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Abstract
This paper is concerned with two-player zero-sum Markov games — arguably the most basic setting

in multi-agent reinforcement learning — with the goal of learning a Nash equilibrium (NE) sample-
optimally. All prior results suffer from at least one of the two obstacles: the curse of multiple agents and
the barrier of long horizon, regardless of the sampling protocol in use. We take a step towards settling
this problem, assuming access to a flexible sampling mechanism: the generative model. Focusing on
non-stationary finite-horizon Markov games, we develop a learning algorithm called Nash-Q-FTRL and
an adaptive sampling scheme that leverage the optimism principle in adversarial learning (particularly
the Follow-the-Regularized-Leader (FTRL) method), with a delicate design of bonus terms that ensure
certain decomposability under the FTRL dynamics. Our algorithm learns an ε-approximate Markov NE
policy using

Õ

(
H4S(A+B)

ε2

)
samples, where S is the number of states, H is the horizon, and A (resp. B) denotes the number of actions
for the max-player (resp. min-player). This is nearly un-improvable in a minimax sense. Along the way,
we derive a refined regret bound for FTRL that makes explicit the role of variance-type quantities, which
might be of independent interest.

Keywords: Markov games, sample complexity, Nash equilibrium, adversarial learning, Follow-the-Regularized-
Leader
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1 Introduction
The thriving field of multi-agent reinforcement learning (MARL) studies how a group of interacting agents
make decisions autonomously in a shared dynamic environment (Zhang et al., 2021). The recent developments
in game playing (Brown and Sandholm, 2019; Vinyals et al., 2019), self-driving vehicles (Shalev-Shwartz et al.,
2016), and multi-robot control (Matignon et al., 2012) are prime examples of MARL in action. In practice,
there is no shortage of situations where the agents involved have conflict of interest, and they have to act
competitively in order to promote their own benefits (possibly at the expense of one another). Scenarios
of this kind are frequently modeled via Markov games (MGs) (Littman, 1994; Shapley, 1953), a framework
that has been a fruitful playground to formalize and stimulate the studies of competitive MARL.

In view of the irreconcilable competition between individual players, solutions of competitive MARL
normally take the form of certain equilibrium strategy profiles, which are perhaps best epitomized by the
concept of Nash equilibrium (NE). In a Nash equilibrium, no gain can be realized through a unilateral change,
and hence no player has incentives to deviate from her current strategy/policy (assuming no coordination
between players). A myriad of research has been conducted surrounding NEs, which spans various aspects
like existence, learnability, computational hardness, and algorithm design, among others (Chen et al., 2015;
Daskalakis, 2013; Daskalakis et al., 2020; Hansen et al., 2013; Jin et al., 2022; Littman, 1994; Ozdaglar et al.,
2021; Perolat et al., 2015; Rubinstein, 2016; Shapley, 1953).

Sample efficiency in zero-sum Markov games. One critical challenge impacting modern MARL ap-
plications is data efficiency. The players involved often have minimal knowledge about how the environment
responds to their actions, and have to learn the dynamics and preferable actions by probing the unknown en-
vironment. For MARL to expand into applications with enormous dimensionality and long planning horizon,
the learning algorithms must manage to make efficient use of the collected data.

Nevertheless, how to learn NEs with optimal sample complexity remains by and large unsettled, even when
it comes to the most basic setting — two-player zero-sum Markov games. In what follows, let us review
two representative algorithms developed on this front under two drastically different sampling protocols,
and discuss the shortfalls of these cutting-edge results. To facilitate precise comparisons, our discussion
concentrates on zero-sum Markov games involving two players, where S is the number of states, H indicates
the horizon or effective horizon, and A and B denote respectively the number of actions for the max-player
and the min-player.

• Model-based methods under either a generative model or online exploration. Assuming access to a
generative model (so that one can sample arbitrary state-action combinations), Zhang et al. (2020)
investigated a natural model-based algorithm, which performs planning (e.g., value iteration) on an em-
pirical MG derived from samples produced by the generative model. Focusing on stationary discounted
infinite-horizon MGs, their algorithm finds an ε-approximate NE with no more than

Õ

(
H3SAB

ε2

)
samples. (1)
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In parallel, Liu et al. (2021) studied non-stationary finite-horizon MGs with online exploration, and
obtained similar sample complexity bounds, i.e.,

Õ

(
H4SAB

ε2

)
samples or Õ

(
H3SAB

ε2

)
episodes (2)

for learning ε-approximate NEs. While these bounds achieve minimax-optimal dependency on the
horizon H, a major drawback emerges commonly referred to as the curse of multiple agents; namely,
these results scale proportionally with the total number of joint actions (i.e., AB), a quantity that
blows up exponentially with the number of players.

• V-learning for online exploration settings. Focusing on online exploration settings, Bai et al. (2020); Jin
et al. (2021) proposed an algorithm called V-learning that leverages the advances in online adversarial
learning (e.g., adversarial bandits) to circumvent the curse of multiple agents. This algorithm provably
yields an ε-approximate NE in non-stationary finite-horizon MGs using

Õ

(
H6S(A+B)

ε2

)
samples or Õ

(
H5S(A+B)

ε2

)
episodes, (3)

which effectively brings down the sample size scaling (2) from AB (i.e., the number of joint actions) to
A+B (i.e., the sum of individual actions). It is worth pointing out, however, that this theory appears
sub-optimal in terms of the horizon dependency, as it is a factor of H2 above the minimax lower bound.

The above results represent the state-of-the-art sample complexity theory thus far for learning NEs in
two-player zero-sum MGs. In summary, these existing results — irrespective of the sampling mechanism in
use — fall short of overcoming at least one of the two major hurdles: (i) the curse of multiple agents, and
(ii) the barrier of long horizon. A natural question to pose is:

Question: can we learn Nash equilibria in a two-player zero-sum Markov game
in a sample-optimal and computation-efficient fashion?

To settle this question favorably, both of the above-mentioned hurdles need to be crossed simultaneously.

Main contributions. Recognizing that the above question remains open regardless of the sampling scheme
in use, this paper takes a first step towards solving it assuming access to the most flexible sampling protocol:
the generative model (or simulator). In sharp contrast to the single-agent case where uniform sampling of
all state-action pairs suffices (Azar et al., 2013; Li et al., 2020), the multi-agent scenario requires one to take
samples intelligently and adaptively, a crucial step to avoid inefficient use of data (otherwise one cannot hope
to break the curse of multiple agents). With the aim of computing an ε-approximate NE in a non-stationary
finite-horizon two-player zero-sum MG, we come up with a learning algorithm (accompanied by an adaptive
sampling strategy) that accomplishes this goal with no more than

Õ

(
H4S(A+B)

ε2

)
samples (4)

drawn from the generative model. Encouragingly, this sample complexity bound matches the minimax lower
limit (up to a logarithmic factor). Our sample complexity theory is valid for the full ε-range (i.e., any
ε ∈ (0, H]); this unveils that no burn-in cost whatsoever is needed for our algorithm to achieve sample
optimality, which lends itself well to sample-hungry applications.

The proposed algorithm is inspired by two key algorithmic ideas in RL and bandit literature: (1) optimism
in the face of uncertainty (by leveraging upper confidence bounds (UCBs) in value estimation), and (2)
online and adversarial learning (particularly the Follow-the-Regularized-Leader (FTRL) algorithm). Note
that the optimal design of bonus terms — typically based on certain data-driven variance estimates — is
substantially more challenging than the single-agent case, as it requires intricate adaptation in response to
the policy changes of one another as well as compatibility with the FTRL dynamics. Two points are worth
emphasizing (which will be made precise later on):
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• The efficacy of FTRL in breaking the curse of multiple agents has been proved in Jin et al. (2021);
Song et al. (2021). To improve horizon dependency, one needs to exploit connections between the
performance of FTRL and certain variances. Towards this, we develop a refined regret bound for
FTRL that unveils the role of variance-style quantities, which was previously unavailable.

• The bonus terms entail Bernstein-style variance estimates that mimic the variance-style quantities
appearing in our refined FTRL regret bounds, and are carefully chosen so as to ensure certain decom-
posability over steps. This is crucial in optimizing the horizon dependency.

Additionally, the policy returned by our algorithm is Markovian (i.e., the action selection probability depends
only on the current state s and step h), and the algorithm can be carried out in a decentralized manner
without the need of directly observing the opponent’s actions.

Other related works. Let us discuss in passing additional prior works on learning equilibrium solutions
in MARL, which have attracted an explosion of interest in recent years. While the Nash equilibrium is
arguably the most compelling solution concept in Markov games, the finite-sample/finite-time studies of NE
learning concentrate primarily on two-player zero-sum MGs (e.g., Bai and Jin (2020); Chen et al. (2022);
Cui and Du (2022a,b); Dou et al. (2022); Jia et al. (2019); Mao and Başar (2022); Tian et al. (2021); Wei
et al. (2017); Yan et al. (2022); Zhong et al. (2022)), mainly because computing NEs becomes, for the
most part, computationally infeasible (i.e., PPAD-complete) when going beyond two-player zero-sum MGs
(Daskalakis, 2013; Daskalakis et al., 2009). Roughly speaking, previous NE-finding algorithms for two-player
zero-sum Markov games can be categorized into model-based algorithms (Liu et al., 2021; Perolat et al.,
2015; Zhang et al., 2020), value-based algorithms (Bai and Jin, 2020; Bai et al., 2020; Chen et al., 2021b;
Jin et al., 2021; Sayin et al., 2021; Xie et al., 2020), and policy-based algorithms (Cen et al., 2021; Chen
et al., 2021a; Daskalakis et al., 2020; Wei et al., 2021; Zhang et al., 2022; Zhao et al., 2021). In particular,
Bai et al. (2020); Jin et al. (2021) developed the first algorithms to beat the curse of multiple agents in
two-player zero-sum MGs, while Daskalakis et al. (2022); Jin et al. (2021); Mao and Başar (2022); Song
et al. (2021) further demonstrated how to accomplish the same goal when learning other computationally
tractable solution concepts (e.g., coarse correlated equilibria) in general-sum multi-player Markov games.
The recent works Cui and Du (2022a,b); Yan et al. (2022) studied how to alleviate the sample size scaling
with the number of agents in the presence of offline data, with Cui and Du (2022a) providing a sample-
efficient algorithm that also learns NEs in multi-agent Markov games (despite computational intractability).
The studies of Markov games have recently been extended to partially observable settings as well (Liu et al.,
2022), which are beyond the scope of the present work.

We shall also briefly remark on the prior works that concern RL with a generative model. While there are
multiple sampling mechanisms (e.g., online exploratory sampling, offline data) that bear practical relevance,
the generative model (or simulator) serves as an idealistic sampling protocol that has received much recent
attention, covering the design of various model-based, model-free and policy-based algorithms (Agarwal
et al., 2020; Azar et al., 2013; Beck and Srikant, 2012; Chen et al., 2020; Du et al., 2020; Even-Dar and
Mansour, 2003; Jin and Sidford, 2021; Kakade, 2003; Kearns et al., 2002; Khamaru et al., 2021; Li et al.,
2021a, 2020; Mou et al., 2020; Pananjady and Wainwright, 2020; Sidford et al., 2018a,b; Vaswani et al., 2022;
Wainwright, 2019a,b; Wang et al., 2021; Wei et al., 2021; Weisz et al., 2021; Yang and Wang, 2019; Zanette
et al., 2019, 2020). In single-agent RL, the model-based approach has been shown to be minimax-optimal for
the entire ε-range (Agarwal et al., 2020; Azar et al., 2013; Li et al., 2020). When it comes to multi-agent RL,
sample-efficient solutions with a generative model have been proposed in the recent works (Cui and Yang,
2021; Sidford et al., 2020; Zhang et al., 2020), although a provably sample-optimal strategy was previously
unavailable.

