including parameter estimation, distribution learning, information-theoretic limits, computational
efficiency and etc. This paper studies the performance of diffusion models in their original form when they
are used to learn a GMM. We refer readers to a more detailed exposition of related work in Section 1.3.

1.1 Diffusion models and sampling efficiency
In a nutshell, diffusion models consist of two processes: a forward process and a backward process. In the
forward process, noise is gradually added to the data, transforming it into a noise-like distribution chosen
a priori (e.g., a Gaussian distribution). Mathematically, given an initial sample X0 ∈ Rd from the target
distribution pdata, this transformation follows

Xt =
√
αtXt−1 +

√
1− αtWt, t = 1, 2, . . . , T, (2)

where αt ∈ (0, 1), t ≥ 1 denotes the learning rates and Wt
i.i.d.∼ N (0, Id), t ≥ 1 are i.i.d. standard Gaussian

vectors in Rd. In the backward process, starting from YT ∼ N (0, Id), diffusion models iteratively denoise
YT to approximate pdata. Classical results from stochastic differential equations (SDE) theory (e.g. Ander-
son (1982); Haussmann and Pardoux (1986)) show that under mild conditions, recovering pdata is possible
provided access to the (Stein) score function s⋆t (·) : Rd → Rd for all 1 ≤ t ≤ T , defined as

s⋆t (x) := ∇ log pXt
(x), ∀x ∈ Rd. (3)

Given the complexity of developing a comprehensive end-to-end theory, a divide-and-conquer approach —
pioneered by (Chen et al., 2022) — has become standard, separating the score learning phase (i.e., estimating
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score functions reliably from training data) from the generative sampling phase (i.e., generating new data
instances based on the estimated scores). The quality of the sampler in terms of its discrepancy to the target
distribution depends on the errors from both phases. Over the past several years, the theoretical community
has made significant process in understanding both phases. Notably, for the sampling phase, convergence
theory has been established for various samplers (Liu et al., 2022; Lee et al., 2023; Chen et al., 2023a; Li
et al., 2023; Chen et al., 2023c; Tang and Zhao, 2024; Liang et al., 2024a; Huang et al., 2024a; Gao and
Zhu, 2024), especially DDPM and Denoising Diffusion Implicit Models (DDIM) which are widely adopted
in practice (Ho et al., 2020; Song et al., 2020a). For DDPM, Benton et al. (2024) establishes an iteration
complexity of Õ(d/ε2) 1 in Kullback Leibler (KL) divergence, and Li and Yan (2024b) shows a complexity of
Õ(d/ε) in total variation (TV) distance. When it comes to the DDIM sampler or the probability flow ODE,
notably, an Õ(d/ε) iteration complexity has been established in Li et al. (2024b).

1.2 Learning GMMs using diffusion models
In the context of GMMs, several recent works have contributed towards unraveling the capabilities of diffusion
models. In particular, inspired by diffusion models, Shah et al. (2023) introduced an algorithm designed for
GMMs that achieves polynomial time complexity in d, provided the component centers are well-separated.
Liang et al. (2024b) established an iteration complexity of Õ(d/ε2) for obtaining an ε-accurate distribution
measured in TV distance by analyzing the Lipschitz and second moments of GMMs. Additionally, Wu et al.
(2024a); Chidambaram et al. (2024) investigated the role of guidance in diffusion models. Two exciting
recent works (Chen et al., 2024; Gatmiry et al., 2024) proposed using piecewise polynomial regression to
estimate the score functions, and they combined this with existing convergence result for DDPM to develop
an end-to-end theory for DDPM. Notably, in these works, the number of diffusion steps scales also linearly
with d. Further, Wang et al. (2024) explored diffusion models for mixtures of low-rank Gaussians. Despite
these advancements, a fundamental question remains open: Can diffusion models achieve efficient sampling
when the target distribution is a GMM?

A glimpse of our main contributions. This paper investigates learning a GMM without imposing the
well-separated component assumption, a setting where parameter estimation is inherently challenging. Our
main result provides a non-asymptotic characterization of DDPM’s iteration complexity for learning an ε-
accurate distribution in TV distance. We prove that, given access to perfect score estimates, DDPM requires
at most

Õ
(1
ε

)
,

number of iterations. Remarkably, this iteration complexity is independent of both the ambient dimension
d and the number of components K, up to some logarithmic factors. Moreover, our result is robust to
score estimation errors: the TV distance between the learned distribution and the target distribution scales
proportionally to the score estimation error, modulo logarithmic factor. This leads to a surprising insight:

Even in ultra-high-dimensional settings, diffusion models remain highly effective in sampling from GMMs.

1.3 Other related works
Learning GMMs. GMMs are fundamental statistical models that bear a well-established body of research
from both statistics and computer science communities. One major line of research focuses on parameter
estimation with some separation conditions. Partial examples include Dasgupta (1999); Vempala and Wang
(2004); Arora and Kannan (2005); Kalai et al. (2010); Hsu and Kakade (2013); Diakonikolas et al. (2018);
Hopkins and Li (2018); Kothari et al. (2018); Liu and Li (2022).

Our work is more closely related to the density estimation perspective, where no separation conditions
are imposed (e.g. Diakonikolas and Kane (2020); Moitra and Valiant (2010); Dwivedi et al. (2020); Bakshi
et al. (2022); Ho and Nguyen (2016)). In this setting, parameter estimation is information-theoretically
infeasbile, yet accurate density estimation is still possible. The information theoretical limit of this problem

1The definition for O(·) and Õ(·) notation can be found in Section 1.4.
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is first characterized in Ashtiani et al. (2018) up to logarithmic factors, with a brute-forth algorithm that
scales exponentially in both d and K. For one-dimensional Gaussian mixtures, Chen (1995); Heinrich
and Kahn (2018); Wu and Yang (2020) obtained optimal estimation rates and practical algorithms, which
were generalized to the high-dimensional case for mixtures of spherical Gaussians with a computationally
efficient algorithm in Doss et al. (2023). Beyond finite mixtures, when mixing distribution is an arbitrary
probability measure (e.g. Genovese and Wasserman (2000); Ghosal and Van Der Vaart (2001)), Saha and
Guntuboyina (2020); Polyanskiy and Wu (2020); Kim and Guntuboyina (2022) established convergence rates
and adaptivity, regarding the non-parametric maximum likelihood estimatior, generalizing the one-dimension
results in Zhang (2009).

Score estimation. As mentioned earlier, score estimation plays a crucial role in diffusion models. Hyväri-
nen (2005) introduced an integration-by-parts-based approach to simplify score estimation. More recently,
Song et al. (2020b) proposed training neural networks to learn score functions by minimizing the score match-
ing objective. The theoretical guarantees for score estimation using neural networks have been analyzed
across various distributional settings, including sub-Gaussian distributions (Cole and Lu, 2024), graphical
models (Mei and Wu, 2023), low-dimensional structured distributions (Chen et al., 2023b; Kwon et al., 2025;
De Bortoli, 2022), and Besov function space (Oko et al., 2023). These guarantees are often achieved by
designing neural architectures that well approximate the true score function. Other than neural networks,
classical methods such as kernel-based approaches and empirical Bayes smoothing have also been studied for
score estimation (Cai and Li, 2025; Wibisono et al., 2024; Zhang et al., 2024; Dou et al., 2024). These meth-
ods have been shown to achieve minimax-optimal rates under some smoothness assumptions. Furthermore,
Feng et al. (2024) demonstrated that statistical procedures based on score matching can achieve minimal
asymptotic covariance for convex M-estimation.

1.4 Notation
For any a, the Dirac delta function δa(x) is defined as δa(x) = ∞ if x = a and δa(x) = 0 otherwise. For
positive integer N > 0, let [N ] := {1, · · · , N}. In addition, given any matrix A, we use ∥A∥, tr(A), and
det(A) to denote the spectral norm, trace, and determinant of the matrix, respectively. Next, we recall the
definitions of the KL divergence and TV distance to measure the discrepancies between two distributions.
Specifically, for random vectors X and Y with probability density functions pX and pY , let

KL(X ∥Y ) ≡ KL(pX ∥ pY ) =
∫

pX(x) log
(pX(x)

pY (x)

)
dx,

TV(X,Y ) ≡ TV(pX , pY ) =
1

2

∫
|pX(x)− pY (x)|dx.

For any two functions f(T ), g(T ) > 0, we write f(T ) ≲ g(T ) or f(T ) = O
(
g(T )

)
to indicate f(T ) ≤ Cg(T )

for some absolute constant C > 0. We say f(T ) ≍ g(T ) when Cf(T ) ≤ g(T ) ≤ C ′f(T ) for some absolute
constants C ′ > C > 0. The notation Õ(·) and Ω̃(·) represent the respective bounds up to logarithmic factors.
Finally, we write f(T ) = o(g(T )) to denote that lim supT→∞ f(T )/g(T ) = 0.

