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Abstract

This paper investigates the problem of computing the equilibrium of competitive games, which is
often modeled as a constrained saddle-point optimization problem with probability simplex constraints.
Despite recent efforts in understanding the last-iterate convergence of extragradient methods in the un-
constrained setting, the theoretical underpinnings of these methods in the constrained settings, especially
those using multiplicative updates, remain highly inadequate, even when the objective function is bilinear.
Motivated by the algorithmic role of entropy regularization in single-agent reinforcement learning and
game theory, we develop provably efficient extragradient methods to find the quantal response equilib-
rium (QRE)—which are solutions to zero-sum two-player matrix games with entropy regularization—at
a linear rate. The proposed algorithms can be implemented in a decentralized manner, where each player
executes symmetric and multiplicative updates iteratively using its own payoff without observing the
opponent’s actions directly. In addition, by controlling the knob of entropy regularization, the proposed
algorithms can locate an approximate Nash equilibrium of the unregularized matrix game at a sublinear
rate without assuming the Nash equilibrium to be unique. Our methods also lead to efficient policy
extragradient algorithms for solving entropy-regularized zero-sum Markov games at a linear rate. All of
our convergence rates are nearly dimension-free, which are independent of the size of the state and action
spaces up to logarithm factors, highlighting the positive role of entropy regularization for accelerating
convergence.

Keywords: zero-sum Markov game, matrix game, entropy regularization, global convergence, multiplicative
updates, extragradient methods
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1 Introduction

Finding the equilibrium of competitive games, which can be viewed as constrained saddle-point optimization
problems with probability simplex constraints, lies at the heart of modern machine learning and decision
making paradigms such as Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), competitive
reinforcement learning (RL) (Littman, 1994), game theory (Shapley, 1953), adversarial training (Mertikopou-
los et al., 2018b), to name a few.

In this paper, we study one of the most basic forms of competitive games, namely two-player zero-sum
games, in both the matrix setting and the Markov setting. Our goal is to find the equilibrium policies of
both players in an independent and decentralized manner (Daskalakis et al., 2020; Wei et al., 2021a) with
guaranteed last-iterate convergence. Namely, each player will execute symmetric and independent updates
iteratively using its own payoff without observing the opponent’s actions directly, and the final policies of the
iterative process should be a close approximation to the equilibrium up to any prescribed precision. This kind
of algorithms is more advantageous and versatile especially in federated environments, as it requires neither
prior coordination between the players like two-timescale algorithms, nor a central controller to collect and
disseminate the policies of all the players, which are often unavailable due to privacy constraints.

1.1 Last-iterate convergence in competitive games

In recent years, there have been significant progresses in understanding the last-iterate convergence of simple
iterative algorithms for unconstrained saddle-point optimization, where one is interested in bounding the sub-
optimality of the last iterate of the algorithm, rather than say, the ergodic iterate — which is the average of
all the iterations — that are commonly studied in the earlier literature. This shift of focus is motivated, for
example, by the infeasibility of averaging large machine learning models in training GANs (Goodfellow et al.,
2014). While vanilla Gradient Descent / Ascent (GDA) may diverge or cycle even for bilinear matrix games
(Daskalakis et al., 2018), quite remarkably, small modifications lead to guaranteed last-iterate convergence
to the equilibrium in a non-asymptotic fashion. A flurry of algorithms is proposed, including Optimistic
Gradient Descent Ascent (OGDA) (Rakhlin and Sridharan, 2013; Daskalakis and Panageas, 2018b; Wei
et al., 2021b), predictive updates (Yadav et al., 2017), implicit updates (Liang and Stokes, 2019), and more.
Several unified analyses of these algorithms have been carried out (see, e.g. Mokhtari et al. (2020a); Liang
and Stokes (2019) and references therein), where these methods in principle all make clever extrapolation
of the local curvature in a predictive manner to accelerate convergence. With slight abuse of terminology,
in this paper, we refer to this ensemble of algorithms as extragradient methods (Korpelevich, 1976; Tseng,
1995; Mertikopoulos et al., 2018a; Harker and Pang, 1990).

However, saddle-point optimization in the constrained setting, which includes competitive games as a
special case, remains largely under-explored even for bilinear matrix games. While it is possible to refor-
mulate constrained bilinear games to unconstrained ones using softmax parameterization of the probabil-
ity simplex, this approach falls short of preserving the bilinear structure and convex-concave properties



in the original problem, which are crucial to the convergence of gradient methods. Therefore, there is a
strong necessity of understanding and developing improved extragradient methods in the constrained set-
ting. Daskalakis and Panageas (2018a) proposed the optimistic variant of the multiplicative weight updates
(MWU) method (Arora et al., 2012)—which is extremely natural and popular for optimizing over probabil-
ity simplexes—called Optimistic Multiplicative Weight Updates (OMWU), and established the asymptotic
last-iterate convergence of OMWU for matrix games. Very recently, Wei et al. (2021b) established non-
asymptotic last-iterate convergences of OMWU. However, these last-iterate convergence results require the
Nash equilibrium to be unique, and cannot be applied to problems with multiple Nash equilibria.

1.2 Owur contributions

Motivated by the algorithmic role of entropy regularization in single-agent RL (Neu et al., 2017; Geist et al.,
2019; Cen et al., 2020) as well as its wide use in game theory to account for imperfect and noisy informa-
tion (McKelvey and Palfrey, 1995; Savas et al., 2019), we initiate the design and analysis of extragradient
algorithms using multiplicative updates for finding the so-called quantal response equilibrium (QRE), which
are solutions to competitive games with entropy regularization (McKelvey and Palfrey, 1995). While finding
QRE is of interest in its own right, by controlling the knob of entropy regularization, the QRE provides a
close approximation to the Nash equilibrium (NE), and in turn acts as a smoothing scheme for finding the
NE. Our contributions are summarized below.

e Near dimension-free last-iterate convergence to QRE of entropy-regularized matriz games. We propose
two policy extragradient algorithms to solve entropy-regularized matrix games, namely the Predictive
Update (PU) and OMWU methods, where both players execute symmetric and multiplicative updates
without knowing the entire payoff matrix nor the opponent’s actions. Encouragingly, we show that
the last iterate of the proposed algorithms converges to the unique QRE at a linear rate that is almost
independent of the size of the action spaces. Roughly speaking, to find an e-optimal QRE in terms of
Kullback-Leibler (KL) divergence, it takes no more than

~ (1 1
(5 (2))
nT €
iterations, where 6() hides logarithmic dependencies. Here, 7 is the regularization parameter, and 7

is the learning rate of both players. Optimizing the learning rate, the iteration complexity is bounded
by O ((1+ ||Aljeo/7)log(1/€)), where ||Al|c = max; ;|A; ;| is the £o norm of the payoff matrix A.

e Last-iterate convergence to e-NE of unreqularized matrix games without uniqueness assumption. The
QRE provides an accurate approximation to the NE by setting the entropy regularization 7 sufficiently
small, therefore our result directly translates to finding a NE with last-iterate convergence guarantee.
Roughly speaking, to find an e-NE (Zhang et al., 2020, Definition 2.1), it takes no more than

(1)

iterations with optimized learning rates, again independent of the size of the action spaces up to
logarithmic factors. Unlike prior literature (Daskalakis and Panageas, 2018a; Wei et al., 2021b), our
last-iterate convergence guarantee does not require the NE to be unique.

e FExtensions to two-player zero-sum Markov games. By connecting value iteration with matrix games,
we propose a policy extragradient method for solving infinite-horizon discounted entropy-regularized
zero-sum Markov games, which finds an e-optimal minimax soft Q-function—in terms of /., error—in

at most O (ﬁ log? (%)) iterations, where v € (0, 1) is the discount factor.

To the best of our knowledge, our paper is the first one that develops policy extragradient algorithms for
solving entropy-regularized competitive games with multiplicative updates and dimension-free linear last-
iterate convergence, and demonstrates entropy regularization as a smoothing technique to find e-NE without
the uniqueness assumption. Table 1 provides a detailed comparison of the proposed entropy-regularized PU



Equilibri Requi
AHTIDTITT Method Convergence rate | Dimension-free edure
type unique NE
e-QRE P([tjhfcs ?vl\fjl\gj linear yes n/a
OMWU asymptotic no €es
(Daskalakis and Panageas, 2018a) YIop Y

e-NE (Wei eOtl\QNgOﬂb) sublinear + linear no yes
PU & OMWU sublinear yes no

(this work)

Table 1:  Comparisons of last-iterate convergence of the proposed entropy-regularized PU and OMWU
methods with prior results for finding e-QRE or e-NE of competitive matrix games. We note that the
convergence rates of unregularized OMWU established in Wei et al. (2021b) are problem-dependent, and
scale at least polynomially on the size of the action spaces. Desirable features in the last two columns are
highlighted in blue.

and OMWU methods with prior last-iterate convergence guarantees of unregularized OMWU. Our results
highlight the positive role of entropy regularization for accelerating convergence and safeguarding against
imperfect information in competitive games.