Paper organization and notation. The rest of the paper is organized as follows. Section 2 introduces
the background of Markov games, the preliminaries of the solution concepts of Nash equilibrium, and for-
mulates the sampling protocol. The proposed learning algorithm and the sampling strategy are described
in Section 3.1, with the theoretical guarantees provided in Section 3.2. Section 4 takes a detour to develop
our refined regret bound for FTRL, which plays a crucial role in our main sample complexity analysis in
Section 5. Proof details (particularly those for auxiliary lemmas) are postponed to the appendix.
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Let us also gather several convenient notation that shall be used multiple times. For any positive integer
n, we write [n] := {1, · · · , n}. We shall abuse notation and let 1 and 0 denote the all-one vector and the
all-zero vector, respectively. For a sequence {αk}k≥1 ⊆ (0, 1], we define

αki :=

{
αi
∏k
j=i+1(1− αj), if 0 < i < k

αk, if i = k
(5)

for any 1 ≤ i ≤ k. For a given vector x ∈ RSA (resp. y ∈ RSAB), we denote by x(s, a) (resp. y(s, a, b))
the entry of x (resp. y) associated with the state-action combination (s, a) (resp. (s, a, b)), as long as it is
clear from the context. Next, consider any two vectors a = [ai]1≤i≤n and b = [bi]1≤i≤n. We use a ≤ b
(resp. a ≥ b) to indicate that ai ≥ bi (resp. ai ≤ bi) holds for all i; we allow scalar functions to take
vector-valued arguments in order to denote entrywise operations (e.g., a2 = [a2

i ]1≤i≤n and a4 = [a4
i ]1≤i≤n);

and we denote by a ◦ b = [aibi]1≤i≤n the Hadamard product. For a finite set A = {1, · · · , A}, we denote by
∆(A) = {x ∈ RA |

∑
i xi = 1;x ≥ 0} the probability simplex over A. For any function f with domain A (or

B), we adopt the convenient notation

Eπ[f ] :=
∑

a
π(a)f(a) and Varπ(f) :=

∑
a
π(a)

(
f(a)− Eπ[f ]

)2
. (6)

2 Background and models
In this section, we introduce the basics for two-player zero-sum Markov games and the solution concept of
Nash equilibrum.

Two-player Markov games. A non-stationary finite-horizon two-player Markov game, denoted byMG ={
S,A,B, H, P, r

}
, involves two players competing against each other — with the first one called a “max-

player” and the second one called a “min-player” — and consists of several key elements to be formalized
below. To begin with, we denote by S = {1, · · · , S} a shared state space comprising S different states,
and let A = {1, · · · , A} (resp. B = {1, · · · , B}) represent the action space of the max-player (resp. min-
player) containing A (resp. B) different actions. The horizon length of this finite-horizon Markov game is
denoted by H. The probability transition kernel ofMG is denoted by P = {Ph}1≤h≤H with Ph ∈ RSAB×S ;
namely, for any (s, a, b, h, s′) ∈ S × A × B × [H] × S, we let Ph(s′ | s, a, b) indicate the probability of MG
transitioning from state s to state s′ at step h when the max-player takes action a and the min-player
takes action b. Additionally, r = {rh}1≤h≤H with rh ∈ RSAB represents the reward function; namely, for
any (s, a, b, h) ∈ S × A × B × [H], rh(s, a, b) stands for the immediate reward the max-player gains (or the
min-player loses) in state s at step h, if the max-player (resp. min-player) executes action a (resp. b). Given
that our focal point is the family of zero-sum Markov games, it suffices to introduce a single reward function
r. We shall also assume normalized rewards throughout this paper in the sense that rh(s, a, b) ∈ [0, 1] for
any (s, a, b, h) ∈ S ×A× B × [H].

Value functions under product policies. Let µ = {µh}1≤h≤H (resp. ν = {νh}1≤h≤H) denote the
policy of the max-player (resp. min-player), where µh(· | s) ∈ ∆(A) and νh(· | s) ∈ ∆(B) for any s ∈ S. More
specifically, µh(a | s) indicates the probability of the max-player selecting action a in state s at step h; and
νh(b | s) is defined analogously. Consider a Markovian trajectory {(st, at, bt, rt)}1≤t≤H , where st is the state
at time t, at (resp. bt) is the action of the max-player (resp. min-player) at time t, and rt is the immediate
reward observed at time t. For any given policy µ (resp. ν) of the max-player (resp. min-player) and any
step h, we define the value function V µ,νh : S → R under the product policy µ× ν as follows:

V µ,νh (s) := E

[
H∑
t=h

rt
(
st, at, bt

)
| sh = s

]
, ∀s ∈ S, (7)

where the expectation is taken over the Markovian trajectory {(st, at, bt, rt)} with the max-player and the
min-player executing policies µ and ν, respectively, in an independent fashion; that is, conditional on st, we
draw at ∼ µt(· | st) and bt ∼ νt(· | st) independently, and then st+1 ∼ Pt(· | st, at, bt). In addition, conditional
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on the min-player executing policy ν, the optimal value function V ?,ν = {V ?,νh }1≤h≤H (with V ?,νh : S → R)
of the max-player is defined as

V ?,νh (s) := max
µ:S×[H]→∆(A)

V µ,νh (s), ∀(s, h) ∈ S × [H]; (8a)

similarly, when the max-player chooses to execute policy µ, the optimal value function V µ,? = {V µ,?h }1≤h≤H
(with V µ,?h : S → R) of the min-player is defined as

V µ,?h (s) := min
ν:S×[H]→∆(B)

V µ,νh (s), ∀(s, h) ∈ S × [H]. (8b)

Furthermore, if we freeze the policy of the min-player to ν, then the Bellman optimality condition for the
max-player can be expressed as (Bertsekas, 2017)

V ?,νh (s) = max
a∈A

{
E

b∼νh(·|s)

[
rh(s, a, b) +

〈
Ph(· | s, a, b), V ?,νh+1

〉]}
, ∀(s, h) ∈ S × [H]. (9)

Solution concept: Nash equilibrium. In the zero-sum two-player Markov game, the max-player wishes
to maximize the value function, while the min-player aims to minimize the value function instead. Due
to the competing objectives, finding some sort of equilibrium — particularly the Nash equilibrium (Nash,
1951) — becomes a central topic in the studies of Markov games. More precisely, a policy pair (µ?, ν?) ∈
∆(A)SH ×∆(B)SH is said to be a (mixed-strategy) Nash equilibrium ofMG if the resulting product policy
µ? × ν? obeys

V µ
?,ν?

1 (s) = V ?,ν
?

1 (s) and V µ
?,ν?

1 (s) = V µ
?,?

1 (s), for all s ∈ S. (10)

In other words, conditional on the opponent’s current policy and the assumption that the two players take
actions independently, no player can harvest any gain by unilaterally deviating from its current policy.

In practice, it might be challenging to compute an “exact” Nash equilibrium, and instead one would seek
to find approximate solutions. Towards this end, we find it helpful to define the sub-optimality gap of a
policy pair (µ, ν) as follows (measured in an `∞-based manner)

NE-gap(µ, ν) := max
s∈S

NE-gap(µ, ν; s), (11a)

where
NE-gap(µ, ν; s) := max

{
V ?,ν1 (s)− V µ,ν1 (s), V µ,ν1 (s)− V µ,?1 (s)

}
. (11b)

With this sub-optimality measure in place, a policy pair (µ, ν) is said to be an ε-approximate Nash-
equilibrium — or more concisely, ε-Nash — if the resultant sub-optimality gap of the product policy µ× ν
obeys NE-gap(µ, ν) ≤ ε.

Generative model / simulator. In reality, we oftentimes do not have access to perfect descriptions (e.g.,
accurate knowledge of the transition kernel P ) of the Markov game under consideration; instead, one has to
learn the true model on the basis of a set of data samples. When it comes to the data generating mechanism,
this paper assumes access to a generative model (also called a simulator) (Kakade, 2003; Kearns et al., 2002):
in each call to the generative model, the learner can choose an arbitrary quadruple (s, a, b, h) ∈ S×A×B×[H]
and obtain an independent sample generated based on the true transition kernel:

s′ ∼ Ph(· | s, a, b).

In words, a generative model facilitates query of arbitrary state-action-step combinations, which helps al-
leviate the sampling constraints arising in online episodic settings for exploration. The goal of the current
paper is to compute an ε-approximate Nash equilibrium ofMG with as few samples as possible, i.e., using
a minimal number of calls to the generative model.
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3 Sample-efficient learning for NE
In this section, we put forward an algorithm aimed at finding an ε-Nash policy pair with the assistance of a
generative model, and demonstrate its sample optimality for the full ε-range.

3.1 Algorithm description
We now describe the proposed algorithm, which is inspired by the optimism principle and the FTRL algo-
rithm for online/adversarial learning. Following the dynamic programming approach (Bertsekas, 2017), our
algorithm employs backward recursion from step h = H back to h = 1; in fact, we shall finish the sampling
and learning processes for step h before moving backward to step h − 1. For each h, the max-player (resp.
min-player) calls the generative model for K rounds, with each round drawing SA (resp. SB) independent
samples; as a result, the total sample size is given by KS(A + B)H. In what follows, let us first introduce
some convenient notation that facilitates our exposition of the algorithm.

Notation. Consider any step h ∈ [H], and any data collection round k ∈ [K]. The algorithm maintains
the following iterates, whose notation is gathered here with their formal definitions introduced later.

• V h ∈ RS (resp. V h ∈ RS) represents the final estimate of the value function at step h by the max-player
(resp. min-player); in particular, we set V H+1 = V H+1 = 0.

• Q
k

h ∈ RSA (resp. Qk
h
∈ RSB) represents the Q-function estimate of the max-player (resp. min-player)

at step h after the k-th round of data collection.

• qkh ∈ RSA (resp. qk
h
∈ RSB) represents a certain “one-step-look-ahead” Q-function estimate of the

max-player (resp. min-player) at step h using samples collected in the k-th round.

• rkh ∈ RSA (resp. rkh ∈ RSB) denotes the sample reward vector for step h received by the max-player
(resp. min-player) in the k-th round.

• P
k

h ∈ RSA×S (resp. P kh ∈ RSB×S) denotes the empirical probability transition matrix for step h
constructed using the samples collected by the max-player (resp. min-player) in the k-th round.

• βh,V ∈ RS (resp. β
h,V
∈ RS) denotes the bonus (resp. penalty) vector chosen by the max-player

(resp. min-player) during final value estimation.

• µkh : S → ∆(A) (resp. νkh : S → ∆(B)) denotes the policy iterate of the max-player (resp. min-player)
at step h before the beginning of the k-th round of data collection; in particular, we set both µ1

h and ν1
h

to be uniform, namely, µ1
h(a | s) = 1/A for any (s, a) ∈ S×A and ν1

h(b | s) = 1/B for any (s, b) ∈ S×B.

Crucially, the above objects are all constructed from the perspective of a single player (either the max-
player or the min-player), and hence resemble those needed to operate a “single-agent” MDP (as opposed to
MARL). As such, the complexity of storing/updating the above objects only scales with the aggregate size
of the individual action space, rather than the size of the product action space.

Main steps of the proposed algorithm. As mentioned above, our algorithm collects multiple rounds of
independent samples for each h. In what follows, let us describe the proposed procedure for the max-player
in the k-th round for step h; the procedure for the min-player proceeds analogously.

1. Sampling and model estimation. For each (s, a) ∈ S ×A, draw an independent sample as follows

bk,h,s,a ∼ νkh(· | s), s′k,h,s,a ∼ Ph(· | s, a, bk,h,s,a) (12a)

and receive the reward rk,h,s,a = rh
(
s, a, bk,h,s,a

)
. These samples are then employed to construct the

sample reward vector rkh ∈ RSA and empirical probability transition kernel P
k

h ∈ RSA×S such that

rkh(s, a) = rk,h,s,a and P
k

h(s′ | s, a) =

{
1, if s′ = s′k,h,s,a
0, else

(12b)
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for all (s, a, s′) ∈ S ×A×S. Note that the max-player only needs to compute (12b), without the need
of directly observing the opponent’s actions (i.e., {bk,h,s,a}).

2. Q-function estimation. Following the dynamic programming approach, we first compute the “one-step-
look-ahead” Q-function estimate as follows

qkh = rkh + P
k

hV h+1. (13)

We then adopt the update rule of Q-learning:

Q
k

h = (1− αk)Q
k−1

h + αkq
k
h, (14)

where 0 < αk < 1 is the learning rate. Applying (14) recursively and using the quantities defined in
(5), we easily arrive at the following expansion:

Q
k

h =

k∑
i=1

αki q
i
h. (15)

3. Policy updates. Once the Q-estimates are updated, we adopt the exponential weights strategy to
update the policy iterate of the max-player as follows

µk+1
h (a | s) =

exp
(
ηk+1Q

k

h(s, a)
)∑

a′∈A exp
(
ηk+1Q

k

h(s, a′)
) , ∀(s, a) ∈ S ×A, (16)

where ηk+1 > 0 denotes another learning rate associated with policy updates for the max-player (to be
specified shortly). In fact, this subroutine implements the Follow-the-Regularized-Leader update rule
(Shalev-Shwartz, 2012) with

µk+1
h (· | s) = arg min

π∈∆(A)

{
−
〈
π,Q

k

h(s, ·)
〉

+
1

ηk+1
F (π)

}
, (17)

where the regularizer F (·) is chosen to be the negative entropy function F (π) :=
∑
a π(a) log

(
π(a)

)
.

