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This paper is concerned with the problem of reconstructing an unknown rank-one
matrix with prior structural information from noisy observations. While computing
the Bayes optimal estimator is intractable in general due to the requirement of
computing high-dimensional integrations/summations, Approximate Message Passing
(AMP) emerges as an efficient first-order method to approximate the Bayes optimal
estimator. However, the theoretical underpinnings of AMP remain largely unavailable
when it starts from random initialization, a scheme of critical practical utility. Focusing
on a prototypical model called Z2 synchronization, we characterize the finite-sample
dynamics of AMP from random initialization, uncovering its rapid global convergence.
Our theory—which is nonasymptotic in nature—in this model unveils the non-
necessity of a careful initialization for the success of AMP.

approximate message passing | random initialization | nonasymptotic analysis |
spiked Wigner model | global convergence

The problem of estimating an unknown low-rank matrix, when given access to highly
noisy observations, has been the subject of considerable studies, shedding light on a
diverse array of contexts including collaborative filtering, synchronization and alignment,
localization, and causal panel data, to name just a few (1–8). While low-rank estimators are
not in short supply, the quest for algorithms that can work all the way to the information-
theoretic limits continues to inspire theoretical and algorithmic development.

1. Motivation and An Informal Overview

In this paper, we focus on how to reconstruct a structured signal v? ∈ Rn (or equivalently,
v?v?>) from noisy data:

M = λv?v?> + W ∈ Rn×n with λ > 0. [1]

This classical model is commonly referred to as a deformed Gaussian Wigner model or
spiked Gaussian Wigner model when the entries of the noise matrix W = [Wij]1≤i,j≤n

are independently drawn from Gaussian distributions—more precisely, Wii
i.i.d.
∼ N (0, 2

n )

and Wji = Wij
i.i.d.
∼ N (0, 1

n ) for i 6= j—which serves as a prototypical model toward
understanding the feasibility and fundamental limits of low-rank matrix estimation.

The spectral properties of the observed matrix M have been extensively studied (see,
e.g. refs. 9–13), motivating the design of spectral methods when there is no structural
information associated with (1, 3, 14–16). In practice, there is no shortage of applications
where additional structural information about v? is available a priori, examples including
finite-group structure (17), cone constraints (18, 19), and sparsity (20, 21), among
others. The presence of prior structure further exacerbates the nonconvexity issue
when computing the maximum likelihood estimate or Bayes optimal estimate, thereby
presenting a pressing need for the search of algorithms that can be executed efficiently.

Remarkably, the approximate message passing (AMP) algorithm emerges as an
efficient nonconvex paradigm that rises to the aforementioned challenge (22, 23).
Originally proposed in the context of compressed sensing, AMP has served as not only a
family of first-order iterative algorithms that enjoy rapid convergence (24–28) but also
a powerful statistical machinery that assists in determining the performance limits of
other statistical procedures in high-dimensional asymptotics (29–38). Over the past two
decades, AMP has also received widespread adoption in a variety of engineering and
science applications, including but not limited to imaging, wireless communications,
signal processing, and deep learning (see, e.g., refs. 39–43 and references therein).
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Inadequacy of Prior AMP Theory. Nevertheless, while the exist-
ing suite of AMP theory covers a wealth of applications, it remains
inadequate in at least two aspects. To begin with, a dominant
fraction of existing AMP theory is asymptotic in nature, in the
sense that it predicts the AMP dynamics in the large-n limit for
any fixed iteration t. For this reason, prior AMP theory falls
short of describing how AMP evolves after a growing number
of iterations (even when it is run for only log n iterations),
which stands in contrast to other optimization-based procedures
that often come with nonasymptotic analysis accommodating
a large number of iterations (3, 6, 44). Another issue that
further complicates matters stems from the requirement of an
informative initialization, that is, existing AMP theory for low-
rank estimation often requires starting from a point that already
enjoys nonvanishing correlation with the true signal (45–47).
While an informative initial estimate like spectral initialization is
sometimes plausible and analyzable, this requirement presents
a hurdle to understanding the effectiveness of other widely
adopted alternatives like random initialization. This motivates
the following natural questions that remain by and large open:

Is a warm start like spectral initialization necessary for the
success of AMP? Can we start with a simpler initialization
scheme but still work equally well as spectral initialization?

Thus far, there has been no rigorous evidence precluding
one from starting randomly and uninformatively. As shall be
made clear shortly, tackling this issue necessitates a different
and powerful nonasymptotic framework for AMP, due to the
difficulty of tracking the AMP dynamics when the iterates exhibit
only extremely weak correlation with the truth.