1.3 Related works

Our work lies at the intersection of saddle-point optimization, game theory, and reinforcement learning. In
what follows, we discuss a few topics that are closely related to ours.

Unregularized matrix game. Freund and Schapire (1999) showed that many standard methods such
as GDA and MWU have a converging average duality gap at the rate of O(1/y/T), which is improved to
O(1/T) by considering optimistic variants of these methods, such as OGDA and OMWU (Rakhlin and
Sridharan, 2013; Daskalakis et al., 2011; Syrgkanis et al., 2015). However, the last-iterate convergence of
these methods are less understood until recently (Daskalakis and Panageas, 2018a; Wei et al., 2021b). In
particular, under the assumption that the NE is unique for the unregularized matrix game, Daskalakis and
Panageas (2018a) showed the asymptotic convergence of the last iterate of OMWU to the unique equilibrium,
and Wei et al. (2021b) showed the last iterate of OMWU achieves a linear rate of convergence after an initial
phase of sublinear convergence, however the rates therein can be highly pessimistic in terms of the problem
dimension, while our rate for entropy-regularized OMWU is dimension-free up to logarithmic factors.

Saddle-point optimization. Considerable progress has been made towards understanding OGDA and
extragradient (EG) methods in the unconstrained convex-concave saddle-point optimization with general
objective functions (Mokhtari et al., 2020a,b; Nemirovski, 2004; Liang and Stokes, 2019). However, the
last-iterate convergence of constrained convex-concave saddle-point optimization still lacks theoretical un-
derstanding in general and most works fall short of characterizing a finite-time convergence result. In
particular, Mertikopoulos et al. (2018a) demonstrated the asymptotic last-iterate convergence of EG, and
Hsieh et al. (2019) investigated similar questions for single-call EG algorithms. Lei et al. (2021) showed
that OMWU converges to the equilibrium locally without an explicit rate. Wei et al. (2021b) showed that
the last-iterate of OGDA converges linearly for strongly-convex strongly-concave constrained saddle-point
optimization with an explicit rate.

Entropy regularization in RL and games. In single-agent RL, the role of entropy regularization as an
algorithmic mechanism to encourage exploration and accelerate convergence has been investigated extensively
(Neu et al., 2017; Geist et al., 2019; Mei et al., 2020; Cen et al., 2020; Lan, 2021; Zhan et al., 2021). Turning



to the game setting, entropy regularization is used to account for imperfect information in the seminal work of
McKelvey and Palfrey (1995) that introduced the QRE, and a few representative works on entropy and more
general regularizations in games include Savas et al. (2019); Hofbauer and Sandholm (2002); Mertikopoulos
and Sandholm (2016).

Zero-sum Markov games. There have been a significant recent interest in developing provably efficient
self-play algorithms for Markov games, including model-based algorithms (Perolat et al., 2015; Zhang et al.,
2020), value-based algorithms (Bai and Jin, 2020; Xie et al., 2020), and policy-based algorithms (Daskalakis
et al., 2020; Wei et al., 2021a; Zhao et al., 2021). Our approach can be regarded as a policy-based algorithm
to approximate value iteration, which can be implemented in a decentralized manner with symmetric and
multiplicative updates from both players, and the iteration complexity is almost independent of the size of
the state-action space.

1.4 Notation

We denote by A(A) the probability simplex over the set .A. We overload the functions such as log(-) and
exp(-) to take vector inputs with the understanding that the function is applied in an entrywise manner. For
instance, given any vector z = [z;]1<i<n € R", the notation exp(z) denotes exp(z) := [exp(2;)]1<i<n; other
functions are defined analogously. Given two probability distributions x4 and p’ over A, the KL divergence

from 1/ to p is defined by KL(pl|lp') = >, c4 m(a)log ;l:’(((;))' Given a matrix A, ||A|_ is used to denote

entrywise maximum norm, namely, ||A|| = max; ; |4, ;|. The all-one vector is denoted as 1.

2 Zero-sum matrix games with entropy regularization

In this section, we consider a two-player zero-sum game with bilinear objective and probability simplex
constraints, and demonstrate the positive role of entropy regularization in solving this problem. Throughout
this paper, let A ={1,...,m} and B = {1,...,n} be the action spaces of each player. The proofs for this
section are collected in Appendix A.

2.1 Background and problem formulation

Zero-sum two-player matrix game. The focal point of this subsection is a constrained two-player zero-
sum matrix game, which can be formulated as the following min-max problem (or saddle point optimization
problem):
. T
max min V) = p' Av, 1
Jnax min fluv) = p (1)
where A € R™*™ denotes the payoff matrix, u € A(A) and v € A(B) stand for the mixed/randomized
policies of each player, defined respectively as distributions over the probability simplex A(A) and A(B).
It is well known since Neumann (1928) that the max and min operators in (1) can be exchanged without
affecting the solution. A pair of policies (u*,v*) is said to be a Nash equilibrium (NE) of (1) if

fwsv) = (™ v") = f(p,v) - forall (u,v) € A(A) x A(B). (2)

In words, the NE corresponds to when both players play their best-response strategies against their respective
opponents.

Entropy-regularized zero-sum two-player matrix game. There is no shortage of scenarios where
the payoff matrix A might not be known perfectly. In an attempt to accommodate imperfect knowledge of
A, McKelvey and Palfrey (1995) proposed a seminal extension to the Nash equilibrium called the quantal
response equilibrium (QRE) when the payoffs are perturbed by Gumbel-distributed noise. Formally, this
amounts to solving the following matrix game with entropy regularization (Mertikopoulos and Sandholm,
2016):

in fr(u,v)=p'A H(pw) — TH(V), 3
Mén&a&)yén&nmf(u v) = p Av+7H(p) — TH(v) (3)



where H(m) = — >, m; log(m;) denotes the Shannon entropy of a distribution 7, and 7 > 0 is the regularization
parameter. As is well known, the optimal solution (¥, v}) to (3), dubbed as the QRE, is unique whenever
7 > 0 (due to the presence of strong concavity/convexity), which satisfies the following fixed point equations:

* xp([Avi]a /T
wr(a) = Z;leé)[cp([ziué]j/f) ox exp([AvE]a/T), for all a € A,

exp(—[AT ¥l /T
vE(b) = zg:fc(xp[(_{ﬁ’v]ié]f 5 o< exp(—[ATpzly/7), for all b€ B.

(4)

Goal. We aim to efficiently compute the QRE of the entropy-regularized matrix game in a decentralized
manner, and investigate how an efficient solver of QRE can be leveraged to find a NE of the unregularized
matrix game (1). Namely, we only assume access to “first-order information” as opposed to full knowledge
of the payoff matrix A or the actions of the opponent. The information received by each player is formally
described in the following sampling oracle.

Definition 1 (Sampling oracle for matrix games). For any policy pair (u,v) and payoff matriz A, the
sampling oracle returns the exact values of ' A and Av.

Additional notation. For notational convenience, we let ¢ represent the concatenation of € R and
v € RIBl namely, ¢ = (i, v). The solution to (3), which is specified in (4), is denoted by ¢ = (u*,v?). For
any ¢ = (u,v) and ¢’ = (¢/,v'), we shall often abuse the notation and let

KL(CII¢) = KL(pll w') + KL(v [|V).
The duality gap of the entropy-regularized matrix game (3) at ¢ = (u,v) is defined as

PualCop: (0= gy o) = 2l -0 o

which is clearly nonnegative and DualGap,(¢¥) = 0. Similarly, let the optimality gap of the entropy-
regularized matrix game (3) at ¢ = (p,v) be OptGap(¢) = | f (1, v) — fr(u,vE)|.

2.2 Proposed extragradient methods: PU and OMWU

To begin, assume we are given a pair of policies z1 € A(A), z2 € A(B) employed by each player respectively.
If we proceed with fictitious play, i.e. player 1 (resp. player 2) aims to optimize its own policy by assuming
the opponent’s policy is fixed as zo (resp. z1), the saddle-point optimization problem (3) is then decoupled
into two independent min/max optimization problems:

ﬂénf&) p Azg + 7H(p) — TH(21) and yénAi?B) 2] Av + 7H(22) — TH(v),

which are naturally solved via mirror descent /ascent with KL divergence. Specifically, one step of mirror
descent / ascent takes the form

p ) = argmax,ea(a) (Azo — mlog u™) T — LKL (u ]| p®)
v = argming,eca sy (AT 21 + Tlog ) Tw + %KL(V [ 1)
where 7 is the learning rate, or equivalently
1 (a) o M(t)(a)l_m exp(n[Aza]a), for all a € A,
v (b)) o v O (0)' 7 exp(—n[AT 21],), for all b € B.