After carrying out K rounds of the above procedure, our final policy estimate µ̂ : S × [H]→ ∆(A) and the
value estimate V h : S → R for step h are taken respectively to be

µ̂h =

K∑
k=1

αKk µ
k
h and (18a)

V h(s) = min

{
K∑
k=1

αKk

〈
µkh(· | s), qkh(s, ·)

〉
+ βh,V (s), H − h+ 1

}
(18b)

with {αKk } defined in (5), where βh,V (s) ≥ 0 is some bonus term (taking the form of some data-driven upper
confidence bound) to be specified momentarily. In particular, the final policy (18a) is a mixture of the policy
iterates {µkh} and is Markovian in nature (i.e., the action selection rule depends only on the current state s
and step h).

The whole procedure, including the algorithm for the min-player, is summarized in Algorithm 1.

Choices of learning rates. Thus far, we have not yet specified the two sequences of learning rates, which
we describe now. The learning rates associated with Q-function updates are set to be rescaled linear, namely,

αk =
cα logK

k − 1 + cα logK
, k = 1, 2, . . . (19)

for some absolute constant cα ≥ 24. In addition, the learning rates associated with policy updates are chosen
to be:

ηk+1 =

√
logK

αkH
, k = 1, 2, . . . (20)
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Algorithm 1: Nash-Q-FTRL.
1 Input: nmber of rounds K for each step, learning rates {αk} (see (19)) and {ηk+1} (see (20)).
// set initial value estimates to 0, and initial policies to uniform distributions.

2 Initialize: for all (s, a, b, h) ∈ S ×A× B × [H], set V H+1(s) = V H+1(s) = Q
0

h(s, a) = Q0

h
(s, b) = 0,

µ1
h(a | s) = 1/A and ν1

h(b | s) = 1/B.
3 for h = H to 1 do
4 for k = 1 to K do

// draw independent samples, and construct empirical models.

5
(
rkh, r

k
h, P

k

h, P
k
h

)
← sampling

(
h, µkh, ν

k
h

)
. /* see Algorithm 2. */

// update Q-estimates with upper/lower confidence bounds.

6 Compute qkh = rkh + P
k

hV h+1, qk
h

= rkh + P khV h+1, and update

Q
k

h = (1− αk)Q
k−1

h + αkq
k
h, Qk

h
= (1− αk)Qk−1

h
+ αkq

k
h
.

// update policy estimates using FTRL.
7 for (s, a, b) ∈ S ×A× B do
8

µk+1
h (a | s) =

exp
(
ηk+1Q

k

h(s, a)
)∑

a′ exp
(
ηk+1Q

k

h(s, a′)
) , νk+1

h (b | s) =
exp

(
− ηk+1Q

k

h
(s, b)

)∑
b′ exp

(
− ηk+1Q

k

h
(s, b′)

) .
// output the final policy estimate and value estimate for step h.

9 Update

µ̂h =

K∑
k=1

αKk µ
k
h, V h(s) = min

{
K∑
k=1

αKk
〈
µkh(· | s), qkh(s, ·)

〉
+ βh,V (s), H − h+ 1

}
, ∀s ∈ S,

ν̂h =

K∑
k=1

αKk ν
k
h , V h(s) = max

{
K∑
k=1

αKk
〈
µkh(· | s), qk

h
(s, ·)

〉
− β

h,V
(s), 0

}
, ∀s ∈ S,

where β
k

h,V is given in (21), and βk
h,V

is obtained by replacing (µkh, q
k
h) in (21) with (νkh , q

k
h
).

10 Output: µ̂ = {µ̂h}1≤h≤H and ν̂ = {ν̂h}1≤h≤H .

Choices of bonus terms. It remains to specify the bonus terms, which are selected based on fairly
intricate upper confidence bounds and constitutes a key (and perhaps most challenging) component of our
algorithm design. Specifically, we take

βh,V (s) = cb

√
log3 KS(A+B)

δ

KH

K∑
k=1

αKk

{
Varµkh(·|s)

(
qkh(s, ·)

)
+H

}
(21)

for any (s, h) ∈ S × [H], where cb > 0 is some sufficiently large constant; see also (6) for the definition of
the variance-style term. As in previous works, the bonus term, which is chosen carefully in a data-driven
fashion, needs to compensate for the uncertainty incurred during the estimation process.

9



Algorithm 2: Auxiliary function sampling
(
h, µh, νh

)
.

1 Initialize: r = 0 ∈ RSA, r = 0 ∈ RSB , P = 0 ∈ RSA×S , and P = 0 ∈ RSB×S .
2 for (s, a) ∈ S ×A do
3 Draw an independent sample from the generative model:

bh,s,a ∼ νh(· | s), s′h,s,a ∼ Ph(· | s, a, bh,s,a). (22)

4 set r(s, a) = rh
(
s, a, bh,s,a

)
and P

(
s′h,s,a | s, a

)
= 1.

5 for (s, b) ∈ S × B do
6 Draw an independent sample from the generative model:

ah,s,b ∼ µh(· | s), s′h,s,a ∼ Ph(· | s, ah,s,b, b). (23)

7 set r(s, b) = rh
(
s, ah,s,b, b

)
and P

(
s′h,s,a | s, b

)
= 1.

8 Return:
(
r, r, P , P

)
.

3.2 Main results
As it turns out, the proposed algorithm is provably sample-efficient, whose sample complexity is characterized
by the following theorem.

Theorem 1. Consider any ε ∈ (0, H] and any 0 < δ < 1. Suppose that

K ≥
ckH

3 log4 KS(A+B)
δ

ε2
(24)

for some large enough universal constant ck > 0. With probability at least 1 − δ, the sub-optimality gap
(cf. (11)) of the policies (µ̂, ν̂) returned by Algorithm 1 obeys

NE-gap
(
µ̂, ν̂

)
≤ ε.

Theorem 1 establishes a sample complexity upper bound for the proposed algorithm, which we take a
moment to interpret as follows. The proof of this theorem is postponed to Section 5.

Sample complexity. When a generative model is available, Theorem 1 asserts that the total number of
samples (i.e., KS(A+B)H) needed for Algorithm 1 to yield ε-Nash policies is at most

(sample complexity) Õ

(
H4S(A+B)

ε2

)
. (25)

As far as we know, this delivers the first result — for any sampling protocol — that simultaneously overcomes
the long-horizon barrier and the curse of multiple agents. In comparison to Zhang et al. (2020) (cf. (1)),
our result reveals that what ultimately matters is the total number of individual actions (i.e., A + B) as
opposed to the total number AB of possible joint actions. Additionally, our result exhibits improved horizon
dependency (by a factor of H2) compared to Bai et al. (2020); Jin et al. (2021) (see (3)), although we remark
that the online sampling protocol therein is more restrictive than a generative model.

Minimax optimality. In order to assess the tightness of our sample complexity bound (25), it is helpful
to take a look at the information theoretical limit. Suppose without loss of generality that A ≥ B. Consider
the extreme scenario where B = 1, in which case the Nash-equilibrium reduces to the optimal policy of a
single-agent MDP with S states and A actions. It is well-known that for any given accuracy level ε ∈ (0, H],
one can construct a non-stationary MDP with S states and A actions such that no algorithm can learn an
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ε-optimal policy with fewer than the order of H
4SA
ε2 samples (Azar et al., 2013; Li et al., 2022). This means

that in general, the minimax sample complexity lower bound (w.r.t. finding an ε-Nash policy pair) scales as

(minimax lower bound)
H4S(A+B)

ε2
(26)

modulo some logarithmic factor; see Appendix B.3 for a formal statement and its proof. Taking this together
with (25) confirms the minimax optimality of our algorithm (up to logarithmic terms).

No burn-in sample size and full ε-range. It is noteworthy that the validity of our sample complexity
bound (25) is guaranteed for the entire range of ε-levels (i.e., any ε ∈ (0, H]). This feature is particularly
appealing in the data-starved applications, as it implies that there is no burn-in sample size needed for our
algorithm to work optimally.

Miscellaneous properties of our algorithm. Finally, we would like to remark in passing that our
learning algorithm enjoys several properties that might be practically appealing. For instance, the output
policies are Markovian in nature, which depend only on the current state s and step number h. This
is enabled thanks to the availability of the generative model, which allows us to settle the sampling and
learning process for step h+1 completely before moving backward to step h; in contrast, the online sampling
protocol studied in Bai et al. (2020); Jin et al. (2021) cannot be implemented in this way without incurring
information loss. In addition, our algorithm can be carried out in a decentralized fashion, with two players
acting in a symmetric and independent manner (without the need of knowing each other’s individual action);
and our algorithm is “rational” in the sense that it converges to the best-response policy if one of the players
freezes its policy. All this is achieved under minimal sample complexity with the aid of the generative model.

4 Regret bounds for FTRL via variance-type quantities
Before embarking on our analysis for Markov games, we take a detour to study the celebrated Follow-
the-Regularized-Leader algorithm for online weighted linear optimization, which plays a central role in the
analysis of Markov games.

4.1 Setting: online learning for weighted linear optimization
Let `1, . . . , `n ∈ RA represent an arbitrary sequence of non-negative loss vectors. We focus on the following
setting of online learning or adversarial learning (Lattimore and Szepesvári, 2020): in each round k,

1. the learner makes a randomized prediction by choosing a distribution πk ∈ ∆(A) over the actions in
A = {1, · · · , A};

2. subsequently, the learner observes the loss vector `k, which is permitted to be adversarially chosen.

To evaluate the performance of the learner, we resort to a regret metric w.r.t. a certain weighted linear
objective function. To be precise, consider a non-negative sequence {αk}1≤k≤n with 0 ≤ αk ≤ 1; for each
1 ≤ k ≤ n, we define recursively the following weighted average of the loss vectors:

L0 = 0 and Lk = (1− αk)Lk−1 + αk`k, k ≥ 1,

which can be easily shown to enjoy the following expression

Lk =

k∑
i=1

αki `k

with αki defined in (5). When the sequential predictions made by the learner are {πk}k≥1, we define the
associated regret w.r.t. the above weighted sum of loss vectors as follows:

Rn := max
a∈A

Rn(a) with Rn(a) :=

n∑
k=1

αnk 〈πk, `k〉 −
n∑
k=1

αnk`k(a), (27)
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which compares the learner’s performance (i.e., the expected loss of the learner over time if it draws actions
based on πk in round k) against that of the best fixed action in hindsight.

4.2 Refined regret bounds for FTRL
Follow-the-Regularized-Leader. The FTRL algorithm (Shalev-Shwartz, 2007; Shalev-Shwartz and Singer,
2007) tailored to the above online optimization setting adopts the following update rule:

πk+1 = arg min
π∈∆(A)

{
〈π, Lk〉+

1

ηk+1
F (π)

}
, k = 1, 2, . . . (28)

where ηk+1 > 0 denotes the learning rate, and F (·) is some convex regularization function employed to
stabilize the learning process (Shalev-Shwartz, 2012). Throughout this section, we restrict our attention to
negative-entropy regularization, namely,

F (π) =
∑
a∈A

π(a) log
(
π(a)

)
,

which allows one to express the FTRL update rule as the following exponential weights strategy (see, e.g.,
Lattimore and Szepesvári (2020, Section 28.1))

πk+1(a) =
exp

(
− ηk+1Lk(a)

)∑
a′∈A exp

(
− ηk+1Lk(a′)

) for all a ∈ A. (29)

This update rule is also intimately connected to online mirror descent (Lattimore and Szepesvári, 2020).

Refined regret bounds via variance-style quantities. As it turns out, the regret of FTRL can be
upper bounded by certain (weighted) variance-type quantities, as asserted by the following theorem.

Theorem 2. Suppose that 0 < α1 ≤ 1 and η1 = η2(1 − α1). Also, assume that 0 < αk < 1 and 0 <
ηk+1(1− αk) ≤ ηk for all k ≥ 2. In addition, define

η̂k :=

{
η2, if k = 1,
ηk

1−αk , if k > 1.
. (30)

Then the regret (cf. (27)) of the FTRL algorithm satisfies

Rn ≤
5

3

n∑
k=1

αnk η̂kαkVarπk(`k) +
logA

ηn+1
+ 3

n∑
k=1

αnk η̂
2
kα

2
k

∥∥`k∥∥3

∞ 1

(
η̂kαk

∥∥`k∥∥∞ >
1

3

)
, (31)

where for any ` ∈ RA and any π ∈ ∆(A) we define

Varπ(`) :=
∑
a

π(a)
(
`(a)−

∑
a′

π(a′)`(a′)
)2

.