2 Preliminaries for diffusion models
Given training samples from a target distribution pdata on Rd, diffusion models aim to generate new samples
from pdata. Recall the forward process (2). If we define

αt :=

t∏
k=1

αk, t = 1, 2, . . . , T, (4)

the forward process can be expressed as a linear combination of the initial distribution and a Gaussian noise

Xt =
√
αtX0 +

√
1− αt W t, t = 1, 2, . . . , T, (5)
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where W t ∼ N (0, Id) denotes a d-dimensional standard Gaussian random vector independent of X0. When
αT is sufficiently small, XT is well-approximated by a standard Gaussian distribution. Taking the continuum
limit of (2), the process satisfies the stochastic differential equation (SDE):

dxt = −1

2
βtXt,dt+

√
βtdBt X0 ∼ pdata; t ∈ [0, T ] (6)

for some function βt : [0, T ] → R, where (Bt)t∈[0,T ] is a standard Brownian motion in Rd.
Diffusion models seek to reverse the above process by iteratively denoising noisy samples genearated from

N (0, Id), reconstructing data samples from pdata. From a continuous perspective, given a solution (Xt)t∈[0,T ]

to (6), classical SDE theory (Anderson, 1982; Haussmann and Pardoux, 1986) ensures that its time reversal
Y SDE
t := XT−t satisfies:

dY SDE
t =

1

2
βT−t

(
Y SDE
t + 2∇ log pXT−t

(
Y SDE
t

))
dt+

√
βT−t dBt, Y SDE

0 ∼ pXT
; t ∈ [0, T ]. (7)

Here, pXt
denotes the marginal distribution of Xt in the forward SDE (6).

Score learning/matching. It is clear from the continuous perspective, that the score function s⋆t (x) :=
∇ log pXt

(x) plays an important role in characterizing the reverse process. In fact, if s⋆t (x) were known
exactly, the reverse process would be uniquely identified. In practice, however, score functions must be
learned from training samples. A natural approach is to estimate s⋆t (x) within a pre-selected function class
F by minimizing the expected squared error:

min
st∈F

EX∼pXt

[∥∥st(X)−∇ log pXt
(X)

∥∥2].
For Gaussian distributions, integration by parts allows reformulating this objective as (e.g., Hyvärinen (2005);
Vincent (2011); Chen et al. (2022))

min
st:Rd→Rd

E
W∼N (0,Id),X0∼pdata

[∥∥∥∥st(Xt

)
+

1√
1− αt

W

∥∥∥∥2
2

]
. (8)

Here, given the observed Xt =
√
αtX0 +

√
1− αt W , one seeks to predict the independent noise W , a

strategy known as score matching. This formulation is particularly useful for practical training since it does
not require explicit knowledge of the score function ∇ log pXt

. Instead, it can be approximated using finite
samples, making it more feasible for learning the score function from data.

The DDPM sampling procedure. To implement the sampling process, we must discretize the contin-
uous dynamics and obtain score estimates at discrete time steps. Suppose that one obtains score estimates
{st} at t = 1, . . . , T . Equipped with these score estimates, the renown DDPM algorithm Ho et al. (2020)
is a stochastic sampler that recursively generates samples using the following update rule. Starting from
YT ∼ N (0, Id), DDPM computes Yt−1 by

Yt−1 =
1

√
αt

(
Yt + (1− αt)st(Yt)

)
+
√
1− αtZt, t = T, . . . , 1. (9)

Here, Z1, . . . , ZT
i.i.d.∼ N (0, Id) is a sequence of i.i.d. Gaussian random vectors in Rd. In words, at each step,

Yt−1 is a weighted sum of Yt and its estimated score, plus an independent Gaussian noise.

3 Main results
In this section, we state our main results on the performances of DDPM when applied to GMMs (1) and
discuss their consequences. Without loss of generality, we focus on the case where σ = 1 and therefore the
covariance of each component is the identity matrix. Otherwise, our algorithm and analysis framework are
readily extended to the general case by either rescaling the data accordingly, or adjusting the learning rates
accordingly. We start by introducing some assumptions on the GMMs and the quality of our score estimates.
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Assumption 1. We assume that each component of the GMM (1) satisfies

∥µk∥2 ≤ T cR , ∀k ∈ [K] (10)

for some absolute constant cR > 0.

This assumption requires that the mean of each component grows at most polynomially with the iter-
ation number T . Expressing the boundedness condition in terms of T allows for cleaner and more concise
convergence guarantees. Given that the constant cR can be chosen arbitrarily large, this assumption allows
each component to have exceedingly large mean value. Therefore, it holds true for most distributions that
are encountered in practice.

Next, we assess the quality of score estimates by their averaged ℓ2 accuracy. This form of estimation
error matches naturally with training procedures such as the score matching mentioned above.

Assumption 2. We assume the score estimates {st}t∈[T ] satisfy

1

T

T∑
t=1

EXt∼pXt

[∥∥st(Xt)− s⋆t (Xt)
∥∥2
2

]
≤ ε2score. (11)

Notably, this assumption requires the mean squared estimation error averaged over time steps is bounded,
rather than the error at any individual step. It is commonly assumed in the literature of diffusion models
(e.g., Chen et al. (2022); Benton et al. (2024); Li and Yan (2024b)).

Convergence theory for DDPM. Before stating our main result, we introduce the learning rate schedule
{αt}t∈[T ]. As adopted in previous works on diffusion models (e.g. Li and Cai (2024)), the learning rate
sequence is defined iteratively using the cumulative products αt =

∏t
k=1 αk in Eq. (4). More specifically,

define

αT =
1

T c0
, and αt−1 = αt + c1

log T

T
αt(1− αt), t = T, . . . , 2, (12)

where c0, c1 > 0 are absolute constants satisfying c0, c1 are sufficiently large and c1/c0 > 4. As shown in
Lemma 1, this choice of the learning rates yields that property that

1− αt ≲
log T

T
for t ≥ 2, and 1− α1 ≤ T−c1/4.

With these assumptions and preparations, we are positioned to state our main result below. The proof
of this result is provided in Section 4, with the proofs of auxiliary lemmas postponed to Section A.

Theorem 1. Under Assumptions 1 and 2, the output Y0 of the DDPM sampler (9) with the learning rate
selected according to (12) satisfies

TV(X0, Y0) ≲
log2(KT ) log2 T

T
+ εscore

√
log T . (13)

In a nutshell, Theorem 1 guarantees that the sampling quality of DDPM, measured in TV distance, is
governed by two components: the first accounts for the time discretization error arising from approximating
the continuous SDE in Eq. (7) with a discrete procedure; the second component results from the score
estimation error. As a result, given access to perfect score estimates, it only takes DDPM no larger than

Õ
(1
ε

)
,

number of iterations to yield a sampler that is ε-close to the target distribution in terms of TV distance.
Notably, this iteration complexity is independent of both the ambient dimension d and the number of
components K up to some logarithmic factors. In addition, our result is robust to score estimation error:
the TV distance between our output distribution and the target distribution scales proportionally to the
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εscore, modulo logarithmic factor. Our result contrasts the common belief that diffusion models inherently
require complexity scaling at least with d.

Theorem 1 is established with respect to the TV distance between X0 and Y0, whereas, most theoretical
results in diffusion models fail to directly handle the TV distance due to technical reasons. More specifically,
most prior works consider the KL divergence which is a natural choice if Girsanov’s theorem is invoked to
handle the discrepancy between the forward process and the process when imperfect socre functions are
concerned. Noteworthily, a recent line of literature (e.g. Li et al. (2023); Li and Yan (2024b); Li et al.
(2024b)) enriches the toolbox of analyzing diffusion models by providing a framework of directly working
with the TV distance.

To provide some intuition about why one should expect an iteration number independent of both d and
K up to logarithmic factors, consider the Jacobian matrix Jt(x) : Rd → Rd×d of the score function s⋆t (x)

with Jt(x) =
∂s⋆t
∂x . By direct computation (as in Eq. (20)), it satisfies

Jt(x) = −Id + αt

{
K∑

k=1

π
(t)
k (x)µkµ

⊤
k −

(
K∑

k=1

π
(t)
k (x)µk

)(
K∑

k=1

π
(t)
k (x)µk

)⊤}
, ∀x ∈ Rd. (14)

Here, π(t)
k (x) denotes the probability of x lying in the cluster k at time t of the forward process

π
(t)
k (x) :=

πk exp
(
− 1

2∥x−
√
αtµk∥22

)∑K
i=1 πi exp

(
− 1

2∥x−
√
αtµi∥22

) , ∀k ∈ [K], t ∈ [T ]. (15)

We prove in Lemma 5 that with high probability

tr
(
Id + Jt(Xt)

)
≤ C1 log(KT ), (16)

for some absolute constant C1 independent of the problem parameters. This relation, which does not
generally hold, is the key to our dimension-free iteration complexity for GMMs. Since GMMs are widely
used to approximate general distributions, if a given distribution can be well-approximated by a Gaussian
mixture satisfying Eq. (16) also holds true, it is reasonable to expect a dimension-independent iteration
complexity for that broader class of distributions as well.