The above update rule forms the basis of our algorithm design.



Motivation: a form of implicit updates with linear convergence. It turns out, if we could select
the policy pair (21, 20) = (D 1= (u(t+1) 1 (+1)) as the ones to be taken in the future, and call the resulting
update rule as the Implicit Update (IU) method:

. D (a) o< u(a) " exp(p[AvtHD],),  forall a € A,
Implicit Update: - (7)
D (b) o v (b) " exp(—n[AT ptD]), for all b e B.

Though unrealistic — since it uses the future updates — it leads to a one-step convergence to the QRE
when 1 = 1/7 (see the optimality condition in (4)). Encouragingly, we have the following linear convergence
guarantee of IU when adopting a general learning rate.

Proposition 1 (Linear convergence of IU). Assume 0 < n < 1/7, then for all t > 0, the iterates (V) :=
(u®, ™) of the IU method in (7) satisfy

KL(G1CM) < (1= nr) KL(¢E )1 ¢1).

In words, the IU method achieves an appealing linear rate of convergence that is independent of the
problem dimension. Motivated by this observation, we seek to design algorithms where the policies (z1, 2z2)
employed in (6) serve as good predictions of (M(t+1)7l/(t+1)), such that the resulting algorithms are both
practical and retain the appealing convergence rate of IU.

Proposed algorithms. We propose two extragradient algorithms for solving the entropy-regularized ma-
trix game, namely the Predictive Update (PU) method and the Optimistic Multiplicative Weights Update
(OMWU) method, the latter adapted from Rakhlin and Sridharan (2013); Daskalakis et al. (2011). Detailed
procedures can be found in Algorithm 1 and Algorithm 2, respectively. On a high level, both algorithms
maintain two intertwined sequences {(u"), v®)};50 and {(7®,7")};>0, and in each iteration t = 0,1, ...,
proceed in two steps:

e The midpoint (a(*+1), p(*+1)) serves as a prediction of (p**1 v(*+1) by running one step of mirror
descent / ascent (cf. (6)) from either (21, z) = (u®,v®) (for PU) or (21, z5) = (5", ) (for OMWU).

e The update of (p**D, v+ then mimics the implicit update (7) using the prediction (z(*+1, z(t+1)
obtained above.

When the proposed algorithms converge, both (), v®)) and (7, 7®) converge to the same point. The two
players are completely symmetric and adopt the same learning rate, and require only first-order information
provided by the sampling oracle. While the two algorithms resemble each other in many aspects, a key
difference lies in the query and use of the sampling oracle: in each iteration, OMWU makes a single call
to the sampling oracle for gradient evaluation, while PU calls the sampling oracle twice. It is worth noting
that, when 7 = 0 (i.e., no entropy regularization is enforced), the OMWU method in Algorithm 2 reduces to
the method analyzed in Rakhlin and Sridharan (2013); Daskalakis and Panageas (2018a); Wei et al. (2021b)
without entropy regularization.

2.3 Performance guarantees

We are now positioned to present our main theorem concerning the last-iterate convergence of PU and
OMWTU for solving (3).

Theorem 1 (Last-iterate convergence of PU and OMWU). Suppose that the learning rates n = npy of PU
in Algorithm 1 and 1 = nomwu of OMWU in Algorithm 2 satisfy

0<npy <

1 1
and 0 < nomwy < min{ } . (8)

T+2]4l 27 + 214" 4114l

Then for any t > 0, the iterates (V) = (u®,v®) and ¢V = (&, D) of both PU and OMWU achieve



Algorithm 1: The PU method Algorithm 2: The OMWU method

1 initialization: p(9), »(0), 1 initialization: ;9 = g(® 10 = 5(0)
2 fort=0,1,2,--- do 2 fort=0,1,2,--- do
3 Update i and v according to 3 Update i and v according to

{“(t“)(a) o i (a) " exp(n[Av®],)

1 ; At (@) o p®(a)' " exp(n[Ar®)],),
ﬁ(t+l)(b) x V(t) (b) nr exp(_n[ATu(t)]b).

ﬂ(t+1)(b) x Z/(t) (b)lfn’r exp(_n[ATﬂ(t)]b).

4 Update p and v according to 4 Update p and v according to
1—m71 _ 1—n7 _
P (a) oc (@) 7 exp(nlAp1],), pE(a) o pl0(a) " exp(n AV,
VD (b) o O (6)' " exp(—n[AT EEHD]). VD (b) o O (6)' " exp(—n[AT EH]).

e Linear convergence of policies in KL divergence and entrywise log-ratios:

max {KL(CE <), SKL(G ) b < (1= nr) KL(G 1<), (92)
(t) (0) 8 A 1/2
log || < 2(1 — e’ 1ogi*‘ i A (4 v (g ) 2 (9b)
e Linear convergence of values in optimality and duality gaps:

= - 1 (1 —n7)* 0
OptGap, (¢() <n~'- : KL(¢E 116, 9c
s gy 1= =g 1) )
DualGap, (V) < (" +2r 1 AI% ) (1= n7)" 'KL(CH 1 ¢). (9d)

Remark 1. Setting (9 and v to be uniform policies leads to a universal bound
KL(¢H(1¢) = log |A| +log |B| = H(u}) = H(v}) < log|A| +log |B]|
regardless of (& = (uk,vy).

Remark 2. Similar results continue to hold even when the two players use different reqularization parameters
Tus Ty > 0 in (3), as long as the regularization parameter T is replaced by max{r,,7,} in the upper bounds
of the learning rate, and the contraction parameter is replaced by 1 — min{r,, 7, }n.

Theorem 1 characterizes the convergence of the last-iterates ¢ and () of PU and OMWU as long as
the learning rate lies within the specified ranges. While PU doubles the number of calls to the sampling
oracle, it also allows roughly as large as twice the learning rate compared with OMWU (cf. (8)). Compared
with the vast literature analyzing the average-iterate performance of variants of extragradient methods, our
results contribute towards characterizing the last-iterate convergence of multiplicative update methods in
the presence of entropy regularization and simplex constraints, which to the best of our knowledge, are the
first of its kind. Several remarks are in order.

e Linear convergence to QRE. To achieve an e-accurate estimate of the QRE in terms of the KL
divergence, the bound (9a) tells that it is sufficient to take

1 (logA| +10g|B|>
~og ( 2T 08P

nrt €

iterations using either PU or OMWU. Notably, this iteration complexity does not depend on any hid-
den constants and only depends double logarithmically on the cardinality of action spaces, which
is almost dimension-free. Maximizing the learning rate, the iteration complexity is bounded by
(14 [|A]loo/7) log(1/€) (modulo log factors), which only depends on the ratio ||A| oo/
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Figure 1: Performance illustration of the PU and OMWU methods for solving entropy-regularized matrix
games with |A| = |B|] = 100, where the entries of the payoff matrix A is generated independently from the
uniform distribution on [—1,1]. The learning rates are fixed as 7 = 0.1. The left panel plots various error
metrics of convergence w.r.t. the iteration count with the entropy regularization parameter 7 = 0.01, while
the right panel plots these error metrics at 1000-th iteration with different choices of .

e Entrywise error of the policy log-ratios. Both PU and OMWU enjoy strong entrywise guarantees
in the sense we can guarantee the convergence of the £,, norm of the log-ratios between the learned
policy pair and the QRE at the same dimension-free linear rate (cf. (9b)), which suggests the policy
pair converges in a somewhat uniform manner across the entire action space.

e Linear convergence of optimality and duality gaps. Our theorem also establishes the last-iterate
convergence of the game values in terms of the optimality gap (cf. (9¢)) and the duality gap (cf. (9d))
for both PU and OMWU. In particular, as will be seen, bounding the optimality gap of matrix games
turns out to be the key enabler for generalizing our algorithms to Markov games, and bounding the
duality gap allows to directly translate our results to finding a NE of unregularized matrix games.

Figure 1 illustrates the performance of the proposed PU and OMWU methods for solving randomly
generated entropy-regularized matrix games. It is evident that both algorithms converge linearly, and achieve
faster convergence rates when the regularization parameter increases.