Remark 1. Note that the FTRL algorithm and the data generating process in this section are both described
in a completely deterministic manner; no randomness is involved in the above theorem even though we
introduce the variance-style quantities.

The proof of Theorem 2 is postponed to Appendix A. Let us take a moment to discuss the key distinction
between Theorem 2 and prior theory.

• A key term in the regret bound (31) is a weighted sum of the “variance-style” quantities {Varπk(`k)}.
In comparison, prior regret bounds typically involve the norm-type quantities (e.g., the infinity norms
{‖`k‖2∞}) as opposed to the “variances”; see, for instance, Lattimore and Szepesvári (2020, Corollary
28.8) for a representative existing regret bound that takes the form of the sum of {‖`k‖2∞} that takes
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the form of the sum of {‖`k‖2∞}.1 While Var(`k) ≤ ‖`k‖2∞ is orderwise tight in the worst-case scenario
for a given iteration k, exploiting the problem-specific variance-type structure across time is crucial in
sharpening the horizon dependence in many RL problems (e.g., Azar et al. (2013); Jin et al. (2018); Li
et al. (2022, 2021c)).

• The careful reader would remark that the final term of (31) relies on the infinity norm ‖`k‖∞ as
well. Fortunately, when the products of the learning rates η̂kαk are chosen to be diminishing (which
is the case in our analysis for Markov games), the number of iterations obeying η̂kαk‖`k‖∞ > 1/3 is
reasonably small, thus ensuring that this term does not exert too much of an influence on the regret
bound.

5 Proof of Theorem 1
In this section, we present the proof of Theorem 1, following some preliminary facts and notation.

5.1 Preliminaries and notation
Given that ε ≤ H, the assumption (24) necessarily requires that

K ≥ ckH log4 KS(A+B)

δ
(32)

for some large enough constant ck > 0, which will be a condition assumed throughout the proof. We also
gather below several basic facts about our choices of learning rates {αi} (cf. (19)) and the corresponding
quantities {αki } (cf. (5)).
Lemma 1. For any k ≥ 1, one has

α1 = 1,

k∑
i=1

αki = 1, max
1≤i≤k

αki ≤
2cα logK

k
. (33a)

In addition, if k ≥ cα logK + 1 and cα ≥ 24, then one has

max
1≤i≤k/2

αki ≤ 1/K6. (33b)

Proof. The result (33a) is standard and has been recorded in previous works (e.g., Jin et al. (2018, Appendix
B)). Regarding (33b), we note that for any i ≤ k/2 and k ≥ cα logK + 1,

αki ≤
k∏

j=i+1

(1− αj) ≤
k∏

j=k/2+1

(1− αj) ≤ (1− αk)k/2 ≤
(

1− cα logK

2k

)k/2
≤ exp

(
− cα logK

4

)
≤ 1

K6
,

where we have used the fact that αk = cα logK
k−1+cα logK ≥

cα logK
2k and the assumption cα ≥ 24.

Additionally, recognizing the definition in (13) and the upper bound V h+1(s) ≤ H −h+ 1 (cf. (18b)), we
make note of the range of the iterates

{
qkh
}
as follows.

Lemma 2. For any (h, k, s, a) ∈ [H]× [K]× S ×A, it holds that

0 ≤ qkh(s, a) ≤ H − h+ 1. (34)

Next, we introduce several additional notation that helps simplify our presentation of the proof. For any
policy µ : S → ∆(A) and any ν : S → ∆(B), we adopt the convenient notation

µ(s) := µ(· | s) ∈ ∆(A) and ν(s) := ν(· | s) ∈ ∆(B), ∀s ∈ S.

We shall also employ the expectation operator Eh,k−1[·] (resp. variance operator Varh,k−1[·]) to denote the
expectation (resp. variance) conditional on what happens before the beginning of the k-th round of data
collection for step h (see Section 3.1 about the data collection process).

1Note that the Bregman divergence generated by the negative entropy function is the (generalized) KL divergence (Beck,
2017), which is strongly convex w.r.t. ‖ · ‖1 due to Pinsker’s inequality. Additionally, the dual norm of ‖ · ‖1 is the infinity norm.
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5.2 Proof outline
With the above preliminaries in place, we are in a position to present our analysis. Let us single out an
intermediate value function that is intimately connected to both µ̂ and ν̂ as follows:

V µ̂ · ν̂H+1(s) := 0 (35a)

V µ̂ · ν̂h (s) :=

K∑
k=1

∑
(a,b)∈A×B

αKk µ
k
h(a | s)νkh(b | s)

[
rh(s, a, b) +

〈
Ph(· | s, a, b), V µ̂ · ν̂h+1

〉]
(35b)

for all (s, h) ∈ S × [H]. In other words, in each step h, the joint policy pair generating the above value
function is chosen to be the mixture of product policies

∑K
k=1 α

K
k

(
µkh×νkh

)
. We remark that here and below,

when we write the joint policy pair µ̂ · ν̂, we allow them to be dependent of each other, which should not
be understood differently as the product measure µ̂× ν̂ when policy µ̂ and ν̂ are executed independently.

It is easily seen that to establish Theorem 1, it suffices to prove the following two inequalities:

V ?,ν̂1 (s)− V µ̂ · ν̂1 (s) ≤ ε/2 and V µ̂ · ν̂1 (s)− V µ̂,?1 (s) ≤ ε/2, (36)

In this subsection, we shall only prove the first inequality in (36); the second one in (36) can be established
in the same way and hence we omit the proof for brevity.

Towards this, let us introduce the following policy:

µ̃? = arg max
µ:S×[H]→∆(A)

V µ,ν̂1 .

We observe the following key decomposition

V ?,ν̂h − V µ̂ · ν̂h ≤
(
V ?,ν̂h − V µ̃

?,ν̂

h

)
+
(
V
?,ν̂

h − V
µ̂ · ν̂
h

)
+
(
V
µ̂ · ν̂
h − V µ̂ · ν̂h

)
, (37)

where we define

V
µ̃?,ν̂

h (s) :=

K∑
k=1

αKk E
a∼µ̃?h(s)

[
rkh(s, a) +

〈
P
k

h(· | s, a), V
µ̃?,ν̂

h+1

〉]
, with V

µ̃?,ν̂

H+1 = 0, (38a)

V
?,ν̂

h (s) := max
a∈A

K∑
k=1

αKk

[
rkh(s, a) +

〈
P
k

h(· | s, a), V
?,ν̂

h+1

〉]
, with V

?,ν̂

H+1 = 0, (38b)

V
µ̂ · ν̂
h (s) :=

K∑
k=1

αKk E
a∼µkh(s)

[
rkh(s, a) +

〈
P
k

h(· | s, a), V
µ̂ · ν̂
h+1

〉]
, with V

µ̂ · ν̂
H+1 = 0. (38c)

Here, we have used V
µ̃?,ν̂

h ≤ V ?,ν̂h given that µ̃? is a policy that does not change with the index k. We shall
establish bounds for the above terms, which is composed of three steps as outlined below.

Step 1: showing that V h is an entrywise upper bound on V
?,ν̂

h . The following lemma ascertains that
the value estimate V h of the max-player returned by Algorithm 1 is an optimistic estimate of the auxiliary
value V

?,ν̂

h defined in (38b). Evidently, this result cannot happen unless the bonus terms are suitably chosen.

Lemma 3. With probability at least 1− δ, it holds that

V h ≥ V
?,ν̂

h , for all 1 ≤ h ≤ H. (39)

The proof of this lemma is postponed to Appendix B.1. Armed with Lemma 3, we can further bound
(37) as follows

V ?,ν̂h − V µ̂ · ν̂h ≤
(
V ?,ν̂h − V µ̃

?,ν̂

h

)
+
(
V h − V

µ̂ · ν̂
h

)
+
(
V
µ̂ · ν̂
h − V µ̂ · ν̂h

)
. (40)
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Step 2: establishing a key recurrence. Let us define the auxiliary reward vectors rµ̂ · ν̂h , rµ̃
?,ν̂
h , rh ∈ RS

and auxiliary probability transition matrices P µ̂ · ν̂h , P µ̃
?,ν̂

h , Ph ∈ RS×S such that: for any s, s′ ∈ S,

rµ̂ · ν̂h (s) :=

K∑
k=1

αKk E
(a,b)∼µkh(s)×νkh(s)

[
rh(s, a, b)

]
, (41a)

P µ̂ · ν̂h (s, s′) :=

K∑
k=1

αKk E
(a,b)∼µkh(s)×νkh(s)

[
Ph(s′ | s, a, b)

]
, (41b)

rµ̃
?,ν̂
h (s) :=

K∑
k=1

αKk E
(a,b)∼µ̃?h(s)×νkh(s)

[
rh(s, a, b)

]
, (41c)

P µ̃
?,ν̂

h (s, s′) :=

K∑
k=1

αKk E
(a,b)∼µ̃?h(s)×νkh(s)

[
Ph(s′ | s, a, b)

]
, (41d)

rh(s) :=

K∑
k=1

αKk
∑
a∈A

µkh(a | s)rkh(s, a), (41e)

Ph(s, s′) :=

K∑
k=1

αKk
∑
a∈A

µkh(a | s)P kh(s′ | s, a). (41f)

As it turns out, V
µ̂ · ν̂
h (resp. V

µ̃?,ν̂

h , V h) stays reasonably close to the “one-step-look-ahead” expression
rµ̂ · ν̂h + P µ̂ · ν̂h V h+1 (resp. rµ̃

?,ν̂
h + P µ̃

?,ν̂
h V

µ̃?,ν̂

h+1 , rh + PhV h+1), as revealed by the recursive relations stated in
the following lemma; the proof of this lemma is deferred to Appendix B.2.

Lemma 4. There exists some universal constant c3 > 0 such that with probability exceeding 1− δ,

∣∣∣V µ̂ · ν̂h −
(
rµ̂ · ν̂h + P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)∣∣∣ ≤ c3
√
H log3 KS(A+B)

δ

K
1

+ c3

√
log3 KS(A+B)

δ

KH

[
P µ̂ · ν̂h

(
V
µ̂ · ν̂
h+1 ◦ V

µ̂ · ν̂
h+1

)
−
(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)
◦
(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)]
, (42a)

∣∣∣V µ̃?,ν̂h −
(
rµ̃

?,ν̂
h + P µ̃

?,ν̂
h V

µ̃?,ν̂

h+1

)∣∣∣ ≤ c3
√
H log3 KS(A+B)

δ

K
1

+ c3

√
log3 KS(A+B)

δ

KH

[
P µ̃

?,ν̂
h

(
V
µ̃?,ν̂

h+1 ◦ V
µ̃?,ν̂

h+1

)
−
(
P µ̃

?,ν̂
h V

µ̃?,ν̂

h+1

)
◦
(
P µ̃

?,ν̂
h V

µ̃?,ν̂

h+1

)]
, (42b)

∣∣∣V h − (rh + PhV h+1

)∣∣∣ ≤ c3
√
H log3 KS(A+B)

δ

K
1

+ c3

√
log3 KS(A+B)

δ

KH

[
Ph
(
V h+1 ◦ V h+1

)
−
(
PhV h+1

)
◦
(
PhV h+1

)]
(42c)

hold for all h ∈ [H].

Remark 2. The right-hand side of each of the bounds in (42) contains a variance-style term (e.g., those
terms taking the form of Ph(Vh+1 ◦ Vh+1) − (PhVh+1) ◦ (PhVh+1) for some probability transition matrix
Ph and value vector Vh+1). Such variance-style terms are direct consequences of our Bernstein-style bonus
terms, and are crucial in optimizing the horizon dependency.

With the above lemma in place, one can readily show that

∣∣∣V µ̂ · ν̂h − P µ̂ · ν̂h V
µ̂ · ν̂
h+1

∣∣∣ ≤ rµ̂ · ν̂h + c3

√
H log3 KS(A+B)

δ

K
1

15



+
c3
H

√
H log3 KS(A+B)

δ

K

[
P µ̂ · ν̂h

(
V
µ̂ · ν̂
h+1 ◦ V

µ̂ · ν̂
h+1

)
−
(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)
◦
(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)]
≤ c4

4
1 +

1

4H

[
P µ̂ · ν̂h

(
V
µ̂ · ν̂
h+1 ◦ V

µ̂ · ν̂
h+1

)
−
(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)
◦
(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)]
=: ζ0 (43)

for some large enough constant c4 > 0, where the last line holds due to the condition (32), the basic fact
P µ̂ · ν̂h

(
V
µ̂ · ν̂
h+1 ◦ V

µ̂ · ν̂
h+1

)
≥
(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)
◦
(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)
, and the following fact (for large enough c4)

c3

√
H log3 KS(A+B)

δ

K
1 + rµ̂ · ν̂h ≤ c3

√
H log3 KS(A+B)

δ

K
1 + 1 ≤ c4

4
1.