Inspired by the aforementioned issues, there has been growing
interest in understanding the finite-sample performance of AMP.
A seminal work by Rush and Venkataramanan (48) [see also
its follow-up work (49)], studied AMP for sparse regression
and permitted the total number of iterations to be as large as
o
( log n

log log n
)
. This order of iteration number, however, is still highly

insufficient in understanding randomly initialized AMP, as at
least an order of log n iterations might be required for AMP to
achieve nontrivial correlation with the truth. A recent work by
Li and Wei (50) developed a nonasymptotic framework for the
spiked Gaussian Wigner model, which characterized the AMP
behavior for up to O

( n
poly(log n)

)
iterations. Although the theory

therein is well suited to the studies of spectrally initialized AMP,
it remains largely elusive whether it is capable of accommodating
random initialization, a circumstance whose resultant initial stage
is far more challenging and subtle to track.

This Paper: Randomly Initialized AMP for Z2 Synchronization.
In this work, we take a step toward addressing the above chal-
lenges by studying a concrete model called Z2 synchronization.
To be precise, Z2 synchronization is a special case of the spiked
Gaussian Wigner model when the ground truth is known to have
a discrete structure obeying v? ∈ {± 1

√
n }

n. Here and throughout,
we impose a prior distribution on v? = [v?i ]1≤i≤n such that

v?i
i.i.d.
∼ Unif

(
±

1
√

n

)
, 1 ≤ i ≤ n.

The goal is to reconstruct v? on the basis of the measurements
M (Eq. 1). This problem can be viewed as a basic example of
a more general problem—synchronization over compact groups
(1, 2, 17, 51–53)—and has an intimate connection to stochastic
block models (35, 54).

The AMP Algorithm. Note that it is in general intractable to calcu-
late the Bayes optimal solution directly due to computational dif-
ficulty in computing high-dimensional integrations/summations.
A common alternative is to resort to the variational inference
approximation, while the computational challenge still remains
due to the nonconvexity nature of the variational inference
objective. This motivates the search for computationally feasible
alternatives, for which AMP emerges as a natural and successful
option (46, 50, 54, 55). More concretely, given the initialization
x0, x1 ∈ Rn, AMP tailored to Z2 synchronization adopts the
following update rule:

xt+1 = Mηt(xt)− 〈η′t(xt)〉ηt−1(xt−1), t ≥ 1, [2]

where we denote 〈x〉 := 1
n
∑n

i=1 xi for any vector x = [xi]1≤i≤n,
and the denoising function is given by*

ηt(x) = γt tanh(πtx), for t ≥ 1

with πt :=
√

max
{
n(‖xt‖

2
2 − 1), 1

}
[3]

and γt := ‖ tanh(πtxt)‖−1
2 .

Here, it is understood that the functions ηt(·), η′t(·) and tanh(·)
are applied entrywise if the input argument is a vector.

Thus far, there have been two strategies to accommodate a
growing number of iterations in the most challenging regime
(i.e., when λ is above but very close to the information-
theoretic threshold 1). One attempt was made by Celentano
et al. (46), which proposed a three-stage hybrid algorithm that
runs spectrally initialized AMP followed by natural gradient
descent (NGD). It was conjectured therein that the third stage
(i.e., NGD) is unnecessary. Recently, Li and Wei (50) put
forward another strategy to address this conjecture, showing
that a third refinement stage is indeed not needed as long as
spectral initialization is adopted. Despite the nonconvex nature
of the underlying optimization problem, AMP with spectral
initialization is nearly Bayes optimal.

The Effect of Random Initialization. As alluded to previously,
all existing AMP theory for this problem (45, 46, 50, 56)
requires informative initialization obtained by, for example,
spectral methods. By contrast, one initialization strategy that
enjoys widespread adoption is to initialize AMP randomly; for
instance,

x1 ∼ N
(

0,
1
n

In

)
(independent of M)

and η0(x0) = 0. [4]

In order to investigate whether a warm start is required for
AMP to be effective, let us first conduct a series of numerical
experiments using Eq. 4, as reported in Fig. 1. Encouragingly,
AMP with random initialization seems to work surprisingly well:
it only takes several tens of iterations to achieve nearly the same
performance as spectrally initialized AMP (note that spectral
initialization also consists of several tens of power iterations).
Such encouraging numerical results motivate us to pursue in-
depth theoretical understanding about the effect of random
initialization upon AMP convergence, which was previously
unavailable in the literature.