Last-iterate convergence to approximate NE. The entropy-regularized matrix game can be thought
as a smooth surrogate of the unregularized matrix game (1); in particular, it is possible to find an e-NE by
setting 7 sufficiently small in (3). According to (Zhang et al., 2020, Definition 2.1), a policy pair ¢ = (u, )
is an e-NE if it satisfies

DualG = "v) — i V) <e.
ualGap(() M,?E&)f(“ V) V,IenAn(lB)f(u V) <e

Observe that setting 7 = log\Ael/fﬁong\ guarantees
o (p) = fuv)| < e/t forall (u,v) € AA) x A(B)

in view of the boundedness of the Shannon entropy H(-). Theorem 9 (cf. (9d)) also ensures that our proposed
algorithms find an approximate QRE (™) such that DualGap. (7)) < €/2 after taking T = 0] (—E) iterations,

1
n
o (141=:)
€

which is no more than




iterations with optimized learning rates. It follows immediately that
DualGap(¢(™) < DualGap, (™)) +max | £ (', 7)) = £, (2T, v') = (F(u',#D) = f(@T) )| < e, (10)
w v

and therefore ((7) is an e-NE. Intriguingly, unlike prior work (Daskalakis and Panageas, 2018a; Wei et al.,
2021b) that analyzed the last-iterate convergence of OMWU in the unregularized setting (7 = 0), our
last-iterate convergence does not require the NE of (1) to be unique.

Rationality. Another attractive feature of the algorithms developed above is being rational (as introduced
in Bowling and Veloso (2001)) in the sense that the algorithm returns the best-response policy of one player
when the opponent takes any fixed stationary policy. More specially, in terms of matrix games, when player
2 sticks to a stationary policy v, the update of player 1 reduces to

# (@) o u(a) " exp(n]Ava). ()

In this case, Theorem 1 can be established in exactly the same fashion by restricting attention only to the
updates of p®).

3 Zero-sum Markov games with entropy regularization

Leveraging the success of PU and OMWU in solving the entropy-regularized matrix games, this section
extends our current analysis to solve the zero-sum two-player Markov game, which is again formulated
as finding the equilibrium of a saddle-point optimization problem. We start by introducing its basic setup,
along with the entropy-regularized Markov game, which will be followed by the proposed policy extragradient
method with its theoretical guarantees. The proofs for this section are collected in Appendix B.

3.1 Background and problem formulation

Zero-sum two-player Markov game. We consider a discounted Markov Game (MG) which is defined
as M = {S, A, B, P,r,v}, with discrete state space S, action spaces of two players A and B, transition
probability P, reward function r : S x A x B — [0, 1] and discount factor v € [0,1). A policy p: S — A(A)
(resp. v : S — A(B)) defines how player 1 (resp. player 2) reacts to a given state s, where the probability of
taking action a € A (resp. b € B) is u(als) (resp. v(b|s)). The transition probability kernel P : S x Ax B —
A(S) defines the dynamics of the Markov game, where P(s'|s, a,b) specifies the probability of transiting to
state s’ from state s when the players take actions a and b respectively. The state value of a given policy
pair (u,v) is evaluated by the expected discounted cumulative reward:

Z'Ytr(st;at;bt) | S0 = 51 )

t=0

Vi (s) =E

where the trajectory (so, ag, by, s1, -+ ) is generated by the MG M under the policy pair (p, V), starting from
the state sg. Similarly, the Q-function captures the expected discounted cumulative reward with an initial
state s and initial action pair (a,b) for a given policy pair (u,v):

Q#,D(S’ a‘) b) = E

Zytr(st,at,bt) | s0=s,a0 =a,by = b] .

t=0
In a zero-sum game, one player seeks to maximize the value function while the other player wants to
minimize it. The minimax game value on state s is defined by

V*(s) = maxmin V#"(s) = minmax V*"(s).
oo vooon

Similarly, the minimax Q-function Q*(s, a,b) is defined by
Q*(s,a,b) = r(s,a,b) + YEyp(|s,a0)V(s). (12)

It is proved by Shapley (1953) that a pair of stationary policy (p*,v*) attaining the minimax value on state
s attains the minimax value on all states as well (Filar and Vrieze, 2012), and is called the NE of the MG.

10



Entropy-regularized zero-sum two-player Markov game. Motivated by entropy regularization in
Markov decision processes (MDP) (Geist et al., 2019; Cen et al., 2020), we consider an entropy-regularized
variant of MG, where the value function is modified as

VEY(s):=E th (r(se, ae,be) — 7log plag|se) + Tlogv(belsy)) | so = 5|, (13)
t=0

where the quantity 7 > 0 denotes the regularization parameter, and the expectation is evaluated over the
randomness of the transition kernel as well as the policies. The regularized Q-function Q** of a policy pair
(u,v) is related to V¥ as

Q¥ (s,a,0) = r(s,a,b) + VEy o p(.|s,a.0) [VT’"”(S’)]. (14)

We will call V" and Q" the soft value function and soft Q-function, respectively. A policy pair (ur,v})
is said to be the quantal response equilibrium (QRE) of the entropy-regularized MG, if its value attains the
minimax value of the entropy-regularized MG over all states s € S, i.e.

V*(s) = maxmin V¥ (s) = minmax V""" (s) := VTM:7V:($),
woov voou

where V* is called the optimal minimax soft value function, and similarly Q* := Q%" is called the optimal
minimax soft Q-function.

Goal. Our goal is to find the QRE of the entropy-regularized MG in a decentralized manner where the
players only observe its own reward without accessing the opponent’s actions.

Remark 3. For any policy pair (u,v), it is straightforward to show that
[VEY = VYoo < 7(log |A| + log | B]).

Hence, similar to the case of matriz games, setting the reqularization parameter sufficiently small T, solving
the entropy-regularized MG also allows us to find an approximate NE of the unregularized MG. We omit the
details for conciseness.

3.2 From value iteration to policy extragradient methods

Entropy-regularized value iteration. It is known that classical dynamic programming approaches such
as value iteration can be extended to solve MG (Perolat et al., 2015), where each iteration amounts to solving
a series of matrix games for each state. Similar to the single-agent case (Cen et al., 2020), we can extend
these approaches to solve the entropy-regularized MG. Setting the stage, let us introduce the per-state Q-
value matrix Q(s) := Q(s, -,-) € RIAIXIBl for every s € S, where the element indexed by the action pair (a, b)
is Q(s,a,b). Similarly, we define the per-state policies u(s) := u(:|s) € A(A) and v(s) :=v(|s) € A(B) for
both players.
In parallel to the original Bellman operator, we denote the soft Bellman operator T, as

g s,a,b) :=1r(s,a,b) + YEyp(.1s5.a max min [ (Q(s"); u(s"),v(s)) ], 15
(@)(5.0) = rls,0,0) 4 B | s min QU] 05)

where for each per-state Q-value matrix Q(s), we introduce an entropy-regularized matrix game in the form
of

max  min S (Q(s); u(s), v(s)) = u(s) TQs)(s) — TH(u(s)) + TH((s)).

peA(A)yvea(B) "

The entropy-regularized value iteration then proceeds as
QU =T(QW), (16)

where Q) is an initialization. By definition, the optimal minimax soft Q-function obeys 7;(Q*) = Q* and
therefore corresponds to the fix point of the soft Bellman operator. Given the above entropy-regularized value
iteration, the following lemma states its iterates contract linearly to the optimal minimax soft Q-function at
a rate of the discount factor ~.

11



Algorithm 3: Policy Extragradient Method for Entropy-regularized Markov Game

initialization: Q(©) = 0.
fort =0,1,2,- - , Tiain do
Let Q® denote

w N =

Q(t)(sa a, b) = T(S7 a, b) + ’YES’NP(-\S,a,b)V(t) (S/) (18)
4 Invoke PU (Algorithm 1) or OMWU (Algorithm 2) for Ty, iterations to solve the following

entropy-regularized matrix game for every state s, where the initialization is set as uniform

distributions:
®) ,v(s)).
M(S)EA(A) V(%)GA(B)f (Q () (), 1 ))

Return the last iterate g(*Tsww) (s), (7o) ().
5 | Set V() = £, (QUO(s)s T (5), T (5)).

Proposition 2. The entropy-regularized value iteration (16) converges at a linear rate, i.e.

QW — Qoo <1QY — Q|- (17)

Approximate value iteration via policy extragradient methods. Proposition 2 suggests that the
optimal minimax soft Q-function of the entropy-regularized MG can be found by solving a series of entropy-
regularized matrix games induced by {Q®};>¢ in (16), a task that can be accomplished by adopting the fast
extragradient methods developed earlier. To proceed, we first define the following sampling oracle, which
makes it rigorous that the proposed algorithm does not require access to the Q-function of the entire MG,
but only its own single-agent Q-function when playing against the opponent’s policy.

Definition 2 (Sampling oracle for Markov games). Given any policy pair u(s),v(s) and Q-value matrix
Q(s) for any s € S, the sampling oracle returns

[Q(S)V(S)]a = IEbNV(S) [Q(Sv a, b)] ) and [Q(S)TM(S)]Z) = IEaN/A(s) [Q(Sv a, b)]
for anya € A and b € B.