In addition, recalling that ‖V µ̂ · ν̂h ‖∞, ‖V
µ̂ · ν̂
h+1‖∞ ≤ H (cf. (18b)) and recognizing that ζ0 ≥ 0 (see (43)), we

can demonstrate that∣∣∣V µ̂ · ν̂h ◦ V µ̂ · ν̂h −
(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)
◦
(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)∣∣∣ =
∣∣∣(V µ̂ · ν̂h + P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)
◦
(
V
µ̂ · ν̂
h − P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)∣∣∣
≤
(
V
µ̂ · ν̂
h + P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)
◦ ζ0 ≤ 2Hζ0

=
c4
2
H1 +

1

2

[
P µ̂ · ν̂h

(
V
µ̂ · ν̂
h+1 ◦ V

µ̂ · ν̂
h+1

)
−
(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)
◦
(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)]
. (44)

This further leads to

P µ̂ · ν̂h

(
V
µ̂ · ν̂
h+1 ◦ V

µ̂ · ν̂
h+1

)
−
(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)
◦
(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)
= P µ̂ · ν̂h

(
V
µ̂ · ν̂
h+1 ◦ V

µ̂ · ν̂
h+1

)
− V µ̂ · ν̂h ◦ V µ̂ · ν̂h + V

µ̂ · ν̂
h ◦ V µ̂ · ν̂h −

(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)
◦
(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)
≤ P µ̂ · ν̂h

(
V
µ̂ · ν̂
h+1 ◦ V

µ̂ · ν̂
h+1

)
− V µ̂ · ν̂h ◦ V µ̂ · ν̂h +

c4
2
H1 +

1

2

[
P µ̂ · ν̂h

(
V
µ̂ · ν̂
h+1 ◦ V

µ̂ · ν̂
h+1

)
−
(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)
◦
(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)]
,

which can be rearranged to yield

P µ̂ · ν̂h

(
V
µ̂ · ν̂
h+1 ◦ V

µ̂ · ν̂
h+1

)
−
(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)
◦
(
P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)
≤ 2
[
P µ̂ · ν̂h

(
V
µ̂ · ν̂
h+1 ◦ V

µ̂ · ν̂
h+1

)
− V µ̂ · ν̂h ◦ V µ̂ · ν̂h

]
+ c4H1.

Substituting it into (42a) and combining terms give

∣∣∣V µ̂ · ν̂h −
(
rµ̂ · ν̂h + P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)∣∣∣ ≤ c5
√
H log3 KS(A+B)

δ

K
1

+ 2c3

√
log3 KS(A+B)

δ

KH

[
P µ̂ · ν̂h

(
V
µ̂ · ν̂
h+1 ◦ V

µ̂ · ν̂
h+1

)
− V µ̂ · ν̂h ◦ V µ̂ · ν̂h

]
, (45)

where we take c5 = c3 + c3c4.
An analogous argument (which is omitted here for brevity) also reveals that

∣∣∣V µ̃?,ν̂h −
(
rµ̃

?,ν̂
h + P µ̃

?,ν̂
h V

µ̃?,ν̂

h+1

)∣∣∣ ≤ c5
√
H log3 KS(A+B)

δ

K
1

+ 2c3

√
log3 KS(A+B)

δ

KH

[
P µ̃

?,ν̂
h

(
V
µ̃?,ν̂

h+1 ◦ V
µ̃?,ν̂

h+1

)
− V µ̃

?,ν̂

h ◦ V µ̃
?,ν̂

h

]
, (46)

∣∣∣V h − (rh + PhV h+1

)∣∣∣ ≤ c5
√
H log3 KS(A+B)

δ

K
1

+ 2c3

√
log3 KS(A+B)

δ

KH

[
Ph
(
V h+1 ◦ V h+1

)
− V h ◦ V h

]
. (47)

16



Step 3: invoking the key recursion to establish the desired bound. We find it helpful to introduce
the following notation (please note the order of the matrix product)

∏
j:j<h

P µ̂ · ν̂j :=

{
P µ̂ · ν̂1 · · ·P µ̂ · ν̂h−1 , if h > 1,

I, if h = 1.

Armed with this notation, we can invoke the relation (45) recursively and use V
µ̂ · ν̂
H+1 = V µ̂ · ν̂H+1 = 0 to obtain

V
µ̂ · ν̂
h − V µ̂ · ν̂h = rµ̂ · ν̂h + P µ̂ · ν̂h V

µ̂ · ν̂
h+1 +

(
V
µ̂ · ν̂
h −

(
rµ̂ · ν̂h + P µ̂ · ν̂h V

µ̂ · ν̂
h+1

))
−
(
rµ̂ · ν̂h + P µ̂ · ν̂h V µ̂ · ν̂h+1

)
≤ P µ̂ · ν̂h

(
V
µ̂ · ν̂
h+1 − V

µ̂ · ν̂
h+1

)
+
∣∣∣V µ̂ · ν̂h −

(
rµ̂ · ν̂h + P µ̂ · ν̂h V

µ̂ · ν̂
h+1

)∣∣∣ (48)

≤ c5

√
H log3 KS(A+B)

δ

K

 H∑
h=1

∏
j:j<h

P µ̂ · ν̂j

 1

+ 2c3

√
log3 KS(A+B)

δ

KH

H∑
h=1

∏
j:j<h

P µ̂ · ν̂j

[
P µ̂ · ν̂h

(
V
µ̂ · ν̂
h+1 ◦ V

µ̂ · ν̂
h+1

)
− V µ̂ · ν̂h ◦ V µ̂ · ν̂h

]

≤ c5

√
H log3 KS(A+B)

δ

K

 H∑
h=1

∏
j:j<h

P µ̂ · ν̂j

 1 = c5

√
H3 log3 KS(A+B)

δ

K
1 ≤ ε

6
1. (49)

Here, the first line uses the Bellman equation, the third inequality holds since for any transition matrices
{Ph} and any sequence {Vh} obeying VH+1 = 0, one can use the telescoping sum to obtain

H∑
h=1

∏
j:j<h

Pj

[
Ph
(
Vh+1 ◦ Vh+1

)
− Vh ◦ Vh

]
=

H∑
h=1

∏
j:j≤h

Pj
(
Vh+1 ◦ Vh+1

)
−

H∑
h=1

∏
j:j<h

Pj
(
Vh ◦ Vh

)
=
∏
j:j≤H

Pj
(
VH+1 ◦ VH+1

)
− V1 ◦ V1

= −V1 ◦ V1 ≤ 0,

whereas the last inequality in (49) arises from the assumption (24) when ck is large enough. Similarly,
replacing µ̂ with µ̃? in the above argument and recalling (46) directly lead to

V ?,ν̂h − V µ̃
?,ν̂

h = V µ̃
?,ν̂

h − V µ̃
?,ν̂

h ≤ ε

6
1. (50)

In addition, recalling the definition of V
µ̂ · ν̂
h (cf. (38c)), rh and Ph (see (41)), we can deduce that

V h − V
µ̂ · ν̂
h = rh + PhV h+1 +

{
V h −

(
rh + PhV h+1

)}
− rh − PhV

µ̂ · ν̂
h+1

≤ Ph
(
V h+1 − V

µ̂ · ν̂
h+1

)
+
∣∣∣V h − (rh + PhV h+1

)∣∣∣,
which resembles (48). Thus, repeating the above argument for (49) and applying (47) recursively, we reach

V h − V
µ̂ · ν̂
h ≤ ε

6
1. (51)

Combining (49), (50), and (51) with (40), we arrive at

V ?,ν̂h − V µ̂ · ν̂h ≤
(
V ?,ν̂h − V µ̃

?,ν̂

h

)
+
(
V h − V

µ̂ · ν̂
h

)
+
(
V
µ̂ · ν̂
h − V µ̂ · ν̂h

)
≤ ε

2
1.

This establishes the first inequality in (36), while the second inequality in (36) can be validated via the same
argument. We have thus completed the proof of Theorem 1.
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6 Discussion
The primary contribution of this paper has been to develop a sample-optimal paradigm that simultaneously
overcomes the curse of multiple agents and optimizes the horizon dependency when solving two-player zero-
sum Markov games. This goal was not accomplished in any of the previous works, regardless of the sampling
mechanism in use. The adoption of the adversarial learning subroutine helps break the curse of multiple
agents compared to the prior model-based approach (Liu et al., 2021; Zhang et al., 2020), whereas the
availability of the generative model in conjunction with the variance-aware bonus design enables sharpened
horizon dependency compared to Bai et al. (2020); Jin et al. (2021). Our work opens further questions
surrounding sample efficiency in solving Markov games. For instance, how to attain minimax-optimal sample
complexity if we only have access to less idealistic sampling protocol (e.g., local access models (Li et al.,
2021b; Yin et al., 2022), and online sampling protocols (Azar et al., 2017; Jin et al., 2018)) as opposed to the
flexible generative model? How can we optimize the horizon dependency when computing (coarse) correlated
equilibria in multi-agent general-sum scenarios (Daskalakis et al., 2022; Jin et al., 2021; Song et al., 2021)
without compromising the dependency on the size of the action spaces. In addition, our refined regret bound
for FTRL (based on variance-type quantities) only covers the full-information case; it would be of interest
to generalize it to the bandit-feedback setting (where only partial entries of the loss vectors are observable
each time).
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A Proof of Theorem 2
This section is devoted to presenting the proof of Theorem 2. Before embarking on the analysis, let us
introduce a convenient auxiliary iterate

π−k+1 = arg min
π∈∆(A)

{
〈π, Lk〉+

1

η̂k
F (π)

}
, (52)

or equivalently,

π−k+1(a) =
exp

(
− η̂kLk(a)

)∑
a′∈A exp

(
− η̂kLk(a′)

) for all a ∈ A, (53)

which differs from (29) only in the learning rates being used (namely, πk+1 uses ηk+1 while π−k+1 adopts η̂k).

A.1 Main steps of the proof
The key steps of the proof lie in justifying the following two claims:

Rn ≤
n∑
k=1

αnk
〈
πk − π−k+1, `k

〉
+

logA

ηn+1
; (54)

and for all a ∈ A and all k ≥ 1,

π−k+1(a) ≥

{[
1− η̂kαk`k(a)

]
πk(a), if η̂kαk‖`k‖∞ > 1

3 ,{
1− η̂kαk

(
`k(a)− Eπk [`k]

)
− 2η̂2

kα
2
kVarπk

(
`k
)}
πk(a), if η̂kαk‖`k‖∞ ≤ 1

3 ,
(55)
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where for any vector ` ∈ RA we define

Eπk [`] :=
∑
a∈A

πk(a)`(a).

In words, the first claim (54) allows us to replace the action that appears best in hindsight (cf. (27)) by the
time-varying predictions {π−k+1} without incurring much cost, whereas the second claim (55) controls the
proximity of π−k+1 and πk in each round. Let us assume the validity of these two claims for the moment, and
return to prove them shortly.

In view of the upper bound (54), we are in need of controlling
〈
πk − π−k+1, `k

〉
. We divide into two cases.

• For any k obeying η̂kαk‖`k‖∞ > 1/3, invoke (55) and the non-negativity of `k to reach〈
πk − π−k+1, `k

〉
≤
∑
a∈A

η̂kαkπk(a)
[
`k(a)

]2 ≤∑
a∈A

η̂kαkπk(a)
∥∥`k∥∥2

∞ = η̂kαk
∥∥`k∥∥2

∞. (56)

• In contrast, if η̂kαk‖`k‖∞ ≤ 1/3, then it follows from (55) that〈
πk − π−k+1, `k

〉
≤
∑
a∈A

{
η̂kαk

(
`k(a)− Eπk [`k]

)
+ 2η̂2

kα
2
kVarπk(`k)

}
πk(a)`k(a)

= η̂kαk
∑
a∈A

πk(a)
(
`k(a)− Eπk

[
`k
])
Eπk

[
`k
]

+ η̂kαk
∑
a∈A

πk(a)
(
`k(a)− Eπk

[
`k
])2

+ 2η̂2
kα

2
kVarπk(`k)

∑
a∈A

πk(a)`k(a)

= η̂kαk
∑
a∈A

πk(a)
(
`k(a)− Eπk

[
`k
])2

+ 2η̂2
kα

2
kVarπk(`k)

∑
a∈A

πk(a)`k(a)

≤ η̂kαkVarπk
(
`k
)

+ 2η̂2
kα

2
kVarπk(`k)

∥∥`k∥∥∞, (57)

where we invoke the elementary facts that
∑
a πk(a)

(
`k(a)−Eπk

[
`k
])

= 0 and
∑
a πk(a)`k(a) ≤ ‖`k‖∞.