*Note that for ease of analysis, we adopt a slightly different scaling from that of ref. 54,
but they are equivalent up to global scaling.
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BA

Fig. 1. The correlation of �t(xt) and v? (i.e., |〈�t (xt ),v
?
〉|

‖�t (xt )‖2
) vs. iteration count t for AMP with both random and spectral initialization. Here, n = 10,000 and

v?i
i.i.d.
∼ Unif(± 1√

n ) (1 ≤ i ≤ n). We generate 20 independent copies of M according to Eq. 1 and report the averaged results, with the width of the shaded region
reflecting (twice) the SD. Plots (A) and (B) correspond to � = 1.15 and � = 1.2, respectively.

Main Contributions and Technical Challenges. In the present
paper, we provide a nonasymptotic analysis that allows one to
predict how AMP evolves over time from random initialization,
even when the signal strength λ is exceedingly close to the
information-theoretic limit. Our theory is able to track the
correlation of the AMP iterates and the truth v?. In particular,
we demonstrate in Theorem 1 that the signal component in
the AMP iterates increases exponentially fast at the initial stage,
taking no more than O

( log n
λ−1

)
iterations to grow from Õ( 1

√
n ) to

O(
√
λ2 − 1) (the latter of which coincides with the correlation of

spectral initialization and the truth). Furthermore, once the signal
component surpasses O(

√
λ2 − 1) in magnitude, the finite-

sample AMP dynamics are very well predicted by the asymptotic
state evolution recursion derived previously for any fixed t and
n → ∞ (even though we are working with the finite-sample
regime). Our paper characterizes the performance of AMP when
initialized randomly, justifying and advocating the use of random
initialization. Put another way, a carefully designed warm start is
not necessary at all for this problem.

Built upon the analysis recipe recently developed by Li and
Wei (50), the development of our theory requires ideas far
beyond this framework in order to track AMP from random
initialization. Before continuing, we take a moment to single out
the key technical hurdles that need to be overcome.

• Prior theory based on state evolution analysis falls short of
offering “fine-grained” understanding about the AMP iterates
when they have vanishingly small correlation with the truth.
More precisely, past theory fails to measure the progress of
AMP during the initial stage when its signal component is of
strength o(1) (in fact, as small as Õ( 1

√
n ) when initialized), but

instead treats the signal strength as 0 in the large-n limit.
• Another technical challenge results from the complicated

statistical dependency across iterations, which is particularly
difficult to cope with when the algorithm starts with random
initialization and when the number of iterations grows with
the dimension n. While prior literature tackles this issue for
other nonconvex optimization methods by resorting to either

delicate leave-one-out decoupling arguments (see, e.g. ref. 57)
or global landscape analysis (see, e.g. ref. 58), these approaches
remain unavailable when analyzing AMP.

Notation. Finally, let us introduce a set of notation that shall
be useful throughout. We use ϕ(·) (resp. ϕn(·)) to denote
the probability density function (p.d.f.) of a standard Gaussian
random variable (resp. a Gaussian random vector N (0, In)).
For any matrix M , we let ‖M‖ and ‖M‖F denote the spectral
norm and the Frobenius norm of M , respectively. For any vector
x ∈ [xi]1≤i≤n = Rn, we denote by |x|(i) (resp. x(i)) the absolute
value (resp. value) of the i-th largest entry of x in magnitude.
We write Sd−1 = {x ∈ Rd

| ‖x‖2 = 1} as the unit sphere
in d . Moreover, for any two vectors x, y Rn, we write x ◦ y for
their Kronecker product, namely, x ◦ y = (x1y1, . . . , xnyn)> Rn.
When a function is applied to a vector, it should be understood
as being applied in a component-wise fashion; for instance, for
any vector x = [xi]1≤i≤n, we let x + 1 := [xi + 1]1≤i≤n.

In addition, given two functions f (n) and g(n), we write
f (n) . g(n) or f (n) = O(g(n)) to indicate that |f (n)| ≤
c1g(n) for some universal constant c1 > 0 independent of n,
and similarly, f (n) & g(n) means that f (n) ≥ c2|g(n)| for
some universal constant c2 > 0. We write f (n) = Õ(g(n)) if
f (n) = O(g(n)) up to logarithm factors. We also adopt the
notation f (n) � g(n) to indicate that both f (n) . g(n) and
f (n) & g(n) hold simultaneously. Moreover, when we write
f (n) � g(n) or f (n) = o(g(n)), it means f (n)/g(n) → 0
as n → ∞; we also write f (n) � g(n) if g(n)/f (n) → 0 as
n→ ∞. We use c, C to denote universal constants that do not
depend on n, whose values might change from line to line.