Algorithm 3 describes the proposed policy extragradient method. Encouragingly, by judiciously setting
the number of iterations in both the outer loop (for updating the Q-value matrices) and the inner loop
(for updating the QRE of the corresponding Q-value matrix), we are guaranteed to find the QRE of the
entropy-regularized MG in a small number of iterations, as dictated by the following theorem.

. 1—
Theorem 2. Assume |A| > |B| and T < 1. Setting n = 5oz AT
product Tynain - Tsub ) required for Algorithm 3 to achieve ||Q(T"‘ai") - Q:HOO < € is at most

(log|A| +1/7) (. log|A] \*
O( = (bg(l—v)e))'

Theorem 2 ensures that within O (T(l m—F log ( )) iterations, Algorithm 3 finds a pair of policies whose

the total iterations (namely, the

value is close to the optimal minimax soft Q-function @ in an entrywise manner to a prescribed accuracy
€. Remarkably, the iteration complexity is independent of the dimensions of the state space and the action
space (up to log factors).

Figure 2 illustrates the performance of Algorithm 3 for solving a randomly generated entropy-regularized
Markov game with |A| = |B| = 20, |S| = 100 and v = 0.99 with varying choices of Tiain, Tsup and 7. Here,
the transition probability kernel and the reward function are generated as follows. For each state-action pair
(s,a,b), we randomly select 10 states to form a set Ss 45, and set P(s|s,a,b0) x Usqps if 8" € Ssq, and 0
otherwise, where {Us 45,5 ~ U[0, 1]} are drawn independently from the uniform distribution over [0, 1]. The
reward function is generated by r(s,a,b) ~ Us,q,p - Us, where Us 45 and U, are drawn independently from the
uniform distribution over [0, 1]. Tt is seen that the convergence speed of the £, error on HQ(T‘“““) — Q:Hoo
improves as we increase the regularization parameter 7.
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Figure 2: Performance illustration of Algorithm 3 for solving a random generated entropy-regularized Markov
game with |A| = |B] = 20, |S| = 100 and v = 0.99. The learning rates of both players are fixed as = 0.005.
The left panel plots ||Q(Tmin) — Q‘;HOO w.r.t. the iteration count Ty .in when Ty, = 400 under various
entropy regularization parameters, while the right panel plots HQ(TI“&*") — Q‘;HOO w.r.t. the regularization
parameter 7 when Ti.in = 2000 with different choices of Tyyp.

4 Conclusions

This paper develops provably efficient policy extragradient methods (PU and OMWU) for entropy-regularized
matrix games and Markov games, whose last iterates are guaranteed to converge linearly to the quantal
response equilibrium at a linear rate. Encouragingly, the rate of convergence is independent of the dimension
of the problem, i.e. the sizes of the space space and the action space. In addition, the last iterates of the
proposed algorithms can also be used to locate Nash equilibria for the unregularized competitive games
without assuming the uniqueness of the Nash equilibria by judiciously tuning the amount of regularization.
This work opens up interesting opportunities for further investigations of policy extragradient methods for
solving competitive games. For example, can we develop a two-time-scale policy extragradient algorithms
for Markov games where the Q-function is updated simultaneously with the policy but potentially at a
different time scale, using samples, such as in an actor-critic algorithm (Konda and Tsitsiklis, 2000)? Can
we generalize the proposed algorithms to handle more general regularization terms, similar to what has been
accomplished in the single-agent setting (Lan, 2021; Zhan et al., 2021)? We leave the answers to future work.

Acknowledgments

S. Cen and Y. Chi are supported in part by the grants ONR N00014-18-1-2142 and N00014-19-1-2404, ARO
W911NF-18-1-0303, NSF CCF-1901199, CCF-2007911 and CCF-2106778. Y. Wei is supported in part by
the NSF grants CCF-2007911, DMS-2015447 and CCF-2106778.

A Analysis for entropy-regularized matrix games

Before embarking on the main proof, it is useful to first consider the update rule (6) that underlies both PU
and OMWU, which is reproduced below for convenience:

£ (@) o 1@ (a)' " exp([Azala),  for all a € A, (19)
19
v () o v® (0)' T exp(—n[AT z1]), for all b € B,

where 21 € A(A) and 2z, € A(B). These updates satisfy the following property, whose proof is provided in
Appendix C.1.
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Lemma 1. Denote () = (u®,v®) and ¢(2) = (21, 22). The update rule (19) satisfies:

(log p™*Y — (1 = n7)log u® — nrlog py, 21 — pi) = n(uy — z1) AW} — 22), (20a)
(log V") — (1 = nr)log v —nrlog ik, 25 — v} ) = —n(vf — 21) TA(V} — ), (20b)

and
(log ¢ — (1 =) log ¢ — nrlog (. ((2) — ¢F) = 0. (21)

As we shall see, the above lemma plays a crucial role in establishing the claimed convergence results.
The next lemma gives some basic decompositions related to the game values that are helpful.

Lemma 2. For every (u,v) € A(A) x A(B), the following relations hold
Fr(z,v) = fr(p,vy) = TKL(C I GF), (22a)
frlpv) = fr(p,vi) = (uh = ) Ay —v) + 7KL(v || v7) — 7KL (1 || 1) (22D)
In addition, we also make record of the following elementary lemma that is used frequently.
Lemma 3. For any u1, ue € A(A) satisfying
p(a) oc exp(z1(a))  and  pa(a) o exp(z(a))
for some 1, x5 € R we have

Jlog 111 — log izl < 21 — sl -

A.1 Proof of Proposition 1
Setting ¢(z) = ¢**1) in Lemma 1, we have

(log ¢+ — (1 = 57)log ¢ — yrlog ¢7. (Y — ¢7) = 0. (23)
By the definition of the KL divergence, one has

— (log ¢ — (1 — yr) log ¢ — nrlog X, ()
= —(1—n7){log ¢& —log ¢, ) + (log ¢& — log ¢HY, ¢F)
= —(1—nr)KL(¢ I ¢W) + KL(¢ || ¢HY), (24)
and similarly,
(log ¢+ — (1 —nr)log ¢ — nrlog ¢&,¢HY)

= (1 —n7){log ¢ —log ¢V, ¢ 4 pr{log ¢T1) —log ¢z, ¢HH))
= (1 —nm)KL(CHD | ¢B) + nrKL(CHHD || ¢2).

Combining the above two equalities with (23), we arrive at
KL(G ) + KL DI Cr) + (1= )KLV 1¢W) = (1= gm)KL(¢T 1<) (29)

This immediately leads to KL (¢ || (1) < (1—n7)KL(¢E || ¢™®) by the nonnegativity of the KL divergence,
as long as 1 — n7 > 0. Therefore

KL(GE1¢™) < (@ =nr)'KL(¢: 1<) forall ¢ > 0.
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A.2 Proof of Theorem 1

A.2.1 Proof of policy convergence in KL divergence (9a)

First noticing that both PU and OMWU share the same update rule for x*+1) and v+ which takes the
form

1—nT —
£t (a) o M(t)(a)1 " exp(n[Ap(+],),
D () o v (B) " exp(—n[ATEHD],).

Regarding this sequence, Lemma 1 (cf. (21)) gives
(log ¢V — (1 =) log ¢ — prlog €7, (Y — ¢7) = 0. (26)

With the optimism that ¢*+1) approximates ¢**1) well, we can expect similar convergence guarantees to
that of the implicit updates established in Proposition 1. Following the same argument as (24), we have

— (log (") — (1 = n7)log ¢ — rlog ¢, () = —(1 — nr)KL(¢E[1¢M) + KL(¢E [[¢<"HV). (27)
On the other hand, it is easily seen that
(log ("1 — (1 = 97)log () —yrlog ¢7, ()
= (log (" — (1 =) log (' — nrlog ¢, (V) + (log (1) —log (1, (1)
_ <log D) _og ¢+ D) C(t+1)>
= (L= m)KL(CE ) ¢M) + prKL(CHHY [ ¢F) + KL(¢HHD | ¢
— (log ¢"FY —log ¢ (UHD) — (D), (28)

Combining inequalities (27), (28) with (26), we are left with the following relation pertaining to bounding
KL(¢11¢®):

(1= nm)KL(CE11¢) = (1 = nr)KLC V1) + nrKL(CHD [ ¢7) + KL(¢HD | ¢D)
— (log ¢+ —1og ¢V, (1D — ¢UFD) 1 KL(¢r || ¢HY). (29)
In addition, to bound KL({: ¢ (tH)), we will resort to the following three-point equality, which reads
KL(GICHY) = KL(¢r 1 ¢1HY) = (¢, log ¢+ —log ¢ 1)
= KL(GE I ¢UHD) = KLV [ ¢Y) = (¢ = U Tog (Y —log ¢HY), - (30)

which can be checked directly using the definition of the KL divergence.