Putting the above two cases together yields
n∑
k=1

αnk
〈
πk − π−k+1, `k

〉
≤

n∑
k=1

αnk η̂kαk
∥∥`k∥∥2

∞ 1

(
η̂kαk

∥∥`k∥∥∞ >
1

3

)
+

n∑
k=1

αnk η̂kαkVarπk
(
`k
)
1

(
η̂kαk

∥∥`k∥∥∞ ≤ 1

3

)

+ 2

n∑
k=1

αnk η̂
2
kα

2
kVarπk

(
`k
)∥∥`k∥∥∞ 1

(
η̂kαk

∥∥`k∥∥∞ ≤ 1

3

)

≤ 5

3

n∑
k=1

αnk η̂kαkVarπk
(
`k
)

+ 3

n∑
k=1

αnk η̂
2
kα

2
k

∥∥`k∥∥3

∞ 1

(
η̂kαk

∥∥`k∥∥∞ >
1

3

)
, (58)

where the last inequality holds true since
n∑
k=1

αnk η̂kαk
∥∥`k∥∥2

∞ 1

(
η̂kαk

∥∥`k∥∥∞ >
1

3

)
≤ 3

n∑
k=1

αnk η̂
2
kα

2
k

∥∥`k∥∥3

∞ 1

(
η̂kαk

∥∥`k∥∥∞ >
1

3

)
,

n∑
k=1

αnk η̂
2
kα

2
k

∥∥`k∥∥∞Varπk(`k)1

(
η̂kαk

∥∥`k∥∥∞ ≤ 1

3

)
≤ 1

3

n∑
k=1

αnk η̂kαkVarπk(`k).

Substituting (58) into (54), we can readily arrive at

Rn ≤
5

3

n∑
k=1

αnk η̂kαkVarπk(`k) +
logA

ηn+1
+ 3

n∑
k=1

αnk η̂
2
kα

2
k

∥∥`k∥∥3

∞ 1

(
η̂kαk

∥∥`k∥∥∞ >
1

3

)
.

It thus remains to establish the claims (54) and (55), which we shall accomplish next.
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A.2 Proof of claim (54)
We claim that it suffices to prove that

αn1 〈π−2 , `1〉+
αn1
η2α1

F (π2) +

n∑
k=2

{
αnk 〈π−k+1, `k〉+

[ αnk
ηk+1αk

−
αnk−1

ηkαk−1

]
F (πk+1)

}

≤ min
π∈∆(A)

{〈
π,

n∑
k=1

αnk`k

〉
+

1

ηn+1
F (π)

}
. (59)

In fact, suppose that this inequality (59) is valid, then one can easily obtain

αn1 〈π−2 , `1〉+
αn1
η2α1

F (π2) +

n∑
k=2

{
αnk 〈π−k+1, `k〉+

[ αnk
ηk+1αk

−
αnk−1

ηkαk−1

]
F (πk+1)

}

≤ min
π∈∆(A)

{〈
π,

n∑
k=1

αnk`k

〉
+

1

ηn+1
F (π)

}
≤ min
π∈{ea | a∈A}

{〈
π,

n∑
k=1

αnk`k

〉
+

1

ηn+1
F (π)

}

= min
π∈{ea | a∈A}

〈
π,

n∑
k=1

αnk`k

〉
= min

a∈A

n∑
k=1

αnk`k(a)

with ea the a-th standard basis vector in RA, where the last line holds true since the negative entropy obeys
F (ea) = 0 for any a ∈ A. In turn, this implies that

Rn =

n∑
k=1

αnk
〈
πk, `k

〉
−min
a∈A

n∑
k=1

αnk`k(a)

≤
n∑
k=1

αnk
〈
πk − π−k+1, `k

〉
−

n∑
k=2

[ αnk
ηk+1αk

−
αnk−1

ηkαk−1

]
F (πk+1) +

αn1
η2α1

logA, (60)

where the last inequality invokes the elementary fact −F (π) ≤ logA for any π ∈ ∆(A). Additionally, under
the assumptions that ηk+1(1− αk) ≤ ηk (k ≥ 1), we can use the definition (5) to obtain

αnk
ηk+1αk

=

∏n
j=k+1(1− αj)

ηk+1
≥
∏n
j=k(1− αj)

ηk
=

αnk−1

ηkαk−1
,

for any k ≥ 2, which together with the basic fact 0 ≤ −F (π) ≤ logA yields

−
n∑
k=2

[ αnk
ηk+1αk

−
αnk−1

ηkαk−1

]
F (πk+1) +

αn1
η2α1

logA ≤
n∑
k=2

[ αnk
ηk+1αk

−
αnk−1

ηkαk−1

]
logA+

αn1
η2α1

logA

=
αnn

ηn+1αn
logA =

logA

ηn+1
. (61)

Substitution into (60) leads to

Rn ≤
n∑
k=1

αnk
〈
πk − π−k+1, `k

〉
+

logA

ηn+1
(62)

as advertised. As a consequence, everything boils down to establishing (59).
Towards this end, we would like to proceed with an induction argument, with the induction hypothesis

w.r.t. n given by (59). Firstly, the base case with n = 1 simplifies to

α1
1〈π−2 , `1〉+

1

η2
F (π2) ≤ min

π∈∆(A)

{
〈π, α1

1`1〉+
1

η2
F (π)

}
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given that α1 = α1
1; this inequality clearly holds since, according to (28) and (52),

π−2 = π2 = arg min
π∈∆(A)

{
〈π, L1〉+

1

η2
F (π)

}
= arg min

π∈∆(A)

{
〈π, α1`1〉+

1

η2
F (π)

}
.

Secondly, suppose that (59) holds w.r.t. n, and we intend to justify it w.r.t. n+ 1. To do so, we observe that

αn+1
1 〈π−2 , `1〉+

αn+1
1

η2α1
F (π2) +

n∑
k=2

{
αn+1
k 〈π−k+1, `k〉+

( αn+1
k

ηk+1αk
−

αn+1
k−1

ηkαk−1

)
F (πk+1)

}
+ αn+1〈π−n+2, `n+1〉

(i)
= (1− αn+1)

{
αn1 〈π−2 , `1〉+

αn1
η2α1

F (π2) +

n∑
k=2

{
αnk 〈π−k+1, `k〉+

( αnk
ηk+1αk

−
αnk−1

ηkαk−1

)
F (πk+1)

}}
+ αn+1〈π−n+2, `n+1〉

(ii)

≤ (1− αn+1)

{〈
π−n+2,

n∑
k=1

αnk`k

〉
+

1

ηn+1
F (π−n+2)

}
+ αn+1〈π−n+2, `n+1〉

(iii)
=

〈
π−n+2,

n+1∑
k=1

αn+1
k `k

〉
+

1− αn+1

ηn+1
F (π−n+2) = min

π∈∆(A)

{〈
π,

n+1∑
k=1

αn+1
k `k

〉
+

1

η̂n+1
F (π)

}
. (63)

Here, (i) and (iii) invoke the fact αn+1
k = (1 − αn+1)αnk and αn+1

n+1 = αn+1 (according to (5)), (ii) relies on
the induction hypothesis (59) w.r.t. n. To finish up, invoke (63) and the definition (5) to arrive at

αn+1
1 〈π−2 , `1〉+

αn+1
1

η2α1
F (π2) +

n+1∑
k=2

{
αn+1
k 〈π−k+1, `k〉+

[ αn+1
k

ηk+1αk
−

αn+1
k−1

ηkαk−1

]
F (πk+1)

}

=

{
αn+1

1 〈π−2 , `1〉+
αn+1

1

η2α1
F (π2) +

n∑
k=2

{
αn+1
k 〈π−k+1, `k〉+

[ αn+1
k

ηk+1αk
−

αn+1
k−1

ηkαk−1

]
F (πk+1)

}
+ αn+1〈π−n+2, `n+1〉

}

+
[ 1

ηn+2
− 1− αn+1

ηn+1

]
F (πn+2)

≤

{〈
πn+2,

n+1∑
k=1

αn+1
k `k

〉
+

1− αn+1

ηn+1
F (πn+2)

}
+
[ 1

ηn+2
− 1− αn+1

ηn+1

]
F (πn+2)

=

〈
πn+2,

n+1∑
k=1

αn+1
k `k

〉
+

1

ηn+2
F (πn+2) = min

π∈∆(A)

{〈
π,

n+1∑
k=1

αn+1
k `k

〉
+

1

ηn+2
F (π)

}
,

where the inequality above makes use of (63), and the last identity comes from (28). This justifies the
induction hypothesis w.r.t. n+1. Applying the induction argument in turn establishes (59) for all n, thereby
concluding the proof.

A.3 Proof of claim (55)
We first make the observation that∑

a

exp
(
− η̂kLk(a)

)
=
∑
a

exp
(
− ηkLk−1(a)

)
exp

(
− η̂kαk`k(a)

)
=
∑
a

{
πk(a)

∑
a′

exp
(
− ηkLk−1(a′)

)}
exp

(
− η̂kαk`k(a)

)
=
∑
a′

exp
(
− ηkLk−1(a′)

)∑
a

{
πk(a) exp

(
− η̂kαk`k(a)

)}
,

where the second equality follows from (29). This in turn allows us to demonstrate that

π−k+1(a) =
exp

(
− η̂kLk(a)

)∑
a′ exp

(
− η̂kLk(a′)

) =
exp

(
− ηkLk−1(a)

)∑
a′ exp

(
− ηkLk−1(a′)

) · exp
(
− η̂kαk`k(a)

)∑
a′ πk(a′) exp

(
− η̂kαk`k(a′)

)
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= πk(a)
exp

(
− η̂kαk`k(a)

)∑
a′ πk(a′) exp

(
− η̂kαk`k(a′)

) ≥ [1− η̂kαk`k(a)
]
πk(a),

where the last inequality holds since exp(−x) ≥ 1− x and
∑
a πk(a) exp

(
− η̂kαk`k(a)

)
≤
∑
a πk(a) = 1.

Next, suppose that η̂kαk‖`k‖∞ ≤ 1/3. In this case, it is self-evident that η̂kαk|`k(a)−Eπk [`k]| ≤ 2/3 for
all a ∈ A. Recalling that Eπk [`k] =

∑
a πk(a)`k(a), one can derive

π−k+1(a) = πk(a)
exp

(
− η̂kαk`k(a)

)∑
a′ πk(a′) exp

(
− η̂kαk`k(a′)

) =
exp

(
− η̂kαk

(
`k(a)− Eπk [`k]

))∑
a′ πk(a′) exp

(
− η̂kαk

(
`k(a′)− Eπk [`k]

))πk(a)

≥
1− η̂kαk

(
`k(a)− Eπk [`k]

)∑
a′ πk(a′) exp

(
− η̂kαk

(
`k(a′)− Eπk [`k]

))πk(a)

≥
1− η̂kαk

(
`k(a)− Eπk [`k]

)
1 + η̂2

kα
2
kVarπk(`k)

πk(a); (64)

here, the first inequality arises since exp(−x) ≥ 1 − x, while the second inequality can be shown via the
elementary inequality exp(−x) ≤ 1− x+ x2 for any x ≥ −1.5 and therefore∑

a

πk(a) exp
(
− η̂kαk

(
`k(a)− Eπk [`k]

))
≤
∑
a

πk(a)

{
1− η̂kαk

(
`k(a)− Eπk [`k]

)
+ η̂2

kα
2
k

(
`k(a)− Eπk [`k]

)2}
=
∑
a

πk(a)

{
1 + η̂2

kα
2
k

(
`k(a)− Eπk [`k]

)2}
= 1 + η̂2

kα
2
kVarπk(`k).

Applying the elementary inequality 1−a
1+b ≥ (1 − a)(1 − b) = 1 − a − b + ab ≥ 1 − a − 2b for any a ∈ [−1, 1]

and b > 0, we can continue to lower bound (64) as follows

(64) ≥
{

1− η̂kαk
(
`k(a)− Eπk [`k]

)
− 2η̂2

kα
2
kVarπk

(
`k
)}
πk(a),

thereby completing the proof.