Comparisons to prior literature. Alongside the seminar work (Chen et al., 2022) and the follow-
up works (e.g. Lee et al. (2023); Chen et al. (2023a); Benton et al. (2024)), Theorem 1 investigates the
algorithmic aspect of learning GMMs assuming efficient score estimation/matching. Among existing works,
the most closely related to ours is Liang et al. (2024b), which established an iteration complexity of Õ(d/ε2)
by analyzing the Lipschitz properties and second moments of GMMs. Compared to Li and Yan (2024b),
which studied DDPM for general distributions under mild assumptions, and attained an Õ(d/ε) iteration
complexity, Liang et al. (2024b) did not demonstrate any adaptation of DDPM to GMMs. Our result,
however, highlights the surprising adaptive property of diffusion models in this setting.

Beyond the algorithmic aspect, Chen et al. (2024); Gatmiry et al. (2024) developed an end-to-end theory
by leveraging piecewise polynomial regression for score estimation and integrating it with existing convergence
results on DDPM. The runtime and sample complexity of the resulting algorithms scale quasi-polynomially
with K/ε or log(K/ε) depending on the covariance assumptions. Notably, the number of diffusion steps
used in these two works still scales linearly with d. Our result serves as a complementary contribution to
Chen et al. (2024); Gatmiry et al. (2024) by isolating the component of the iteration complexity that is
independent of both d and K, up to a logarithmic factor.

4 Analysis
In this section, we describe our proof strategies for deriving Theorem 1. The proofs for auxiliary lemmas
and facts are deferred to the appendix.
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4.1 Preliminaries
Before proceeding with the main analysis, let us collect several key properties that shall be used in our later
analysis.

To begin with, Lemma 1 below characterizes the behavior of the learning rates (αt)t∈[T ] chosen in (12).
The proof of this result can be found in Li and Cai (2024, Appendix B.1).

Lemma 1. The learning rates (αt)t∈[T ] specified in (12) satisfy that

1− αt ≤ c1
log T

T
, t = 2, . . . , T, (17a)

1− α1 ≤ 1

T c1/4
, (17b)

where c1 is defined in (12).

Next, in light of Assumption 1 on the GMM we considered, and the forward process (2), it is straight-
forward to verify each Xt is another mixture of Gaussian distribution with

Xt ∼
K∑

k=1

πkN
(√

αtµk, Id
)
,

with the density function given by

pXt
(x) =

K∑
k=1

πk
1

(2π)d/2
exp
(
−1

2

∥∥x−
√
αtµk

∥∥2
2

)
. (18)

Through direct computation, we can derive that its score function takes the following explicit form:

s⋆t (x) := ∇ log pXt
(x) = −

K∑
k=1

π
(t)
k (x)

(
x−

√
αtµk

)
= −x+

K∑
k=1

π
(t)
k (x)

√
αtµk, (19)

where we recall in Eq. (15) that π
(t)
k (x) : Rd → [0, 1] is defined as

π
(t)
k (x) :=

πk exp
(
− 1

2∥x−
√
αtµk∥22

)∑K
i=1 πi exp

(
− 1

2∥x−
√
αtµi∥22

) , ∀k ∈ [K], t ∈ [T ].

In addition, the Jacobian matrix Jt(x) : Rd → Rd×d of s⋆t (x) can be computed as

Jt(x) :=
∂s⋆t (x)

∂x
= −Id + αt

K∑
k=1

π
(t)
k

(
µk −

K∑
i=1

π
(t)
i µi

)(
µk −

K∑
i=1

π
(t)
i µi

)⊤

= −Id + αt

{
K∑

k=1

π
(t)
k µkµ

⊤
k −

(
K∑

k=1

π
(t)
k µk

)(
K∑

k=1

π
(t)
k µk

)⊤}
, ∀x ∈ Rd. (20)

As a remark, we note that Id + Jt(x) ⪰ 0 for any t ∈ [T ] and x ∈ Rd.
Next, we introduce the event Et for each t ∈ [T ] as follows:

Et :=
{
x ∈ Rd : tr

(
Id + Jt(x)

)
≤ C1 log(KT ) and

K∑
k=1

π
(t)
k exp

(
− ζ

(t)
k (x)

)
≤ exp

(
C2(1− αt)

2 log2(KT )
)}

, (21)

for some absolute constants C1, C2 > 0, where we define ζ
(t)
k (x) : Rd → R for each k ∈ [K]:

ζ
(t)
k (x) :=

1− α2
t

2α2
t

(∥∥x−
√
αtµk

∥∥2
2
−

K∑
i=1

π
(t)
i

∥∥x−
√
αtµi

∥∥2
2

)
+

1− αt

α2
t

s⋆t (x)
⊤

K∑
i=1

π
(t)
i

√
αt(µi − µk). (22)

Finally, we extend the d-dimensional Euclidean space Rd by adding a single point ∞, to obtain Rd∪{∞}.
Intuitively, this set {∞} serves as a convenient way to capture all atypical points in the reverse process.
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4.2 Step 1: Constructing auxiliary processes
To facilitate our main analysis, we introduce several auxiliary processes below. These processes are con-
structed only for analysis purpose and are not used in our sampling algorithm.

Sequence (Y ⋆
t )

T
t=0 using true scores. We begin by constructing an auxiliary reverse process (Y ⋆

t )
T
t=0

using the true score functions:

Y ⋆
T ∼ N (0, Id), Y ⋆

t−1 :=
1

√
αt

(
Y ⋆
t + (1− αt)s

⋆
t (Y

⋆
t )
)
+
√
1− αtZt; ∀t = T, . . . , 1. (23)

where Zt
i.i.d.∼ N (0, Id) is a sequence of i.i.d. standard d-dimensional Gaussian random vectors independent

of Y ⋆
t .

Sequence (Y
−
t , Y t)

T
t=0. Next, we introduce two auxiliary sequences (Y

−
t )

T
t=0 and (Y t)

T
t=0 to capture the

discretization error modulo some low probability event. These sequences, together with YT implemented
practically, form a Markov chain with the following transition structure:

YT → Y
−
T → Y T → Y

−
T−1 → Y T−1 → · · · → Y

−
1 → Y 1 → Y

−
0 → Y 0. (24)

• Initialization. For t = T , we define

Y
−
T :=

{
YT , if YT ∈ ET ,
∞, otherwise.

(25a)

The density of Y
−
T satisfies

p
Y

−
T
(y) = pYT

(y)1
{
y ∈ ET

}
+ P

{
YT /∈ ET

}
δ∞(y). (25b)

• Transition from Y
−
t to Y t. For t = T, . . . , 0, we define Y t as follows: conditional on Y

−
t = y,

Y t :=

{
y, with prob. pXt(y)/pY −

t
(y) ∧ 1,

∞, with prob. 1−
{
pXt

(y)/p
Y

−
t
(y) ∧ 1

}
.

(26a)

The conditional density of Y t given Y
−
t = y obeys

p
Y t|Y

−
t
(x | y) =

{
pXt

(y)/p
Y

−
t
(y) ∧ 1

}
δy(x) +

(
1−

{
pXt

(y)/p
Y

−
t
(y) ∧ 1

})
δ∞(x). (26b)

We make a critical implication of the above construction: for any t ≥ 0, the density of Y t satisfies

pY t
(y) =

{
pXt

(y)/p
Y

−
t
(y) ∧ 1

}
p
Y

−
t
(y) = pXt

(y) ∧ p
Y

−
t
(y), ∀y ∈ Rd. (27)

• Transition from Y t to Y
−
t−1. For each t = T, . . . , 1, we first draw a candidate sample

Ỹt−1 :=
1

√
αt

(
Y t + (1− αt)s

⋆
t (Y t)

)
+

√
1− αtWt, (28a)

where Wt
i.i.d.∼ N (0, Id), t ≥ 1 is a sequence of i.i.d. standard Gaussian random vectors independent of

(Zt)
T
t=1, and then define

Y
−
t−1 :=

{
Ỹt−1, if Y t ∈ Et and Ỹt−1 ∈ Et,
∞, otherwise.