2. Main Results

In this section, we provide precise statements of our main theo-
retical guarantees for randomly initialized AMP. For notational
convenience, let us introduce

αt+1 := λv?>ηt(xt), [5]

PNAS 2023 Vol. 120 No. 31 e2302930120 https://doi.org/10.1073/pnas.2302930120 3 of 7
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which captures the projection of the t-th iterate (after denoising)
onto the direction of the truth v?. In some sense, this quantity
captures the size of the signal component carried by the t-th
iterate. With this notation in place, we single out a key threshold
as follows:

ς := min
{

t : |αt | ≥
1
2

√
λ2 − 1

}
, [6]

which reflects the time taken for the AMP iterate to carry
a significant signal component (note that a random initial
guess obeys |v?>x1| . Õ

( 1
√

n

)
, meaning that the initial signal

component is exceedingly small). Additionally, we define the state
evolution recursion starting from the ς -th iteration as follows for
any t ≥ ς

α?ς = |ας | and α?t+1 = λ

[∫
tanh

(
α?t (α?t + x)

)
ϕ(dx)

]1/2
.

[7]

Notably, the asymptotic state evolution recursion (which is
concerned with a 1-dimensional sequence in this case) is known
to faithfully track the dynamics of AMP for any fixed t in the
limit when n → ∞, although its utility in the finite-sample
regime was poorly understood in theory.

Equipped with the above definitions, our main results are
summarized in the following theorem.

Theorem 1. Consider the Z2 synchronization problem with

n−1/9 log n . λ− 1 ≤ 0.2.

Suppose we run AMP (cf. Eqs. 2 and 3) with random initialization

Eq. 4. Consider any t obeying 1 ≤ t ≤ cn(λ−1)5

log2 n
, where c > 0

is some universal constant. Then, with probability at least 1 −
O(n−10), the following results hold:

• (Decomposition and error bound). The AMP iterates admit the
decomposition

xt = αtv? +
t−1∑
k=1

βk
t−1φk + ξt−1, [8a]

where αt is defined in Eq. 5, the φk ’s are i.i.d. Gaussian vectors

obeying φk
i.i.d.
∼ N (0, 1

n In), and

‖βt‖2 :=
∥∥(β1

t ,β2
t , . . . ,β t

t )
∥∥

2 = ‖ηt(xt)‖2 = 1, [8b]

‖ξt‖2 .

√
t log n

n(λ− 1)2 +

√
log4 n

n(λ− 1)3 ; [8c]

• (Crossing time). The threshold ς defined in Eq. 6 satisfies

ς = O
(

log n
λ− 1

)
; [9]

• (Nonasymptotic state evolution). For any t obeying ς ≤ t ≤
cn(λ−1)5

log2 n
, we have

α2
t =

1 + O

(√√√√(
t + log3 n

λ−1
)

log n
n(λ− 1)5

)α?2t , [10]

where {α?t } stand for the asymptotic state evolution parameters
defined in Eq. 7.

Remark 1 (Range of �): Theorem 1 only focuses on the regime
where λ is larger than but close to 1. In fact, λ = 1 represents the
phase transition point for Z2 synchronization (54), in the sense
that i) when λ < 1, no estimator performs better than the 0
estimator asymptotically, and ii) when λ is strictly larger than 1,
it is possible to achieve nontrivial correlation with v?. We focus
on the feasible regime by considering a more refined yet highly
challenging case with λ− 1 & n−1/9 log n (so that λ can be very
close to 1). While it is possible to improve the exponent 1/9, it
is beyond the scope of this paper. The upper bound λ ≤ 1.2 is
not crucial at all as the problem becomes easier as λ increases. In
fact, our result continues to hold when λ > 1.2, which can be
justified via a more refined characterization of the residual term
ξt as well as κt . This paper imposes this assumption λ ≤ 1.2
merely to streamline our presentation and analysis.

Remark 2: We remark that while the iterates xt are random
quantities that depend on the randomnesses in W and v?, the
decomposition Eq. 8a is purely deterministic. For definitions
and properties of {φk}k≤t−1 and {βk

t−1}k≤t−1, we refer the
readers to SI Appendix, section A.2.2. In order to ensure that
each φk yields a homogeneous Gaussian distributionN (0, 1

n In),
we have included in φk additional terms that involve extra
randomnesses {gk

i }k≤t−1. These terms are properly subtracted
and reflected in the residual ξt−1. As a result, the right-hand side
of expression Eq. 8a is a function of and therefore measurable
with respect to W and v?.

In the sequel, we provide some interpretations of Theorem 1
and discussions about its implications. It is assumed below that
λ > 1.