B Proofs of auxiliary lemmas and details

B.1 Proof of Lemma 3
This section aims to prove Lemma 3, which establishes the inequality V h ≥ V

?,ν̂

h . In what follows, we shall
proceed with an induction argument. The base case with step H + 1 is trivially true, given that

V H+1 = V
?,ν̂

H+1 = 0

holds for any ν. Next, let us assume that the claim (39) is valid for step h+ 1, namely,

V h+1 ≥ V
?,ν̂

h+1, (65)

and attempt to justify the validity of this result when h+ 1 is replaced with h.
This step is mainly accomplished by applying our refined theory (cf. Theorem 2) for FTRL (see (17)).

More precisely, we claim that

max
a

Q
K

h (s, a) ≤
K∑
k=1

αKk

〈
µkh(s), qkh(s, ·)

〉
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+ 10

√
cα log3(KA)

KH

K∑
k=1

αKk Varµkh(s)

(
qkh(s, ·)

)
+ 2

√
cαH log3(KA)

K
(66)

for any s ∈ S, whose proof is deferred to Appendix B.1.1. Recall the construction (18b) of V h. If V h =

H−h+ 1, then the claimed result V h ≥ V
?,ν̂

h holds trivially. Therefore, it suffices to focus on the case where

V h(s) =

K∑
k=1

αKk

〈
µkh(s), qkh(s, ·)

〉
+ βh,V (s).

In this case, recalling the definition of V
?,ν̂

h (s) in (38b) gives

V
?,ν̂

h (s) = max
a

K∑
k=1

αKk
(
rkh(s, a) + P

k

h(· | s, a)V
?,ν̂

h+1

)
≤ max

a

K∑
k=1

αKk
(
rkh(s, a) + P

k

h(· | s, a)V h+1

)
= max

a
Q
K

h (s, a)

≤
K∑
k=1

αKk

〈
µkh(s), qkh(s, ·)

〉
+ 10

√
cα log3(KA)

KH

K∑
k=1

αKk Varµkh(s)

(
qkh(s, ·)

)
+ 2

√
cαH log3(KA)

K

≤
K∑
k=1

αKk

〈
µkh(s), qkh(s, ·)

〉
+ βh,V (s) = V h(s)

holds simultaneously for all (s, h) ∈ S × [H]. Here, the second line follows from the induction hypothesis
(65) and the definition of Q

K

h in (15), the third line invokes the claim (66), whereas the last line comes from
our choice (21) of βh,V (provided that cb is sufficiently large).

B.1.1 Proof of claim (66)

Consider any state s ∈ S. By virtue of the identity Q
k

h =
∑k
i=1 α

k
i q
i
h (see (15)), the policy update rule (16)

(or (17)) for µkh(s) can essentially be viewed as the FTRL algorithm applied to the sequence of loss vectors

`k = −qkh(s, ·), k ≥ 1.

Moreover, recalling the definition (20) of ηk+1 and the definition (19) of αk (with cα ≥ 24), we have(
ηk
ηk+1

)2

=
αk
αk−1

=
k − 2 + cα logK

k − 1 + cα logK
≥ k − 1

k − 1 + cα logK
= 1− αk > (1− αk)2. (67)

This property (67) permits us to invoke Theorem 2 to obtain

max
a∈A

Q
K

h (s, a)−
K∑
k=1

αKk

〈
µkh(s), qkh(s, ·)

〉
= max

a∈A

{
K∑
k=1

αKk
〈
µkh(s), `k

〉
−

K∑
k=1

αKk `k(a)

}

≤ 5

3

K∑
k=2

αKk
ηkαk

1− αk
Varµkh(s)

(
qkh(s, ·)

)
+

logA

ηK+1
+ ξh

(i)

≤ 5

3

K/2∑
k=2

(
2cα
)1.5

log2K
√
kH

αKk Varµkh(s)

(
qkh(s, ·)

)

+
20

3

K∑
k=K/2+1

αKk

√
cα log2K

KH
Varµkh(s)

(
qkh(s, ·)

)
+

logA

ηK+1
+ ξh, (68)
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where ξh is defined as

ξh :=
5

3
αK1 η2

∥∥q1
h

∥∥2

∞ +

{
3

K∑
k=2

αKk
η2
kα

2
k

(1− αk)2

∥∥qkh∥∥3

∞ 1

(
ηkαk

1− αk
∥∥qkh∥∥∞ >

1

3

)}
+ 3αK1 η

2
2

∥∥q1
h

∥∥3

∞. (69)

Here, to see why (i) holds, we make use of the facts that

1− αk = 1− cα logK

k − 1 + cα logK
≥

{
1− cα logK

1+cα logK = 1
1+cα logK ≥

1
2cα logK , if k ≥ 2,

1− cα logK
K/2+cα logK = K

K+2cα logK ≥
1
2 , if k ≥ K/2 + 1,

(70a)

ηkαk =

√
logK

αk−1H
· αk ≤

√
logK

αkH
· αk =

√
αk logK

H
≤

√
2cα log2K

kH
, (70b)

where the first line makes use of (32) for large enough ck, and the second line relies on (33a) in Lemma 1.
To proceed, let us control the terms in (68) separately.

• We start with the first term in (68). The elementary bound
∥∥qkh∥∥∞ ≤ H in Lemma 2 taken together

with (33b) in Lemma 1 helps us derive

K/2∑
k=2

αKk log2K√
kH

Varµkh(s)

(
qkh(s, ·)

)
≤
K/2∑
k=2

log2K

K6
√
kH

Varµkh(s)

(
qkh(s, ·)

)

≤
K/2∑
k=2

log2K

K6
√
kH

∥∥qkh(s, ·)
∥∥2

∞ ≤
H3/2 log2K

K6

K/2∑
k=2

1√
k

≤ 2H3/2 log2K

K6
·
√
K/2 ≤ 2H3/2 log2K

K5
. (71)

• Turning to the third term in (68), we recall the definition of ηK+1 (cf. (20)) to obtain

logA

ηK+1
= logA

√
αKH

logK
≤

√
2cαH log2A

K
, (72)

where the inequality comes from Lemma 1.

• Finally, we move on to the last term in (68). For any k ≥ 2, one can combine Lemma 2 with (70) to
deduce that

ηkαk
1− αk

∥∥qkh∥∥∞ ≤
√

2cα log2K
kH

1
2cα logK

·H =

√
8c3αH log4K

k
. (73)

Clearly, the right-hand side of (73) is upper bounded by 1/3 for all k obeying k ≥ c9H log4 K
δ for some

large enough constant c9 > 0 (see also (32)). Consequently, one can derive

ξh =
5

3
αK1 η2

∥∥q1
h

∥∥2

∞ +

{
3

K∑
k=2

αKk
η2
kα

2
k

(1− αk)2

∥∥qkh∥∥3

∞ 1

(
ηkαk

1− αk
∥∥qkh∥∥∞ >

1

3

)}
+ 3αK1 η

2
2

∥∥q1
h

∥∥3

∞

≤ 5

3K6

√
logK

H

∥∥q1
h

∥∥2

∞ +

(
2cα logK

)2
K6

3

c9H log4 K
δ∑

k=2

η2
kα

2
k

∥∥qkh∥∥3

∞

+
3

K6

logK

H

∥∥q1
h

∥∥3

∞

≤ 24c3α log4K

K6H

{
K∑
k=1

1

k
H3

}

≤ 24c3αH
2 log5K

K6
≤ 1

K4
, (74)

where the second line comes from (70) and the fact that K/2 > c9H log4 K
δ (as a consequence of (32)),

and the third line holds due to Lemma 2.
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Putting the preceding bounds together and substituting them into (68), we arrive at

max
a

Q
K

h (s, a)−
K∑
k=1

αKk

〈
µkh(s), qkh(s, ·)

〉

≤ 5(2cα)1.5

3
· 2H3/2 log2K

K5
+

20

3

√
cα log2K

KH

K∑
k=K/2+1

αKk Varµkh(s)

(
qkh(s, ·)

)
+

√
2cαH log2A

K
+

1

K4

≤ 10

√
cα log3(KA)

KH

K∑
k=1

αKk Varµkh(s)

(
qkh(s, ·)

)
+ 2

√
cαH log3(KA)

K
, (75)

where the last line is valid under Condition (32). This completes the proof of Claim (66).

B.2 Proof of Lemma 4
In this section, we present the proof of Lemma 4. To begin with, we introduce the auxiliary quantities

q̃kh(s, a) := rkh(s, a) + P
k

h(· | s, a)V
µ̂ · ν̂
h+1, ∀(s, a) ∈ S ×A.

It is also helpful to introduce an auxiliary random action ak,s ∈ A generated in a way that

ak,s ∼ µkh(s),

which is independent from q̃kh conditional on µkh. This allows us to define another set of random variables

q̂kh(s) := q̃kh
(
s, ak,s), ∀s ∈ S, (76)

which plays a central role in our analysis. It is readily seen from the facts V h+1(s) ≤ H − h (cf. (18b)) and
rkh(s, a) ∈ [0, 1] that

0 ≤ q̂kh(s), q̃kh(s, a) ≤ H − h+ 1, ∀(s, a, h, k) ∈ S ×A× [H]× [K]. (77)

Letting e(i) ∈ RA denote the i-th standard basis vector, we learn from the law of total variance that

Varh,k−1

(
q̂kh(s)

)
= Varh,k−1

(〈
e(ak,s), q̃

k
h(s, ·)

〉)
≥ Varh,k−1

(
Eh,k−1

[〈
e(ak,s), q̃

k
h(s, ·)

〉
| q̃kh
])

= Varh,k−1

(〈
µkh(s), q̃kh(s, ·)

〉)
. (78)

With these preparations in place, we are ready to embark on the proof.

B.2.1 Proof of inequalities (42a) and (42b)

Recall the definition of V
µ̂ · ν̂
h (s) in (38c) that

V
µ̂ · ν̂
h (s) =

K∑
k=1

αKk E
a∼µkh(s)

[
rkh(s, a) + P

k

h(· | s, a)V
µ̂ · ν̂
h+1

]
=

K∑
k=1

αKk

〈
µkh(s), q̃kh(s, ·)

〉
. (79)

It is first observed that

K∑
k=1

Eh,k−1

[
αKk
〈
µkh(s), q̃kh(s, ·)

〉]
=

K∑
k=1

αKk E
(a,b)∼µkh(s)×νkh(s)

[
rh(s, a, b) +

〈
Ph(· | s, a, b), V µ̂ · ν̂h+1

〉
| V µ̂ · ν̂h+1, µ

k
h, ν

k
h

]
= rµ̂ · ν̂h (s) +

〈
P µ̂ · ν̂h (s, ·), V µ̂ · ν̂h+1

〉
, (80)
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where the second identity arises from the definitions (41) of rµ̂ · ν̂h and P µ̂ · ν̂h . It is also seen that

R1 := max
k

∣∣∣αKk 〈µkh(s), q̃kh(s, ·)
〉∣∣∣ ≤ {max

k
αKk

}{
max
k

∥∥µkh(s)
∥∥

1

∥∥q̃kh∥∥∞} ≤ 2cαH logK

K
,

where the first line invokes Lemma 1, (77) and the fact ‖µkh(s)‖1 = 1. Another observation is that

W1 =

K∑
k=1

(
αKk
)2
Varh,k−1

(〈
µkh(s), q̃kh(s, ·)

〉)
≤
{

max
k

αKk

}{ K∑
k=1

αKk Varh,k−1

(〈
µkh(s), q̃kh(s, ·)

〉)}

≤ 2cα logK

K

K∑
k=1

αKk Varh,k−1

(
q̂kh(s)

)
, (81)

where the second line makes use of Lemma 1 and the inequality (78). With the definitions (79) and (80) in

mind, invoking Freedman’s inequality (i.e., Theorem 4) with κ1 =

√
K log K

δ

H then leads to∣∣∣∣V µ̂ · ν̂h (s)−
(
rµ̂ · ν̂h (s) +

〈
P µ̂ · ν̂h (s, ·), V µ̂ · ν̂h+1

〉)∣∣∣∣
=

∣∣∣∣ K∑
k=1

αKk

〈
µkh(s), q̃kh(s, ·)

〉
−

K∑
k=1

Eh,k−1

[
αKk

〈
µkh(s), q̃kh(s, ·)

〉]∣∣∣∣
≤ κ1W1 +

(
2

κ1
+ 5R1

)
log

3K

δ

≤ 2cα

√
log3 K

δ

KH

K∑
k=1

αKk Varh,k−1

(
q̂kh(s)

)
+

(
2

√
H

K log K
δ

+
10cαH logK

K

)
log

3K

δ

≤ 2cα

√
log3 K

δ

KH

K∑
k=1

αKk Varh,k−1

(
q̂kh(s)

)
+ 4

√
H log 3K

δ

K
(82)

with probability at least 1− δ, where the last relation holds true under Condition (32).
To continue, we note the first term in (82) can be bounded by Cauchy-Schwarz as follows:

K∑
k=1

αKk Varh,k−1

(
q̂kh(s)

)
=

K∑
k=1

αKk Eh,k−1

[(
q̂kh(s)

)2]− K∑
k=1

αKk

(
Eh,k−1

[
q̂kh(s)

] )2

≤
K∑
k=1

αKk Eh,k−1

[(
q̂kh(s)

)2]− ( K∑
k=1

αKk Eh,k−1

[
q̂kh(s)

])2

. (83)

Further, we make note of two additional facts:

• The weighted mean of q̂kh(s) obeys

K∑
k=1

αKk Eh,k−1

[
q̂kh(s)

]
=

K∑
k=1

αKk E
(a,b)∼µkh(s)×νkh(s)

[
rh(s, a, b)

]
+

K∑
k=1

αKk E
(a,b)∼µkh(s)×νkh(s)

[〈
Ph(· | s, a, b), V µ̂ · ν̂h+1

〉]
= rµ̂ · ν̂h (s) +

〈
P µ̂ · ν̂h (s, ·), V µ̂ · ν̂h+1

〉
≥
〈
P µ̂ · ν̂h (s, ·), V µ̂ · ν̂h+1

〉
; (84)

• Regarding the square of q̂kh(s), one has (see (76))

(
q̂kh(s)

)2
=
(
rkh(s, ak,s) +

〈
P
k

h(· | s, ak,s), V
µ̂ · ν̂
h+1

〉)2

=
(〈
P
k

h(· | s, ak,s), V
µ̂ · ν̂
h+1

〉)2

+
(
rkh(s, ak,s)

)2

+ 2rkh(s, ak,s)
〈
P
k

h(· | s, ak,s), V
µ̂ · ν̂
h+1

〉
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≤
(〈
P
k

h(· | s, ak,s), V
µ̂ · ν̂
h+1

〉)2

+ 3H

≤
〈
P
k

h(· | s, ak,s), V
µ̂ · ν̂
h+1 ◦ V

µ̂ · ν̂
h+1

〉
+ 3H,

where we have used the fact that ‖V µ̂ · ν̂h+1‖∞ ≤ H and ‖rkh‖∞ ≤ 1; consequently,

K∑
k=1

αKk Eh,k−1

[(
q̂kh(s)

)2] ≤ K∑
k=1

αKk Eh,k−1

[〈
P
k

h(· | s, ak,s), V
µ̂ · ν̂
h+1 ◦ V

µ̂ · ν̂
h+1

〉]
+ 3H

=

K∑
k=1

αKk
∑
a

µhk(a | s)Eh,k−1

[〈
P
k

h(· | s, a), V
µ̂ · ν̂
h+1 ◦ V

µ̂ · ν̂
h+1

〉]
+ 3H

=
〈
P µ̂ · ν̂h (s, ·), V µ̂ · ν̂h+1 ◦ V

µ̂ · ν̂
h+1

〉
+ 3H. (85)

Taking (84) and (85) together with (83) yields

K∑
k=1

αKk Varh,k−1

(
q̂kh(s)

)
≤

K∑
k=1

αKk Eh,k−1

[(
q̂kh(s)

)2]− ( K∑
k=1

αKk Eh,k−1

[
q̂kh(s)

])2

≤
〈
P µ̂ · ν̂h (s, ·), V µ̂ · ν̂h+1 ◦ V

µ̂ · ν̂
h+1

〉
−
(〈
P µ̂ · ν̂h (s, ·), V µ̂ · ν̂h+1

〉)2

+ 3H.

To finish up, substituting these into (82) and making use of the assumption (32) give∣∣∣∣V µ̂ · ν̂h (s)−
(
rµ̂ · ν̂h (s) +

〈
P µ̂ · ν̂h (s, ·), V µ̂ · ν̂h+1

〉)∣∣∣∣
≤ 2cα

√
log3 K

δ

KH

[〈
P µ̂ · ν̂h (s, ·), V µ̂ · ν̂h+1 ◦ V

µ̂ · ν̂
h+1

〉
−
(〈
P µ̂ · ν̂h (s, ·), V µ̂ · ν̂h+1

〉)2
]

+ (6cα + 4)

√
H log3 K

δ

K

for any s ∈ S, thus concluding the proof of the first claim (42a) of Lemma 4.
The second claim (42b) of Lemma 4 can be established using exactly the same argument, and hence we

omit the proof here for the sake of brevity.

B.2.2 Proof of inequality (42c)

We then turn to the last advertised inequality (42c). Given that rh(s) +Ph(s, ·)V h+1 ∈ [0, H −h+ 1] for all
s ∈ S, we can recall the definition (18b) of V h to obtain

∣∣∣V h(s)−
(
rh(s) + Ph(s, ·)V h+1

)∣∣∣ ≤ ∣∣∣∣ K∑
k=1

αKk

〈
µkh(· | s), qkh(s, ·)

〉
+ βh,V (s)−

(
rh(s) + Ph(s, ·)V h+1

)∣∣∣∣ (86)

for all s ∈ S. The remaining analysis is dedicated to bounding the right-hand side of (86).
Let us begin with the following identity:

K∑
k=1

αKk

〈
µkh(· | s), qkh(s, ·)

〉
+ βh,V (s) =

K∑
k=1

αKk E
a∼µkh(s)

[
rkh(s, a) + P

k

h(· | s, a)V h+1

]
+ βh,V (s)

= rh(s) +
〈
Ph(s, ·), V h+1

〉
+ βh,V (s), (87)

where we recall the definitions of rh ∈ RS and Ph ∈ RS×S in (41). The key step boils down to bounding the
bonus term defined in (21), towards which first we claim that

K∑
k=1

αKk Varµkh(s)

(
qkh(s, ·)

)
≤ 2 + 2

[
Ph(s, ·)

(
V h+1 ◦ V h+1

)
−
(
Ph(s, ·)V h+1

)2] (88)

27



holds for all s ∈ S. Assuming the validity of this claim, we can then demonstrate that

βh,V (s) = cb

√
log3 KS(A+B)

δ

KH

K∑
k=1

αKk

{
Varµkh(s)

(
qkh(s, ·)

)
+H

}

≤ 2cb

√
log3 KS(A+B)

δ

KH

{
Ph(s, ·)

(
V h+1 ◦ V h+1

)
−
(
Ph(s, ·)V h+1

)2
+H

}
, (89)

where we have used the identity
∑K
k=1 α

K
k = 1. Hence, we can readily establish the desired result (42c) by

combining (89) with (87) and (86), provided that c3 > 0 is sufficiently large.
It remains to justify the claim (88). Towards this end, we make the observation that

Varµkh(s)

(
qkh(s, ·)

)
≤ 2Varµkh(s)

(
rkh(s, ·)

)
+ 2Varµkh(s)

(∑
s′

P
k

h(s′ | s, ·)V h+1(s′)
)

≤ 2 + 2

[∑
a

µkh(a | s)P kh(s, a)
(
V h+1 ◦ V h+1

)
−
(∑

a

µkh(a | s)P kh(s, a)V h+1

)2
]
,

which results from ‖rkh‖∞ ≤ 1 and the following relation:

Varµkh(s)

(∑
s′

P
k

h(s′ | s, ·)V h+1(s′)
)

=
∑
a

µkh(a | s)
(
P
k

h(· | s, a)V h+1

)2

−
(∑

a

µkh(a | s)P kh(· | s, a)V h+1

)2

≤
∑
a

µkh(a | s)P kh(· | s, a)
(
V h+1 ◦ V h+1

)
−
(∑

a

µkh(a | s)P kh(· | s, a)V h+1

)2

.

This taken together with the fact
∑K
k=1 α

K
k = 1 and Jensen’s inequality yields

K∑
k=1

αKk Varµkh(s)

(
qkh(s, ·)

)
≤

K∑
k=1

αKk

{
2 + 2

[∑
a

µkh(a | s)P kh(s, a)
(
V h+1 ◦ V h+1

)
−
(∑

a

µkh(a | s)P kh(s, a)V h+1

)2
]}

≤ 2 + 2Ph(s, ·)
(
V h+1 ◦ V h+1

)
− 2

( K∑
k=1

αKk
∑
a

µkh(a | s)P kh(s, a)V h+1

)2

= 2 + 2
[
Ph(s, ·)

(
V h+1 ◦ V h+1

)
−
(
Ph(s, ·)V h+1

)2]
as claimed.

B.3 Minimax lower bound
In this section, we formalize the minimax lower bound claimed in (26).

Theorem 3 (Minimax lower bound). Consider any 0 < ε ≤ c1H for some small enough constant c1 > 0.
Then one can construct a collection of Markov games {MGθ | θ ∈ Θ} such that

inf
µ̂,ν̂

max
θ∈Θ

PMGθ
{
NE-gap

(
µ̂, ν̂

)
> ε
}
≥ 1

4
, (90)

provided that the total sample size obeys

N ≤ c2H
4S(A+B)

ε2
(91)

for some sufficiently small constant c2 > 0. Here, the infimum is over all policy estimator (µ̂, ν̂), and PMGθ
denotes the probability when the Markov game isMGθ.
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Proof. Suppose without loss of generality that A ≥ B. Let us begin by considering the special scenario with
B = 1; in this case, computing the Nash-equilibrium reduces to finding the optimal policy of a single-agent
MDP with S states and A actions. It is well-known that for any given accuracy level ε ∈ (0, H], there exists
a non-stationary MDP with S states and A actions such that no algorithm can learn an ε-optimal policy
with o

(
H4SA
ε2

)
samples (Azar et al., 2013; Li et al., 2022). More precisely, for any given 0 < ε ≤ c1H for

some small enough constant c1 > 0, one can construct a collection of MDPs {Mθ | θ ∈ Θ} such that

inf
µ̂

max
θ∈Θ

PMθ

{
max
s

(
V ?1 (s)− V µ̂1 (s)

)
> ε
}
≥ 1

4
, (92)

with the proviso that the total sample size

N ≤ c2H
4SA

ε2
(93)

for some small enough constant c2 > 0. Here, the infimum is over all policy estimate µ̂ in this single-agent
scenario, and PMθ denotes the probability when the MDP isMθ.

Next, let us construct a collection of Markov games by augmenting each of the single-agent MDPs Mθ

with B completely identical actions for the min-player; that is, to constructMGθ, we take its reward function
and probability transition kernel to be

rMGθh (s, a, b) = rMθ

h (s, a) and PMGθh (· | s, a, b) = PMθ

h (· | s, a) (94)

for all (s, a, b, h) ∈ S × A × B × [H]. Evidently, finding the Nash-equilibrium of MGθ is equivalent to
computing the optimal policy of Mθ, given the non-distinguishability of the actions of the min-player in
MGθ. This in turn immediately establishes the advertised lower bound.

B.4 Freedman’s inequality
In this section, we record the Freedman inequality for martingales (Freedman, 1975) with slight modification,
which is a crucial concentration bound for our analysis.

Theorem 4. Suppose that Yn =
∑n
k=1Xk ∈ R, where {Xk} is a real-valued scalar sequence obeying

|Xk| ≤ R and E
[
Xk | {Xj}j:j<k

]
= 0 for all k ≥ 1

for some quantity R > 0. Define

Wn :=

n∑
k=1

Ek−1

[
X2
k

]
,

where Ek−1 stands for the expectation conditional on {Xj}j:j<k. Consider any arbitrary quantity κ > 0.
With probability at least 1− δ, one has

|Yn| ≤
√

8Wn log
3n

δ
+ 5R log

3n

δ
≤ κWn +

( 2

κ
+ 5R

)
log

3n

δ
. (95)

Proof. Suppose that Wn ≤ σ2 holds deterministically for some quantity σ2. As has been demonstrated in
Li et al. (2021a, Theorem 5), with probability at least 1− δ we have

|Yn| ≤

√
8 max

{
Wn,

σ2

2K

}
log

2K

δ
+

4

3
R log

2K

δ
(96)

for any positive integer K ≥ 1. Recognizing the trivial bound Wn ≤ nR2, one can take σ2 = nR2 and
K = log2 n to obtain

|Yn| ≤
√

8 max
{
Wn, R2

}
log

4 log2 n

δ
+

4

3
R log

4 log2 n

δ
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≤
√

8Wn log
3n

δ
+

√
8R2 log

3n

δ
+

4

3
R log

3n

δ

≤
√

8Wn log
3n

δ
+ 5R log

3n

δ
,

where we have used 4 log2 n ≤ 3n for any integer n ≥ 1. This establishes the first inequality in (95). The
second inequality in (95) is then a direct consequence of the elementary inequality 2ab ≤ a2 + b2.
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