(28b)

The conditional density of Y
−
t−1 given Y t = y satisfies: if y ∈ Et, then

p
Y

−
t−1|Y t

(x | y) = pY ⋆
t−1|Y ⋆

t
(x | y)1

{
x ∈ Et

}
+ P

{
Y ⋆
t−1 /∈ Et | Y ⋆

t = y
}
δ∞(x); (28c)

otherwise,
p
Y

−
t−1|Y t

(x | y) = δ∞(x). (28d)
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Sequence (Ŷ −
t , Ŷt)

T
t=0. Finally, we introduce two additional auxiliary sequences (Ŷ −

t )Tt=0 and (Ŷt)
T
t=0,

which forms the following Markov chain together with YT :

YT → Ŷ −
T → ŶT → Ŷ −

T−1 → ŶT−1 → · · · → Ŷ −
1 → Ŷ1 → Ŷ −

0 → Ŷ0. (29)

• Initialization. For t = T , we initialize Ŷ −
T = Y

−
T .

• Transition from Ŷ −
t to Ŷt. For t = T, . . . , 0, the conditional density of Ŷt given Ŷ −

t = y obeys

pŶt|Ŷ −
t
(x | y) = p

Y t|Y
−
t
(x | y). (30)

• Transition from Ŷt to Ŷ −
t−1. For t = T, . . . , 1, the conditional density of Y

−
t−1 given Y t = y satisfies: if

y ∈ Et, then

pŶ −
t−1|Ŷt

(x | y) = pYt−1|Yt
(x | y)1

{
x ∈ Et

}
+ P

{
Yt−1 /∈ Et | Yt = y

}
δ∞(x); (31a)

otherwise,
pŶ −

t−1|Ŷt
(x | y) = δ∞(x). (31b)

The sequences (Ŷ −
t )Tt=0 and (Ŷt)

T
t=0 are constructed following the same principles as (Y

−
t )

T
t=0 and (Y t)

T
t=0,

with one key difference: the transition from Ŷt to Ŷ −
t is computed using estimated score functions rather

than the true score functions.

A crucial property. It is noteworthy that for any t ≥ 0, the density of Ŷt satisfies

pŶt
(x) ≤ pYt

(x), ∀x ∈ Rd, (32)

and consequently, pŶt
(x) ≥ pYt

(x) for x = ∞. To see this, we first note that the base case t = T holds since

Ŷt
d
= Yt, which arises from Ŷ −

T = Y
−
T and pŶt|Ŷ −

t
= p

Y t|Y
−
t

by (30). Next, suppose that (32) holds for t+ 1.
Then for any x ∈ Rd, one has

pŶt
(x)

(i)
=
{
pXt

(x)/p
Y

−
t
(x) ∧ 1

}
pŶ −

t
(x) ≤ pŶ −

t
(x) =

∫
Rd

pŶ −
t |Ŷt+1

(x | y)pŶt+1
(y) dy

(ii)
≤
∫
Rd

pYt|Yt+1
(x | y)pYt+1

(y) dy = pYt
(x),

where (i) uses (30) and (26b); (ii) is true due to the induction hypothesis and (31a).

Error decomposition. In view of triangle’s inequality, we can upper bound the TV distance between pX0

and pY0
by two terms

TV(pX0
, pY0

) ≤ TV(pX0
, pY 0

) + TV
(
pY 0

, pY0

)
, (33)

where the first term acts in the role of discretization error modulo some low probability event, as Y t is defined
using the true scores, whereas the second term captures the error caused by imperfect score estimation. In
the sequel, we control each term separately.

4.3 Step 2: Bounding discretization error
In this section, we proceed to bound TV(pX0

, pY 0
). Let us first define function ∆t(x) : Rd → R, where for

each t = 0, . . . , T :
∆t(x) := pXt(x)− pY t

(x), ∀x ∈ Rd. (34)
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In view of relation (27), one has ∆t(x) ≥ 0 for all t ≥ 0 and x ∈ Rd. Applying the formula for the total
variation TV(p, q) =

∫
x : p(x)>q(x)

(
p(x)− q(x)

)
dx, we find that

TV
(
pX0

, pY 0

)
=

∫
Rd∪{∞}

(
pX0

(x)− pY 0
(x)
)
1
{
pX0

(x) > pY 0
(x)
}
dx =

∫
Rd

∆0(x) dx. (35)

Thus, it is sufficient to bound
∫
∆0(x) dx, which shall be done using an inductive argument. We start

with the base case, which is characterized by the Lemma 2 below.

Lemma 2. It satisfies that ∫
Rd

∆T (x) dx ≲ T−3. (36)

Proof. See Appendix A.1.

In addition, Lemma 3 below establishes the inductive relationship between t and t− 1.

Lemma 3. For all t = T, . . . , 1, one has∫
Rd

∆t−1(x) dx−
∫
Rd

∆t(x) dx ≲ (1− αt)
2 log2(KT ) + T−3, (37)

Proof. See Appendix A.2.

Consequently, combining (36)–(37) with (35) leads to

TV
(
pX0

, pY 0

)
=

∫
Rd

∆0(x) dx ≤
∫
Rd

∆T (x) dx+ T ·O
(
(1− αt)

2 log2(KT )
)
+ T ·O

(
T−3

)
≲

1

T 3
+

log2(KT ) log2 T

T
+

1

T 2

≍ log2(KT ) log2 T

T
, (38)

where the penultimate step uses 1− αt ≲ log T/T by (17).

4.4 Step 3: Relating to score estimation error
Next, we control the term TV

(
pY 0

, pY0

)
. First, in view of basic calculations, we can write

TV
(
pY 0

, pY0

)
=

∫
Rd

(
pY 0

(x)− pY0
(x)
)
1
{
pY 0

(x) > pY0
(x)
}
dx+ P

{
Y 0 = ∞

}
(i)

≤
∫
Rd

(
pY 0

(x)− pŶ0
(x)
)
1
{
pY 0

(x) > pŶ0
(x)
}
dx+ P

{
Y 0 = ∞

}
(ii)

≤ TV
(
pY 0

, pŶ0

)
+ TV

(
pX0 , pY 0

)
(iii)

≤
√

KL
(
pY 0

∥ pŶ0

)
+O

(
log2(KT ) log2 T

T

)
. (39)

where (i) arises from (32) that pY0(x) ≥ pŶ0
(x) for any x ∈ Rd; (ii) uses P{Y 0 = ∞} ≤ TV(pX0 , pY 0

) since
X0 ∈ Rd; (iii) applies Pinsker’s inequality and (38).

To further control the right hand side of (39), it suffices to bound KL
(
pY 0

∥ pŶ0

)
from above. Towards

this, notice that

KL
(
pY 0

∥ pŶ0

) (i)

≤ KL
(
p
Y

−
T ,Y T ,...,Y

−
0 ,Y 0

∥ pŶ −
T ,ŶT ,...,Ŷ −

0 ,Ŷ0

)
(ii)
= KL

(
p
Y

−
T
∥ pŶ −

T

)
+

T∑
t=0

Ext∼p
Y

−
t

[
KL
(
p
Y t|Y

−
t =xt

∥ pŶt|Ŷ −
t =xt

)]
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+

T∑
t=1

Ext∼pY t

[
KL
(
p
Y

−
t−1|Y t=xt

∥ pŶ −
t−1|Ŷt=xt

)]
(iii)
=

T∑
t=1

Ext∼pY t

[
KL
(
p
Y

−
t−1|Y t=xt

∥ pŶ −
t−1|Ŷt=xt

)]
. (40)

Here, (i) applies the data-processing inequality; (ii) uses the chain rule of KL divergence and the Markov
property; (iii) is true since we initialize Ŷ −

T = Y
−
T and the transition kernels from Ŷ −

t to Ŷt are the same as
those from Y

−
t to Y t for all t ≥ 0.