To proceed, we need to control (log (+1) —log (#+1) ((tH1) — ¢+ on the right-hand side of inequality
(29), and (¢ — (1 log (D —log (1)) on the right-hand side of inequality (30), for which we continue
the proofs for PU and OMWU separately as follows.

Bounding KL(¢Z[|¢?) for PU. Following the update rule of (1) = (a(*+1, 5(t+1)) in PU, we have
log i1 —log V) = nA(W® — D) L1 (31)
for some normalization constant c¢. With this relation in place, one has
<log D —og D D M(t+1)> = (D) — T AW — D)
<l [ o] oo -],

Combined with Pinsker’s inequality, it is therefore clear that

_ _ 1 _ 2.
<10g,u(t+1) ~log pt+D pt+D) _ H(t+1)> < 57 1A (Hu(t—&-l) _ u(t+1)H1 + Hy(t—i-l) 0!

)
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<Al (KL [ AED) 4 KLEED [10)) . (32

Analogously, one can achieve the same bound regarding the quantity (log 7(*+1) — logp(t+D) p(t+1) — 3 (t+1))
Summing up these two inequalities, we end up with

(log D) — log ¢+ FHHD _ ¢(H+1)) < 4] (KL(C(M) 1CEFD) 4 KL(EED | C“))) )

Plugging the above inequality into inequality (29) leads to

KL(¢E [ ¢) < (@ = nm)KL(G 1€D) — (1 = n7 — 0|4l )KLV 1 ¢P) — prKL(CY || ¢2)
— (1= | Al )KL (D | ¢, (33)

Therefore, as long as the learning rate 7 satisfies n < , we are ensured that

1
THIAl
KL(¢E 1<) < (1 =nm)KL(CE 11¢™),
which further implies inequality (9a) when applied recursively.
Bounding KL (¢ || (V) for PU. By similar tricks of arriving at (32), we have
—(up = 1 log gl —log pl V) = —p(py — g TAEY - pFD)

< npay <‘ 1 — ﬁ“*””g + Hu(t) - p<t+1>H2)
-2 & T 1 1

<Al (KL(M: I ﬁ(t“)) + KL(D(tJrl) I V(t))) ’

following from (31) and Pinsker’s inequality. A similar inequality for — (v — (D log p(t+1) —Jog p(t+1))
can be obtained by symmetry, and summing together the two leads to

(¢ = ¢, 10g CUHD —log (D) < Al (KL(G IICUHD) + KL 1<)
Plugging the above inequality into (30) and rearranging terms, we reach at
(1= AL DKL(C 1 CY) < KL(GII¢UHD) +m | Al KLEHHY [1¢9).
Along with (33), we have
(1= A KL(G [ CUY) < (1= gr)KL(GTI1¢) = (1= n7 = 20 | Afl KL 1)
—rKL(CHY[[¢*) = (1= || A KLY || ¢UHD). (34)
Therefore, with n < 1/(7 + 2||Al|,) we have

KL(¢ || CHFY) < 2KL(¢E |1 ¢M) < 2(1 — nr)'KL(¢E |1 <),

Bounding KL((* || ¢®) for OMWU. Following the update rule of (‘*+1 = (a(t+1, p(t+1D)) for OMWU,
we have
log i —log Y = nA@Y — D) 4 ¢ 1
=AY — D) 4 AW® — s e 1, (35)
where ¢ is some normalization constant. Similar to the proof of relation (32), it can be easily demonstrated

that

(t+1)

log pHD gD _ 4y

(log fz
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— 77(ﬂ(t+1) — M(t+1)>TA(,;(t) (t)) + (@ (t+1) _ (t+1))TA( ) _

p(t“"l))
< Al (KL [ 50) + KLEED [[5©O) 4 oKL (a0 | a0)). (36)

By symmetry, we can also establish a similar inequality for (log 7(‘+1) — log v/(*+1) p(t+1) — /(1)) "which in
turns yields

(log {1+ —1og (D, £+ _ (1)
< Al (KLED 1€D) +KLEED []¢0) + 2KL((EHD [ CEHD) ).

Plugging the above inequality into equation (29) and re-organizing terms, we arrive at

KL(CE 1 ¢Y) < (@ = nm)KL(EE1¢Y) — (1 — 7 = n || Al o) KL(CHD [ ¢1) — KLV | ¢F)
— (1 =20 | Al )KL D) | Afl o KL [|CD). (37)

With the choice of the learning rate n < min{2|lAlll o 4\|Al\|

}, it obeys
(1 =n7)(1=2nAllo) = nllAll,
Combining the above inequality with (37) gives

KL(CEICHHD) + (1 — 20 || Al )KL(¢HFD | ¢
< (L= nm)KL(CGEI1¢D) + nl|All g KLCW 1 {H) = prKL(CH Y || ¢F).
< (1= ) [KL(G11¢D) + (1= 20 Al KL 1 E9)] = nrKLEE D )1¢).

For conciseness, let us introduce the shorthand notation
L= KL(G 1 ¢M) + (1 = 20 Al KL [ ). (38)
As a result, the above inequality can be restated as
LD < (1 —pr)L® — prKL(CHY | ¢2). (39)
Since we initialize OMWU with ((©) = ¢(©) therefore L(®) = KL(¢* || ¢?)), which in turn gives
KL(G ¢ < 29 < (1= 9r) L = (1 = gr) KL [ <)
We complete the proof of inequality (9a) for OMWU.

Bounding KL(¢?[|(*+?)) for OMWU. By similar tricks of arriving at (36), we have

_(t4+1)

—(pr = Y log gD —log pl D) = p(aHY — ) TA@Y — v ) 4 p(pt T — ) TAW® - pH)

<n HAHOO (KL(V(t) I Z7(zt)) + KL( (t41) ” y t)) n 2KL( I (t+1))) ’

where the first line follows from (35). A similar inequality also holds for —(v* — p(*+1) log p(*+1) — log p(t+1)),
Summing the two inequalities leads to

—{¢x = ¢ 1og (Y —log () < | Al (KL(c@ 1C9) + KLV (1¢P) + 2KL(¢H | E“*”)) :

Plugging the above inequality into (30) and rearranging terms, we reach at

(1= 20 [J A KL(G S < KL(G1¢UD) + n Al (KL 1ED) + KLED [1¢D)).
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Along with (37), we have

(1 =29 |A KL 1CUHY) < (1= nm)KL(GE11¢Y) = (1 =7 — 2 | All KLUV [ ¢W) —nrKL(C“HV )1 ¢r)
— (1= 20 | A KLV ) 420 || 4]l KL [ )

(1=nr)KL(G ([ ¢") + 2n |4l KL [ ¢)

SKL(G ™) + (1= 20 A )KL (1) == L,

where we recall the shorthand notation L®) in (38). As the learning rate of OMWTU satisfies 0 < 7 <

. 1 1 s
mm{2\|AHw+2T’ AT }, it is clear that

IN

_ ()
KL(GH ¢ <20 < 21— nr) L0 <201 = yr)'KL(CE (1 ¢'),
where (i) follows from the recursive relation L{+1) < (1 —57)L® shown in inequality (39).

A.2.2 Proof of entrywise convergence of policy log-ratios (9b)

To facilitate the proof, we introduce an auxiliary sequence {£®) € R'A‘} constructed recursively by

£9(a) = llexp(Avy /7)), - 1O (a), (40a)
€D (a) = €M (a)' =77 exp(n[ArtTY)],), Va € A,t > 0. (40b)

It is easily seen that u®(a) oc £ (a) = exp(log €™ (a)) for t > 0. Noticing that u* oc exp(Av¥), one has

0 togpr | <2 |loge ™tV — avz/r| (41)

-

where we make use of Lemma 3.
Therefore it suffices for us to control the term ||10g g+ _ Av? /THOO on the right-hand side of inequal-
ity (41). Taking logarithm on both sides of (40b) yields

log €Y — Av* /7 = (1 — n7)log €W + nApt+Y) — Av* /7
= (1 =) (log¢® — Avz/7) + A+ ),
which, when combined with Pinsker’s inequality, implies

[log €+ — avzjr| < (=) [loge® — Avfr|| -+ nlal [0 - v
[e’e) 1

1/2
< (1= ) ||log€® — Avz/r| +nlAll [2KL(z 170)]
_ 1/2
< (L=n)|loge® — Avz/r| 4 mlAl. [2KLEG 1)) T @)

Plugging the bound of KL(¢* || (V) from relation (9a) into (42) and invoking the inequality recursively
leads to

Hlogﬁ(t“) - AI/:/TH

t+1
< (1= )t log €@ — Avt ||+ 20 Al SO - prytHs KL )¢9
o0
s=1
1 1/2
_ t+1 0) _ _ (+1)/2__ = (0)
< (=)™ |log &) — Avz/7|| 4 20| All (1 —n7) - T)WKL(CIIIC )

1/2

< (1—n7)T log€® — Avt /7|l +arH Al (1 —nr)TTD2KL(CE ] ¢)
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where the last line results from the fact that (1 — 177')1/ 2 <1 —n7/2. Combining pieces together, we end up
with

(t+1) _

o< 2Hlog§(t+1) —AV:/TH
(o) (o)

‘log I

< 2(1 = gr)* [log€© — Az /]| 8 [A]L (1 - nn)DKL(G ) ¢©)

1/2

<21 =97+ log u® —tog iz |+ 87 Al (1= ) VKL )

Similarly, one can establish the corresponding inequality for Hlog vt _log vy H o0 therefore completing the
proof of inequality (9b).
A.2.3 Proof of convergence of optimality gap (9c)

To streamline our discussions, we only provide the proof of inequality (9¢) concerning upper bounding
f-(a®, M) — f.(u*,v¥) without taking the absolute value; the other direction of the inequality can be

o
established in the similar manner and hence is omitted.