Note that Y ⋆
t−1 | Y ⋆

t ∼ N
(

1√
αt

(
Y ⋆
t + (1 − αt)s

⋆
t (Y

⋆
t )
)
, (1 − αt)Id

)
and Yt−1 | Yt ∼ N

(
1√
αt

(
Yt + (1 −

αt)st(Yt)
)
, (1 − αt)Id

)
. For any xt ∈ Et, write p(·) = pY ⋆

t−1|Y ⋆
t
(·) and q(·) = pYt−1|Yt

(·). In view of the
definitions (31a) and (26b), one has

KL
(
p
Y

−
t−1|Y t=xt

∥ pŶ −
t−1|Ŷt=xt

)
=

∫
Et

log
p(x)

q(x)
p(x) dx+ log

∫
Ec
t
p(x) dx∫

Ec
t
q(x) dx

∫
Ec
t

p(x) dx. (41)

Now invoke Li and Yan (2024b, Lemma 6) to derive

KL
(
p
Y

−
t−1|Y t=xt

∥ pŶ −
t−1|Ŷt=xt

)
≤
∫
Rd

log
p(x)

q(x)
p(x) dx

= KL
(
pY ⋆

t−1|Y ⋆
t =xt

∥ pYt−1|Yt=xt

)
(i)
=

1− αt

2αt
∥st(xt)− s⋆t (xt)∥22

(ii)

≲
log T

T
∥st(xt)− s⋆t (xt)∥22. (42)

Here, (i) uses the formula of the KL divergence for two normal distributions; (ii) uses 1 − αt ≲ log T/T by
(17). Meanwhile, for any xt ∈ Ec

t , we know from (31b) that

KL
(
p
Y

−
t−1|Y t=xt

∥ pŶ −
t−1|Ŷt=xt

)
= 0. (43)

Combined with (40), the above bounds gives

KL
(
pY 0

∥ pŶ0

) (i)

≤
T∑

t=1

Ext∼pXt

[
KL
(
p
Y

−
t−1|Y t=xt

∥ pŶ −
t−1|Ŷt=xt

)]
(ii)

≲
log T

T

T∑
t=1

E
[
∥st(Xt)− s⋆t (Xt)∥22

]
(iii)

≲ ε2score log T, (44)

where (i) arises from (43) and (27) that pY t
(x) ≤ pXt

(x) for all x ∈ Rd; (ii) uses (42); (iii) follows from
Assumption 2 on the score estimation. Substituting (44) into (39) leads to

TV
(
pY0 , pY 0

)
≲

log2(KT ) log2 T

T
+ εscore

√
log T . (45)

In conclusion, putting relations (38) and (45) together with (33) completes the proof of Theorem 1.

5 Discussion
In summary, this paper explores the effectiveness of diffusion models in learning GMMs and presents new
theoretical insights on how generative models implicitly exploit data structure to achieve efficient sampling.
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While DDPM requires a number of iterations that scale linearly with data dimension in the worst case,
our main result unveils a surprising efficiency of DDPM: it only requires an iteration complexity of Õ(1/ε)
to learn an ε-accurate distribution, independent of both the data dimension d and the number of mixture
components K, up to logarithmic factors. This result suggests that diffusion models can efficiently learn
structured distributions even in ultra-high-dimensional settings.

Before concluding, we highlight several promising directions for future investigation. First, since GMMs
are widely used to approximate complex distributions, our findings suggest that if a distribution can be
well-approximated by a GMM, it may also be efficiently learned using diffusion models. Formalizing this
intuition and developing adaptive guarantees for learning general distributions would be a valuable extension.
Additionally, while this paper focuses on mixtures of spherical Gaussians, an important next step is to analyze
the iteration complexity of DDPM when applied to more general cases, such as mixtures with well-conditioned
but arbitrary covariances, as considered in Chen et al. (2024). Finally, our analysis primarily addresses the
sampling phase, leaving open the question of how score estimation efficiency is affected by the structure of
GMMs. It remains a crucial direction to establish an end-to-end theory that integrates both score learning
and sampling and fully unleashes the potential of diffusion models adapting to low-dimensional structure.
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A Proof of technical lemmas

A.1 Proof of Lemma 2
Recalling that ∆T (x) := pXT

(x)− pY T
(x) ≥ 0 for any x ∈ Rd, we can derive∫

Rd

∆T (x) dx =

∫
Rd

(
pXT

(x)− pY T
(x)
)
1
{
pXT

(x) > pY T
(x)
}
dx

(i)
=

∫
Rd

(
pXT

(x)− p
Y

−
T
(x)
)
1
{
pXT

(x) > p
Y

−
T
(x)
}
dx

(ii)
= TV

(
pXT

, p
Y

−
T

)
≤ TV

(
pXT

, pYT

)
+ TV

(
pYT

, p
Y

−
T

)
, (46)

where (i) arises from (27) that pY T
(x) = pXT

(x) ∧ p
Y

−
T
(x) for any x ∈ Rd, (ii) uses the formula of the total

variation TV(p, q) =
∫
x : p(x)>q(x)

(
p(x)− q(x)

)
dx and XT ∈ Rd.

Consequently, it suffices to control the two quantities in (46) respectively.

• For the first term TV
(
pXT

, pYT

)
corresponding to the initialization error, we can derive

KL
(
pXT

∥ pYT

) (i)

≤ E
[
KL
(
pXT

(· | X0) ∥ pYT
(·)
)]

(ii)
=

1

2
E
[
d(1− αT )− d+

∥∥√αTX0

∥∥2
2
− d log(1− αT )

]
(iii)

≲ T−c0E
[
∥X0∥22

] (iv)

≲ T−c0(T cR + d)
(v)

≲ T−8, (47)

where (i) arises from the convexity of the KL divergence; (ii) applies the KL divergence formula for
two normal distributions; (iii) is due to the choice of the learning rate αT = T−c0 = o(1) in (12) and
log(1− x) ≥ −x for any x ∈ [0, 1/2]; (iv) holds due to Assumption 1 that

E
[
∥X0∥22

]
=

K∑
k=1

πk

(
∥µk∥22 + d

)
≤ T cR + d;
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and (v) holds as long as T and c0 are sufficiently large. It then follows from Pinsker’s inequality that

TV
(
pXT

, pYT

)
≤
√

KL
(
pXT

∥ pYT

)
≲ T−4. (48)

• We proceed to consider the second term TV
(
pYT

, p
Y

−
T

)
. By the construction of Y

−
T (see (25)), one can

write

TV
(
pYT

, p
Y

−
T

) (i)
=

∫
Rd

(
pYT

(x)− p
Y

−
T
(x)
)
1
{
pYT

(x) > p
Y

−
T
(x)
}
dx

(ii)
=

∫
Ec
t

pYT
(x) dx

(iii)

≤
∫
Ec
t

pXT
(x) dx+ TV

(
pXT

, pYT

)
.

Here, (i) uses the formula of the total variation TV(p, q) =
∫
x : p(x)>q(x)

(
p(x) − q(x)

)
dx; (ii) follows

from YT ∈ Rd and (25b) that p
Y

−
T
(x) = pYT

(x) if x ∈ ET and p
Y

−
T
(x) = 0 if x ∈ Rd \ ET ; (iii) arises

from the definition of total variation distance that TV(p, q) = supB |p(B) − q(B)|. As we shall see
momentarily in Lemma 5 in Appendix A.4, one has∫

Ec
T

pXT
(x) ≲ T−3.

Combined with (48), this leads to

TV
(
pYT

, p
Y

−
T

)
≲ T−3 + T−4 ≍ T−3. (49)

In conclusion, substituting (48) and (49) into (46) completes the proof of Lemma 2.

A.2 Proof of Lemma 3
Fix an arbitrary t ∈ [T ]. To analyze

∫
Rd ∆t(xt) dxt, let us first introduce a function ∆t→t−1(x) : Rd → R

where

∆t→t−1(x) :=

∫
xt∈Et

pY ⋆
t−1|Y ⋆

t
(x | xt)∆t(xt) dxt, ∀x ∈ Rd. (50)

Note that in view of relation (27), ∆t(x) ≥ 0 for all x ∈ Rd and therefore ∆t→t−1(x) ≥ 0 for all x ∈ Rd. It
is easily seen that∫

Rd

∆t→t−1(xt−1) dxt−1 =

∫
xt∈Et

∫
xt−1∈Rd

pY ⋆
t−1|Y ⋆

t
(xt−1 | xt) dxt−1∆t(xt) dxt ≤

∫
Rd

∆t(xt) dxt. (51)

As a result, to upper bound
∫
Rd ∆t−1(x) dx −

∫
Rd ∆t(x) dx, it is sufficient to consider

∫
Rd ∆t−1(x) dx −∫

Rd ∆t→t−1(xt−1) dxt−1.
Towards this, we find it helpful to first make the following observation. For any xt−1 ∈ R such that

∆t−1(xt−1) > 0, or equivalently, pXt−1
(xt−1) > pY t−1

(xt−1), we have

pXt−1
(xt−1)−∆t−1(xt−1) + ∆t→t−1(xt−1) = p

Y
−
t−1

(xt−1) + ∆t→t−1(xt−1). (52)

Here, we use the fact that pY t−1
(xt−1) = pXt−1(xt−1) ∧ p

Y
−
t−1

(xt−1) = p
Y

−
t−1

(xt−1) since pXt−1(xt−1) >

pY t−1
(xt−1). To further control the right hand side, recall the definition of ∆t(x) in (34) and the constructed

transition kernel of p
Y

−
t−1|Y t

in (28c). For any xt−1 ∈ Rd, we arrive at

p
Y

−
t−1

(xt−1) ≥
∫
xt∈Et

pY ⋆
t−1|Y ⋆

t
(xt−1 | xt)pY t

(xt) dxt
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=

∫
xt∈Et

pY ⋆
t−1|Y ⋆

t
(xt−1 | xt)pXt

(xt) dxt −∆t→t−1(xt−1). (53)

As a result, we obtain

pXt−1
(xt−1)−∆t−1(xt−1) + ∆t→t−1(xt−1)

≥
∫
xt∈Et

pY ⋆
t−1|Y ⋆

t
(xt−1 | xt)pXt

(xt) dxt

(i)
=

∫
Et

(
1

2π(1− αt)

)d/2

exp

(
−

∥√αtxt−1 − xt − (1− αt)s
⋆
t (xt)∥22

2αt(1− αt)

)
pXt

(xt) dxt

(ii)
=

∫
Et

(
1

2π(1− αt)

)d/2

exp

(
−

∥√αtxt−1 − ut∥22
2αt(1− αt)

)
det
(
Id + (1− αt)Jt(xt)

)−1
pXt

(xt) dut. (54)

where (i) uses (53); (ii) arises from (23) that Y ⋆
t−1 | Y ⋆

t ∼ N
(
α
−1/2
t [Y ⋆

t + (1 − αt)s
⋆
t (Y

⋆
t )], (1 − αt)Id

)
; (ii)

applies the change of variable

ut := xt + (1− αt)s
⋆
t (xt).

To bound the integral in (54), we present Lemma 4 below.

Lemma 4. For any t ∈ [T ], the following holds for any xt ∈ Et:

det
(
Id + (1− αt)Jt(xt)

)−1
pXt(xt)

=

(
1

2πα2
t

)d/2

exp
(
O
(
(1− αt)

2 log2(KT )
)) K∑

k=1

πk exp

(
− ∥ut −

√
αtµk∥2

2α2
t

)
. (55)

Proof. See Appendix A.3.

Plugging (55) into (54) and invoking the inequality exp(x) ≥ 1 + x leads to

pXt−1
(xt−1)−∆t−1(xt−1) + ∆t→t−1(xt−1)

≥ exp
(
O
(
(1− αt)

2 log2(KT )
))

·
∫
Et

(
1

4π2α2
t (1− αt)

)d/2

exp

(
−

∥√αtxt−1 − ut∥22
2αt(1− αt)

) K∑
k=1

πk exp

(
− ∥ut −

√
αtµk∥22

2α2
t

)
dut. (56)

To further control the right hand side, direct computations give that∫
Rd

(
1

4π2α2
t (1− αt)

)d/2

exp

(
−

∥√αtxt−1 − ut∥22
2αt(1− αt)

) K∑
k=1

πk exp

(
− ∥ut −

√
αtµk∥22

2α2
t

)
dut

=

∫
Rd

(
1

4π2α2
t (1− αt)

)d/2 K∑
k=1

πk exp

(
− ∥ut −

√
αt(1− αt)µk − α

3/2
t xt−1∥22

2α2
t (1− αt)

−
∥xt−1 −

√
αt/αtµk∥22
2

)
dut

(i)
=

∫
Rd

(
1

2π

)d/2 K∑
k=1

πk exp

(
− 1

2
∥xt−1 −

√
αt−1µk∥22

)
dut

(ii)
= pXt−1(xt−1). (57)

Here (i) is true as ut 7→
(
2πα2

t (1− αt)
)−d/2

exp
(
−
(
2α2

t (1− αt)
)−1∥ut −

√
αt(1− αt)µk − α

3/2
t xt−1∥22

)
is a

density function and αt :=
∏t

i=1 αt, and (ii) arises from (18). Hence, if we define function δt−1(x) : Rd → R
to capture the integral on set Ec

t where

δt−1(x) :=

∫
Ec
t

(
1

4π2α2
t (1− αt)

)d/2

exp

(
−

∥√αtx− ut∥22
2αt(1− αt)

) K∑
k=1

πk exp

(
− ∥ut −

√
αtµk∥2

2α2
t

)
dut,
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then it obeys

δt−1(x) = pXt−1(x)−
∫
Et

(
1

4π2α2
t (1− αt)

)d/2

exp

(
−

∥√αtx− ut∥22
2αt(1− αt)

) K∑
k=1

πk exp

(
− ∥ut −

√
αtµk∥2

2α2
t

)
dut.

Combining this definition with relation (56), we obtain

pXt−1
(xt−1)−∆t−1(xt−1) + ∆t→t−1(xt−1)

≥ exp
(
O
(
(1− αt)

2 log2(KT )
))(

pXt−1
(xt−1)− δt−1(xt−1)

)
≥ pXt−1(xt−1) +O

(
(1− αt)

2 log2(KT )
)
pXt−1(xt−1)−O(1)δt−1(xt−1),

or equivalently,

∆t−1(xt−1) ≤ ∆t→t−1(xt−1) +O
(
(1− αt)

2 log2(KT )
)
pXt−1

(xt−1) +O(1)δt−1(xt−1). (58)

Here, we use (17) that (1− αt)
2 log2(KT ) ≲ log2(KT ) log2 T/T 2 = o(1) as long as T is large enough.

We claim that
∫
Rd δt−1(x) dx satisfies∫

Rd

δt−1(x) dx ≲ T−3 + (1− αt)
2 log2(KT ). (59)

Therefore, substituting (59) and (56) into (58) and integrating over xt−1 yields∫
Rd

∆t−1(xt−1) dxt−1≤
∫
Rd

∆t→t−1(xt−1) dxt−1 +O
(
(1− αt)

2 log2(KT )
) ∫

Rd

pXt−1
(xt−1) dxt−1

+O(1)

∫
Rd

δt−1(xt−1) dxt−1

≤
∫
Rd

∆t(xt−1) dxt−1 +O
(
(1− αt)

2 log2(KT )
)
+O

(
T−3

)
,

where the penultimate line uses (51)
This completes the proof of Lemma 3.

Proof of Claim (59). It remains to control
∫
Rd δt−1(x) dx. To this end, the expression above allows us to

derive∫
Rd

δt−1(xt−1) dxt−1

= 1−
∫
Rd

∫
Et

(
1

4π2α2
t (1− αt)

)d/2 K∑
k=1

πk exp

(
−
∥∥ut −

√
αtµk

∥∥2
2

2α2
t

)
exp

(
−

∥√αtxt−1 − ut∥22
2αt(1− αt)

)
dut dxt−1

(i)
= 1−

∫
Rd

∫
Et

exp
(
O
(
(1− αt)

2 log2(KT )
))

pXt(xt)

(
1

2π(1− αt)

)d/2

exp

(
−

∥√αtxt−1 − ut∥22
2αt(1− αt)

)
dxt dxt−1

= 1−
∫
Et

exp
(
O
(
(1− αt)

2 log2(KT )
))

pXt(xt)

∫
Rd

(
1

2π(1− αt)

)d/2

exp

(
−

∥xt−1 − ut/
√
αt∥22

2(1− αt)

)
dxt−1 dxt

(ii)
= 1−

∫
Et

exp
(
O
(
(1− αt)

2 log2(KT )
))

pXt
(xt) dxt

(iii)

≤ 1−
∫
Et

pXt
(xt) dxt +O

(
(1− αt)

2 log2(KT )
) ∫

Et

pXt
(xt) dxt

≤
∫
Ec
t

pXt
(xt) dxt +O

(
(1− αt)

2 log2(KT )
)
. (60)

Here, (i) invokes Lemma 4, (ii) is true as xt−1 7→
(
2π(1− αt)

)−d/2
exp

(
−
(
2(1− αt)

)−1∥xt−1 − ut/
√
αt∥22

)
is a density function, and (iii) holds as exp(x) ≥ 1 + x for all x ∈ Rd.

Finally, the right-hand-side of the above bound is controlled by Lemma 5 below.
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Lemma 5. Recall the definition of Et in (21). For any t ∈ [T ], one has∫
Ec
t

pXt
(xt) dxt ≲ T−3. (61)

Proof. See Appendix A.4.

Putting everything together completes the proof of Claim (59).