We first make note of an important relation that holds both for PU and OMWU. Consider the update
rule of (p*Y, v(+1D) which is the same in PU and OMWU. Lemma 1 inequality (20a) gives

< — ) =t - ) TAWE — Y)Y (43)

Similar to what we have done in the proof of (9a) (cf. (29)), based on the above relation, we can therefore
rearrange terms and conclude that

0 (PKLEED | ) = oy = )T Awr = 501))
= (1= nr)KL (s || 1) = (1= )KL || p®) = KL(uHD | a0+D)
(t+1) (t+1)7ﬂ(t+1) o N(t+1)> KL(HT H M(t+1 )

In conjunction with Lemma 2 (cf. (22b)), we can further derive

n(f (s, ) = S (D, 5 E)) <o (7KL (D || ) = (s = g0FD) T Aws — 9040))

= (1 —nr)KL(pz | n) = (1 = nr)KL(aD || p®) — KL (g2 || p)
_ KL(,u(t'H) I ﬂ(t—i-l)) <10g GHD _og ptHD) | g+ _ u(t+1)>, (44)

(t+1) =(t+1)

(log " — (1 —n7)log ' — 7 log pik, o

+ (log 1 log pu

where the second line follows from (44). From this point, we shall continue the proofs for PU and OMWU
separately but follow similar strategies.

Remaining steps for PU. Plugging relation (32) into (44), we arrive at

n(fr(uk,ve) — f- (0, o))
< (1 —nr)KL (gt || ) (1 —nr)KL(AMHD || n®) — KLk || D)
— (L= [JA|| )KL DY 4 || A KL(ZED (|0 ®)

< (1= nr)KL(pt || D) = KL(px || n®HD) = (1 = )KL [ 1®) + || Al KL(ETHD O, (45)

where the last line holds since (7 +[|A| ) < 1. Similarly, from Lemma 1 inequality (20b), one can establish
the following inequality in parallel

W(ff(ﬂ(tﬂ)’ 17(t+1)) - f'r(u:—a V:))
< (1= gr)KL(vr [ 10) = KL | o) = (1= gr)KL(EED [[1O) 4+ || Afl KL(ECD | 5). (46)

We are ready to establish inequality (9¢) for PU. Computing (1 —n7)- (45) +n ||A|| - (46) gives
01— (1Al + 7)) (Fr (e v2) = fr(BOTD,20FD))
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< (1=07) [(1 = nr)KL (s 1 10) + | Allog KL (s | )]
= [ = )KL 1) 4 A KL D) | = [(0=07) = AL | KL @S | )
< (1=07) [(1 = nr)KL (s 11 60) + | Allg KL (s )
= [ = )KL 1) A KL (v D) ] (47)
Here, the last step is due to the fact that 1 —n7 > n||A], > 0 when 0 < 7 < W' As a direct
consequence, the difference f, (u*,v*) — f,(a®,7®) satisfies

77[1 - (HAHOO + T)’I]] (fT(:u:?V:) - f'r(ﬂ(t)vf/(t)))
< (1 =) [(1 = nr)KL (s 1| 0) + | A] o KL (g [ v7D)]
< (L—nm)KL(¢ ¢ 1) < (1 —nr) KL(¢E (1<),

We conclude by noting that the other side of (9¢) can be shown by considering 7 || Al - (45) +(1 —n7)- (46)
combined with similar arguments, and are therefore omitted.

Remaining steps for OMWU. Similar to the case of PU, plugging (36) into (44) gives

0 (22 = F(BHD, D))
< (1= )KL (g | u“)) — (1= )KL [ ) = KL (g | D) = (1= 2n | Al )KL (D [ aFD)
11 4] . [KLE®[79) + KLED [ 20)]. (48)

Similarly, one can establish a symmetric inequality as follows

n(fr (D, 0D) = fo ik, vr))
< (L =ar)KL(; [|[V9) = (1= gr)KL@E D [[00) = KLy [|v4F)) = (1= 20 || A]| KL (D || 704D)

Al [KLGO | A0) + KL )] (49)
Directly computing (1 —n7)- (48) +n||A| ., - (49) gives
01 = (1Al + D) (15,07) = S0, 50HD))
< (1-17) [(1 — )KL [ )+ | Al KL (7 [v9)
= [ =KL (D) Al KL ) | = [ = )2 = 0 A | KL(GED )| )
+ Al [(1=n)KL(E® | 50) + 0]l All o KLEO | 50)]

= (1= 29|A] ) [(1 = nr)KL(u D [ EH) 4 | AfL KLECED |5 D) ] (50)

With our choice of the learning rate n < min{?l\AHl T3 4Hj|\ }, it is guarantees that

(L=nm) =A% =0 and  (L—nr)(1-27]A])=nAl.
To proceed, let us introduce the shorthand notation
GO i= (1= )KL (s || ) + | Allog KL |17
+ (1= 20| All0) [(1 = nr)KL(E® | 79) + 11 4] o KLEO [ 50)] .
With this piece of notation, we can write inequality (50) as

(L= (1Al +70m) (Fr (i, v7) = fr(BOD,20D)) < (1 =G — GUHD, (51)
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which in turn implies

(L= (1Al +700) (Fr (i, v7) = fr(BOHD, 70HD))
< (1=)GY < LW < (1 —y7)' LY = (1 =)' KL(¢F 1),

with L(*) defined in (38). This finishes the proof of (9c) for OMWU.
A.2.4 Proof of convergence of duality gap (9d)

The proof of inequality (9d) is built upon the following lemma whose proof is deferred to Appendix C.4.
Lemma 4. The duality gap at ( = (u,v) can be bounded as

e fo (' v) = min () < TKL(CG) 7 AIEKL(G1€)-

Applying Lemma 4 to (V) = (a®,5®)) yields

D,(¢W) < 7KL(CW [ ¢2) + 77 A2 KL(¢E 11¢)
< TRL(CD[1¢) + 20 HIAYZ (1 — nr) TP KL(GE ¢, (52)

where the second step results from (9a). It remains to bound TKL(E ®) I C;), which we proceed separately
for PU and OMWU.

Remaining steps for PU. From inequality (33), we are ensured that
nrKLCWI¢E) < (1= nm)KL(Gr 1<) = KL(¢r 1<),
It thus follows that
KL ¢7) < (= nm)KL(CE 1Y) <7t (1= )T KL(¢ 1¢9),

where the last inequality is due to inequality (9a). Plugging the above inequality into (52) completes the
proof of inequality (9d) for PU.

Remaining steps for OMWU. From inequality (39), we are ensured that

KL ¢G) < ' (1= nm) LD <7 (1= nr) L = 7' (1 = ) KL(¢E(1¢),
where the last equality follows from L(®) = KL((;‘ I ¢ (0)). Plugging the above inequality into (52) finishes
the proof of inequality (9d) for OMWU.

B Analysis for entropy-regularized Markov games

B.1 Proof of Proposition 2
For each t, let

VO(s)i= max  min QW (s);uls), v(s)),

n(s)€A(A) v(s)eA(B)

which is, in other words, the minimax value of the associated matrix game using a payoff matrix Q(t)(s).
We start by making a simple observation that for u(s) € A(A),v(s) € A(B),

[t o) (1(5). v(5)) = S s) (a(5), v()| = [T (QV(s) = Qx(s)v]
<[[ee -] < o - ez
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As a direct consequence, we can control V) (s) — V*(s) by

VO(s) =V (s)| =
n(s)eA(A) v(s)eA(B (s)eA(A) v(s)eEA(B)

o () < min o ) (5 (5)

< e - _

Recalling the definition of the soft Bellman operator 7, in (15), it then follows that

|Qu =@z = |7@®) - Te@n| =

Egp(|s,a,b) [V(t)(sl) - V‘r*(s/):| ‘

LS HQ“) - Q7

=

-

o0

Recursively invoking the above inequality proves inequality (17).