A.3 Proof of Lemma 4
Let us first derive two relations that are key for this proof. To start with, fix an arbitrary xt ∈ Et. Recalling
the definition that ut := xt + (1− αt)s

⋆
t (xt), direct calculations yield

1

2α2
t

∥∥ut −
√
αtµk

∥∥2
2

=
1

2

∥∥xt −
√
αtµk

∥∥2
2
+

1− α2
t

2α2
t

∥∥xt −
√
αtµk

∥∥2
2
+

(1− αt)

α2
t

s⋆t (xt)
⊤(xt −

√
αtµk) +

(1− αt)
2

2α2
t

∥∥s⋆t (xt)
∥∥2
2

=
1

2

∥∥xt −
√
αtµk

∥∥2
2
+

1− α2
t

2α2
t

K∑
i=1

π
(t)
i

∥∥xt −
√
αtµi

∥∥2
2
+

(
(1− αt)

2

2α2
t

− 1− αt

α2
t

)∥∥s⋆t (xt)
∥∥2
2

+
1− α2

t

2α2
t

(∥∥xt −
√
αtµk

∥∥2
2
−

K∑
i=1

π
(t)
i

∥∥xt −
√
αtµi

∥∥2
2

)
+

1− αt

α2
t

s⋆t (xt)
⊤(s⋆t (xt) + xt −

√
αtµk

)
(i)
=

1

2

∥∥xt −
√
αtµk

∥∥2
2
+

1− α2
t

2α2
t

K∑
i=1

π
(t)
i

∥∥xt −
√
αtµi

∥∥2
2
− 1− α2

t

2α2
t

∥∥s⋆t (xt)
∥∥2
2
+ ζ

(t)
k (xt)

(ii)
=

1

2

∥∥xt −
√
αtµk

∥∥2
2
+

1− α2
t

2α2
t

( K∑
i=1

π
(t)
i

∥∥xt −
√
αtµi

∥∥2
2
−
∥∥∥∥ K∑

i=1

π
(t)
i

(
xt −

√
αtµi

)∥∥∥∥2
2

)
+ ζ

(t)
k (xt)

(iii)
=

1

2

∥∥xt −
√
αtµk

∥∥2
2
+

(1− α2
t )

2α2
t

tr
(
Id + Jt(xt)

)
+ ζ

(t)
k (xt). (62)

Here, (i) uses the definition of ζ
(t)
k (x) in (22); (ii) arises from the expression of s⋆t (x) = −

∑K
k=1 π

(t)
k

(
x −√

αtµk

)
in (19); (iii) uses the expression of Jt(x) in (14) that

Id + Jt(x) =

K∑
k=1

π
(t)
k

(√
αtµk −

K∑
i=1

π
(t)
i

√
αtµi

)(√
αtµk −

K∑
i=1

π
(t)
i

√
αtµi

)⊤

=

K∑
k=1

π
(t)
k

(
x−

√
αtµk −

K∑
i=1

π
(t)
i

(
x−

√
αtµi

))(
x−

√
αtµk −

K∑
i=1

π
(t)
i

(
x−

√
αtµi

))⊤

=

K∑
k=1

π
(t)
k

(
x−

√
αtµk

)(
x−

√
αtµk

)⊤ −
( K∑

k=1

π
(t)
k

(
x−

√
αtµk

))( K∑
k=1

π
(t)
k

(
x−

√
αtµk

))⊤

.

In addition, recall the definition of Et (cf. (21)). For any xt ∈ Et, using (17) that 1 − αt ≲ log T/T , we
know that

1− αt

αt
tr
(
Id + Jt(xt)

)
≲ (1− αt)tr

(
Id + Jt(xt)

)
≲

log(KT )

T
= o(1),

1− α2
t

2α2
t

tr
(
Id + Jt(xt)

)
≲ (1− αt)tr

(
Id + Jt(xt)

)
≲

log(KT )

T
= o(1),

for large enough T . It follows that

det
(
Id +

(
α−1
t − 1

)(
Id + Jt(xt)

))
17



(i)
= 1 +

1− αt

αt
tr
(
Id + Jt(xt)

)
+O

(
(1− αt)

2

α2
t

tr2
(
Id + Jt(xt)

))
= 1 +

1− α2
t

2α2
t

tr
(
Id + Jt(xt)

)
− (1− αt)

2

2α2
t

tr
(
Id + Jt(xt)

)
+O

(
(1− αt)

2

α2
t

tr2
(
Id + Jt(xt)

))
(ii)
= 1 +

1− α2
t

2α2
t

tr
(
Id + Jt(xt)

)
+O

(
(1− αt)

2 log2(KT )
)

= exp

(
1− α2

t

2α2
t

tr
(
Id + Jt(xt)

)
+O

(
(1− αt)

2 log2(KT )
))

.

where (i) holds as Id + Jt(xt) ⪰ 0 and det(I + εA) = 1 + tr(A)ε + O
(
ε2(tr2(A) − tr(A2))

)
for any matrix

A and ε > 0; (ii) is true since αt ≳ 1 by (17) and tr
(
Id + Jt(xt)

)
≲ log(KT ) by the choice of Et in (21).

Consequently, we can derive

det
(
Id + (1− αt)Jt(xt)

)
= det

(
αtId + (1− αt)

(
Id + Jt(xt)

))
= αd

t det
(
Id + (α−1

t − 1)
(
Id + Jt(xt)

))
= αd

t exp

(
(1− α2

t )

2α2
t

tr
(
Id + Jt(xt)

)
+O

(
(1− αt)

2 log2(KT )
))

, (63)

As a consequence of the above two relations, we move on to prove Lemma 4. In view of relation (62), we
arrive at(

1

2πα2
t

)d/2 K∑
k=1

πk exp
(
− 1

2α2
t

∥∥ut −
√
αtµk

∥∥2
2

)
=

(
1

2πα2
t

)d/2

exp

(
− (1− α2

t )

2α2
t

tr
(
I + Jt(xt)

)) K∑
k=1

πk exp

(
− 1

2

∥∥xt −
√
αtµk

∥∥2
2

)
exp

(
− ζ

(t)
k (xt)

)
= det

(
I + (1− αt)Jt(xt)

)−1
exp

(
O
(
(1− αt)

2 log2(KT )
))

pXt(xt)

K∑
k=1

πt
k exp

(
− ζ

(t)
k (xt)

)
where the last equality uses (63) and πk exp

(
− ∥x−

√
αtµk∥22/2

)
= π

(t)
k (2π)d/2pXt

(x) due to (18) and (15).
To further control the right hand side, by the definition of Et in (21), it satisfies that

1 ≤
K∑

k=1

πt
k exp

(
− ζ

(t)
k (xt)

)
≤ exp

(
C2(1− αt)

2 log2(KT )
)
.

Therefore, we can conclude that(
1

2πα2
t

)d/2 K∑
k=1

πk exp
(
− 1

2α2
t

∥∥ut −
√
αtµk

∥∥2
2

)
= det

(
I + (1− αt)Jt(xt)

)−1
exp

(
O
(
(1− αt)

2 log2(KT )
))

pXt(xt),

which completes the proof of Lemma 4.

A.4 Proof of Lemma 5
Recalling the definition of Et in expression (21), we have

P(Xt ∈ Ec
t ) ≤ P

(
tr
(
Id + Jt(Xt)

)
≥ C1 log(KT )

)
+ P

( K∑
k=1

π
(t)
k exp

(
−ζ

(t)
k (Xt)

)
< 1 or

K∑
k=1

π
(t)
k exp

(
−ζ

(t)
k (Xt)

)
> exp

(
C2(1− αt)

2 log2(KT )
))

.

(64)
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In the following, we bound the two terms on the right respectively.
Before proceeding, we make the following observation. Fix an arbitrary t ≥ 1. For each k ∈ [K], we

define the event

Tk :=
{
x ∈ Rd :

∣∣(x−
√
αtµk)

⊤√αt(µi − µk)
∣∣ ≤ C5

√
αt log(KT ) ∥µi − µk∥2 for all i ∈ [K]

}
(65)

for some absolute constant C5 > 0. Note that if we let Zk ∼ N (
√
αtµk, Id) be a Gaussian random vector

in Rd, which implies that
(
Zk −

√
αtµk

)⊤√
αt(µi − µk) ∼ N

(
0, αt∥µi − µk∥22

)
, the standard Gaussian

concentration inequality guarantees that

P
{
Zk /∈ Tk

}
≲ T−3, (66)

provided C5 is large enough.

Bounding the first term in Eq. (64)

Let us begin with the first event {tr
(
Id + Jt(Xt)

)
≤ C1 log(KT )}. As Xt ∼

∑K
k=1 πkN (

√
αtµk, Id), it is

easily seen that

P
{
tr
(
Id + Jt(Xt)

)
> C1 log(KT )

}
=

K∑
k=1

πkP
{
tr
(
Id + Jt(Zk)

)
> C1 log(KT )

}
≤

k∑
k=1

πkP
{
tr
(
Id + Jt(Zk)

)
> C1 log(KT )

}
1
{
πk ≥ 1/(KT 3)

}
+

K∑
k=1

πk1
{
πk < 1/(KT 3)

}
≤

k∑
k=1

πkP
{
tr
(
Id + Jt(Zk)

)
> C1 log(KT )

}
1
{
πk ≥ 1/(KT 3)

}
+ T−3.