B.2 Proof of Theorem 2

The inner loop of Algorithm 3 aims to solve an entropy-regularized matrix game indexed by Q) (s), which
is done by running the proposed PU or OMWU methods. To analyze the efficacy of the inner loop, let us
denote the exact minimax game value on state s at t-th iteration by

VED(s) .= max min i (t) $): u(s), v(s)), o
( ) n(s)eEA(A) U(S)EA(_A)f (Q ( ) :u( ) ( )) ( )

which is adopted in the exact value iteration analyzed in Proposition 2, and achieved by the equilibrium
¢ = (0, 1*0) of (53).

e Denote the output of the inner loop as (tTsw) = (a(tTsw) (5), p(tTeww) (5)), which the entropy-regularized
matrix game (53) is approximately solved by executing PU /OMWU for Ty}, iterations. Theorem 1
(cf. (9¢c)) guarantees that for every s € S, one has

YD) () f/<t+1>(s)‘ -

Ty o (BT (5), T (5)) — (05 (5), 070 (5))|

_ 1 (1 —nr)Touw
<n! . CKL(¢K® | ¢©@
ST Q0@ 1= =y I
1— Tsun
<o U g4

1—(1—nr)Tw
where the last step makes use of the choice of the learning rate

- 1—7v < 1
T 20+ r(og AT+ 1)) = 2(7 + 1R (s)][~0)

and KL(¢*® || ¢(©) < log|A| +log |B| < 2log|A|. As a consequence, setting

1 1 1
Toup = O ( <log ~ +log + loglog | A| + log )) (54)
nt € n

1
L—n
yields

‘V(tJrl)(S) _ f/(tﬂ)(s)’ <(1—n)e, forall ses. (55)

e We now move to monitor the progress of the outer loop. Combining (55) with some basic calculations,
we arrive at

HQ(t-H) —Qr

<oy - vy

< 7Hv(t-s-l) _ ‘“/(t+1)H 4y H“}-(t-{-l) v

oo

<@-petqfe® -z
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Now invoking the above relation recursively, it is ensured that

o — @z <esr Q0 -q;
In view of the above relation, if one takes
1 1 1 1
Thain =0 | —— [ log = + log 1+ 7log|A| (56)
1—7v € 1—7

iterations of the outer loop in Algorithm 3, we have ||Q(Tmi“) — Q‘;Hoo < 2¢ as desired.

Putting things together, the total iteration complexity sufficient to achieve e-accuracy equals to
1 1 1 1
TainTour =0 | ——— +log 7 ) [ log — + loglog | A| + log +log—] ).
nT(l—7) P 11—~ 1

Therefore the advertised iteration complexity in Theorem 2 holds true by simply noticing that n = m
and 7 < 1, and hence

1 21 4 1
log () <log (og.A|+) , and log(7) < log () .
n L=~ -y

1
<log - +loglog | Al + log
€ 1—7

C Proof of auxiliary lemmas

C.1 Proof of Lemma 1

Lemma 1 follows directly from the update sequence (6) and the form of the optimal solution pair (uX,v}),
provided in (4). Given the update sequence (6), taking logarithm of both sides of the first equation gives

log Y = (1 — nr)log ' +nAzy +c- 1,

where ¢ is the corresponding normalization constant. By rearranging terms and taking the inner product
with z; — uX, we have

<10g u(tﬂ) — (1 —n7)log u(t), 21— ,u:> =nz ' Azg — T)M:.TAZQ, (57)
Similarly, one can derive

(log D (1 —pr)logv® 25 — Vi) = —nz1 " Azg +nz | AVE (58)
By summing up equations (57) and (58), it is guarantee that

(log ¢ — (1 —pr)logc® ¢, — )= —nut " Azy 4+ nz AV, (59)

where ((z) = (21, 22).
On the other hand, recall the optimal policy pair (X, v}) satisfies the following fixed point equation

12(a) o exp([Avilaf7), Va € A,
vi(b)  exp(~[AT uzlo/7), Vb€ B.

Taking logarithm of both sides of the first relation gives

nrlogur =nAvi+c-1, (60)
for some normalization constant c. Again, by taking the inner product with z; — p%, we have
(nrlog iy, z1 — r) = n(z — wp) T AV}, (61)
and similarly
(nTlog v,z — vE) = nus A(zs — 1) (62)

Combining inequalities (57) and (61), we arrive at inequality (20a); combining inequalities (58) and (62)
gives inequality (20b). Moreover, putting together inequalities (59), (61) and (62) leads to

(log ("1 — (1 =) log ¢ — nrlog &, ¢(2) — (&) = 0.
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C.2 Proof of Lemma 2
We begin with establishing (22a). By the definition of f;(u,v), direct calculations yield

Frluzv) = fr(pvi) = (i — )T Av; + 7 log i — " log o

=T ((ui — p,log pk) + p" log pu— px " logui) = 7KL(p || pi3)-

Here, the second equality is obtained by plugging in (60). Similarly, we have

Fr () = Fo (s v2) = KL (v | 7).

Summing these two equalities completes the proof of (22a).
Turning to (22b), we first write

Frliv) + fr(pi,vp) = p" Av + pt T AvE + 7H(p) — TH(v) + TH(uE) — TH©),
P, v) + fo(pvf) = s T Av 4 pT Az + TH(uE) — THW) + TH(p) — THW).

As a consequence, taking the difference of the above two equations leads to

Fr(psv) + (i, vi) = (i v) = fr(uovy) = (0 = p) TA@WE = v).

This in turn allows us to write f;(u,v) — fr(ux, v¥) as follows

Pl v) = (s vd) = (i = ) TAWE = v) + (@) + o, 02) = 26, (i, V7).

Finally, plugging (63) and (64) into (65) reveals the desired relation (22b).

C.3 Proof of Lemma 3

By straightforward calculations, the gradient of the function log(||exp(z)||,) is given by

Vo log([lexp(2)|l,) = exp(2)/ [lexp(2)]; ,

which implies ||V, log(|lexp(z)||,)||l; = 1, ¥z € RII. Therefore, we have

[log p11 — log pi2|| o, = l|z1 — 2 — log([lexp(z1)|l;) - 1 + log([lexp(w2)l|,) - 1]
<oy — 2ol + ) — log(lexp(z1)|l;) + log(lleXp(:cz)lll)’

= llz1 = @2l + | (@1 — @2, Vo Log(lexp(@)]] o=z, )

< llo = @allog + |z = 221l IV log(lexp(@) ) la= I |

=271 — @2l

where z. is a certain convex combination of xy and zs.

C.4 Proof of Lemma 4

Since

/ : AN / _ /
#,renga)fr(u,V) U/rEnAl?B)fT(M,V)—#,eA(%igeA(B)fT(u,V) fr(u,v'),

it boils down to control fr(p',v) — f-(u,v’) for any (p/,v") € A(A) x A(B). Towards this, we have

fr('v) = fr(uv) = (fr (W', v) = fr (W vF) = fr(ps V') + fr(pk, V) — (Fr (i, V') — (1 v))

= (fr (s v) = fr (1 v7) = fr () + fr (7, v') = TKL(C167)),

where the last step is due to fr(u, ) — fr(uf,v) = 7KL(C || ), as revealed in Lemma 2 (cf. (22a)).
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To continue, observe that
Frv) = Fr vE) = 1T A — ) + v logy — v2 T log v
— (1 = W) T A =) + (i) — fr (b,
Similarly, we have
—Frl V) + Fr (i) = = (= ) T AW = )+ fo (ks vE) = fr(uv)).
Plugging the above two equalities into (66) gives
T
o sv) = Fo (') = (1 = )T A —v2) = (= i) T AW = ) + fr (i v) — fr(uvt) — 7KL(C 11 C2)

T *

(W —p3) Ay —vp) = (p—p3) T AW = v2) + TKL(C | ¢) — TKL(C 11 ¢)

< Al (= il v = vl + 1 = vl e = ) + TRL(C N G) = mRL(C 11 G2)
(i) 1 T ’ w12 / * (12 ||A||oo * |12 * 12
< 5 Il [”A”w (Il = wzlF 4+ 1" = w213) + 252 (= w1+ v = 217
+TKL(CIG) = TRL(C11G)
(ii) All?
< kL 1¢) + k(o) + KL ) - 7KL 1)
14115

= =KL O + KL 6),

where theHs;‘eHcond step invokes Lemma 2 (cf. (22a)), (i) follows from Young’s inequality, namely ab < % + %

with e = === and (ii) results from Pinsker’s inequality. Taking maximum over p’, v’ finishes the proof.
T
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