We claim that for any k ∈ [K] such that πk ≥ 1/(KT 3), one has

Tk ⊂
{
x ∈ Rd : tr

(
Id + Jt(x)

)
≤ C1 log(KT )

}
. (67)

It then immediately follows from (66) that

P
{
tr
(
Id + Jt(Xt)

)
> C1 log(KT )

}
≤

K∑
k=1

πkP
{
Zk /∈ Tk

}
1
{
πk ≥ 1/(KT 3)

}
+ T−3

≲ T−3
K∑

k=1

πk + T−3 ≍ T−3. (68)

Proof of claim (67). It is sufficient to establish the claim (67). Towards this, fix an arbitrary k ∈ [K]
such that πk ≥ 1/(KT 3). For any x ∈ Tk, we know that for all i ∈ [K],

π
(t)
i ≤ πi

πk
exp

(
− 1

2

∥∥x−
√
αtµi

∥∥2
2
+

1

2

∥∥x−
√
αtµk

∥∥2
2

)
∧ 1

=
πi

πk
exp

(
− 1

2
αt∥µi − µk∥22 + (x−

√
αtµk)

⊤√αt(µi − µk)
)
∧ 1

≤ exp
(
− 1

2
αt∥µi − µk∥22 + C5

√
αt log(KT ) ∥µi − µk∥2 + 3 log(KT )

)
∧ 1,
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where the last line holds due to the definition of Tk. As a result, for any i ∈ [K] satisfying
√
αt∥µi − µk∥2 >

6C5

√
log(KT ), one has

π
(t)
i ≤ exp

(
− 1

6
αt∥µi − µk∥22

)
as long as C5 ≥

√
2/2. This further implies that

π
(t)
i αt∥µi − µk∥22 ≤ αt∥µi − µk∥22 exp

(
− 1

6
αt∥µi − µk∥22

)
≤ exp

(
− 1

12
αt∥µi − µk∥22

)
≤ exp

(
− 3C2

5 log(KT )
)
, (69)

provided T is large enough. Meanwhile, for any i ∈ [K] obeying
√
αt∥µi − µk∥2 ≤ 6C5

√
log(KT ), we can

simply upper bound

π
(t)
i αt∥µi − µk∥22 ≤ π

(t)
i · 36C2

5 log(KT ). (70)

Denote the set Fk :=
{
i ∈ [K] :

√
αt∥µi − µk∥2 ≤ 6C5

√
log(KT )

}
. Using the expression of Jt (cf. (14)), we

conclude that

tr
(
Id + Jt(x)

)
=

K∑
i=1

π
(t)
i αt

∥∥∥µi −
K∑

k=1

π
(t)
k µi

∥∥∥2
2

(i)

≤
K∑
i=1

π
(t)
i αt

∥∥µi − µk

∥∥2
2

(ii)

≤ 36C2
5 log(KT )

∑
i∈Fk

π
(t)
i +

∑
i∈Fc

k

exp
(
− 3C2

5 log(KT )
)

≤ 36C2
5 log(KT ) log(KT ) +K exp

(
− 3C2

5 log(KT )
)

≤ C1 log(KT ) (71)

provided C5 and C1/C
2
5 are large enough. Here, (i) is true since

∑K
k=1 π

(t)
k µk is the minimizer of the function

x 7→
∑K

i=1 π
(t)
i ∥µi − x∥22 and (ii) uses (69)–(70). This establishes the claim (67).

Bounding the second term in Eq. (64)

Next, let analyze the second event
{
1 ≤

∑K
k=1 π

(t)
k exp

(
− ζ

(t)
k (Xt)

)
≤ exp

(
C2(1−αt)

2 log2(KT )
)}

. We first
establish the lower bound of 1. For any x ∈ Rd, given

∑
k π

(t)
k = 1, direct calculation shows that

K∑
k=1

π
(t)
k

(∥∥x−
√
αtµk

∥∥2
2
−

K∑
i=1

π
(t)
i

∥∥x−
√
αtµi

∥∥2
2

)
+

K∑
k=1

π
(t)
k

K∑
i=1

π
(t)
i (µi − µk)

=

K∑
k=1

π
(t)
k

∥∥x−
√
αtµk

∥∥2
2
−

K∑
i=1

π
(t)
i

∥∥x−
√
αtµi

∥∥2
2
+

K∑
i=1

π
(t)
i µi −

K∑
k=1

π
(t)
k µk = 0.

Combined with the definition of ζ(t)k (x) in (22), this yields

K∑
k=1

π
(t)
k ζ

(t)
k (x) = 0.

We can then apply Jensen’s inequality to obtain that for any x ∈ Rd,

K∑
k=1

π
(t)
k exp

(
− ζ

(t)
k (x)

)
≥ exp

(
−

K∑
k=1

π
(t)
k ζ

(t)
k (x)

)
= 1. (72)
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Recall the definition of Tk in expression (65). To bound the second term in Eq. (64), it suffices to prove
that for any k ∈ [K] such that πk ≥ 1/(KT 3),

Tk ⊂
{
x ∈ Rd :

K∑
k=1

π
(t)
k exp

(
− ζ

(t)
k (x)

)
≤ exp

(
C2(1− αt)

2 log2(KT )
)}

. (73)

Indeed, assuming (73) holds, one can apply the same reasoning as that for (68) to obtain

P
{ K∑

k=1

π
(t)
k exp

(
− ζ

(t)
k (Xt)

)
> exp

(
C2(1− αt)

2 log2(KT )
)}

≤
K∑

k=1

πkP
{
Zk /∈ Tk

}
1
{
πk ≥ 1/(KT 3)

}
+ T−3 ≲ T−3, (74)

Taking this collectively with relations (68), and (64) completes the proof of Lemma 5. Now it is only left for
us to prove inequality (73).

Proof of inequality (73). To this end, recall the definitions of ζ(t)k (x) and s⋆t (x) in (22) and (19), respec-
tively. By some basic algebra, ζ(t)k (x) can be written as

ζ
(t)
k (x) =

1− α2
t

2α2
t

K∑
i=1

π
(t)
i

(∥∥x−
√
αtµk

∥∥2
2
−
∥∥x−
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αtµi

∥∥2
2

)
+

1− αt

α2
t

(
− x+
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π
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i
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π
(t)
i
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)

=
1− α2

t

2α2
t
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i=1

π
(t)
i

(
− 1

2
αt∥µi − µk∥22 + (x−

√
αtµk)

⊤√αt(µi − µk)
)

− 1− αt

α2
t
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i=1

π
(t)
i

(
x−

√
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)⊤√
αt(µi − µk) +

1− αt

α2
t

∥∥∥∥ K∑
i=1

π
(t)
i

√
αt(µi − µk)

∥∥∥∥2
2

.

For any x ∈ Tk, one can obtain

∣∣ζ(t)k (x)
∣∣ ≲ (1− αt)

K∑
i=1

π
(t)
i

(
− 1

2
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αt log(KT ) ∥µi − µk∥2

)
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log(KT )
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i=1

π
(t)
i

√
αt ∥µi − µk∥2 + (1− αt)
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i=1

π
(t)
i αt

∥∥µi − µk

∥∥2
2

≍ (1− αt)

K∑
i=1

π
(t)
i αt
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∥∥2
2
+ (1− αt)

√
log(KT )
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i=1

π
(t)
i

√
αt ∥µi − µk∥2. (75)

where the first inequality holds due to 1 − αt ≲ log T/T in (17), the definition of Tk in (65), and Jensen’s
inequality. Using the same argument as that for (71), it can be easily seen that

K∑
i=1

π
(t)
i

√
αt∥µi − µk∥2 ≲

√
log(KT ). (76)

Plugging (76) and (71) into (75) demonstrates that∣∣ζ(t)k (x)
∣∣ ≲ (1− αt) log(KT ) = o(1), (77)

since 1− αt ≲ log T/T as in (17).
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As a consequence, for any x ∈ Tk, we find that

K∑
k=1

π
(t)
k exp

(
− ζ

(t)
k (x)

)
=

K∑
k=1

π
(t)
k

(
1− ζ

(t)
k (x) +

1

2

(
ζ
(t)
k (x)
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+ o
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ζ
(t)
k (x)

)2))

= 1 +
1

2
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k=1

π
(t)
k

(
ζ
(t)
k (x)

)2
+

K∑
k=1

π
(t)
k o
((

ζ
(t)
k (x)

)2)
= 1 +O

(
(1− αt)

2 log2(KT )
)

≤ exp
(
C2(1− αt)

2 log2(KT )
)

as long as C2 is sufficiently large. This establishes the claim (73), thereby leads to (74).
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