Gaussian Approximation. The first result Eq. 8a in Theorem 1
asserts that each AMP iterate is composed of three components:
i) a signal component αtv? that aligns with the true signal v?, ii)
a noise component

∑t−1
k=1 β

k
t−1φk that is a linear combination of

i.i.d. Gaussian vectors, and iii) a residual component ξt−1. While
this decomposition resembles that of ref. 50, we justify its validity
even in the absence of carefully designed spectral initialization.
A few remarks are in order.

• Regarding the noise component, Theorem 1 implies that the
1-Wasserstein distance between its distribution (denoted by
µ
(∑t

k=1 β
k
t φk

)
) and a Gaussian distribution N

(
0, 1

n In
)

is at
most

W1

(
µ

( t∑
k=1

βkφk

)
, N

(
0,

1
n

In

))
.

√
t log n

n
. [11]

For t not too large, the noise component well approximates a
Gaussian vector N (0, 1

n In).
• Regarding the signal component αtv?, it is self-evident that
αt governs how effective AMP is in recovering the true signal.
Importantly, once |αt | exceeds the threshold 1

2
√
λ2 − 1, it

follows a nonasymptotic state evolution that closely resembles
the asymptotic counterpart α?t (Eq. 10), a result that is made
possible thanks to the nonasymptotic nature of our analysis.

To summarize, up to a small error term at most Õ
(√ t

n(λ−1)2 +√
1

n(λ−1)3

)
, the AMP iterate is approximately

xt ≈ αtv? +N
(

0,
1
n

In

)
, t < O

(
n(λ− 1)5

log2 n

)
,
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even when initialized randomly. An asymptotic version of this
observation has been made in ref. 45, although the result therein
required both informative initialization and a fixed t that does
not grow with n.

Dynamics after Random Initialization. The most challenging
element of Theorem 1 lies in analyzing the initial stage after
random initialization. As shall be made clear from our analysis,
we can understand the AMP trajectory by dividing it into three
phases.

• Phase #1: escaping from random initialization. When ini-
tialized randomly with x1 ∼ N (0, 1

n In), AMP starts with an
extremely small signal component about the order of Õ( 1

√
n ),

for which the canonical state evolution becomes vacuous.
To overcome this technical hurdle, we develop fine-grained
characterizations regarding how αt evolves in this phase (before
|αt | surpasses

√
λ− 1 n−1/4), that is,

αt+1 ≈ λαt + λgt−1, with gt−1 ∼ N
(

0,
1
n

)
; [12]

see SI Appendix, section B.4 for details. This approximate
noisy recursion tells us that while the signal component might
be initially buried under the noise term, it takes at most
O( log n

λ−1 ) iterations for the signal component to rise above the
noise size and reach the order of

√
λ− 1 n−1/4 (SI Appendix,

section A.2.2).
• Phase #2: exponential growth. Once the signal component

exceeds
√
λ− 1n−1/4 in size, the AMP iterate correlates

nontrivially with the true signal. Interestingly, the signal
strengthαt starts to grow exponentially until reaching the order
of
√
λ2 − 1. As we shall justify in SI Appendix, section A.2.2,

αt+1 obeys

|αt+1| ≥

√
1 +

1− o(1)
3

(λ− 1) |αt |, [13]

in this phase, which accounts for at most O( log n
λ−1 ) iterations.

• Phase #3: local refinement. Upon reaching the order of
√
λ2 − 1, |αt | enters a local refinement phase, during which

randomly initialized AMP behaves similarly as AMP with
spectral or other informative initialization. In this phase, the
asymptotic state evolution Eq. 7 also starts to be effective when
predicting the evolution of αt (Eq. 10). As we shall solidify in
SI Appendix, section A.2.4, the signal strength αt satisfies

|α2
t+1 − α

?2
| .

(
1− (λ− 1)

)t−ς + Õ

(√
t + 1

λ−1
n(λ− 1)5

)
,

[14]

where α? (determined by λ) denotes the limit of α?t as t →∞
(cf. Eq. 7) and is unique solution of

α?2 = λ2E
[

tanh (α? (α? + G))
]
, with G ∼ N (0, 1).

[15]

Bayes Optimality. As was shown previously [see e.g., (46, Lemma
A.7)], we can construct an AMP-based estimator whose risk
coincides with that of the Bayes optimal estimator X̂ bayes :=

E[v?v?> | M ]. More precisely, taking the AMP-based estimator
as

ut :=
1

λ

√
n(α2

t + 1)
tanh(πtxt), [16]

its asymptotic risk satisfies [SI Appendix, section C and (54)]:

lim
t→∞

lim
n→∞

E
[∥∥v?v?> − utu>t

∥∥2
F
]

= lim
n→∞

E
[
‖v?v?> − X̂ bayes

‖
2
F
]

= 1−
α?4

λ4 , [17]

where α? is the fixed point of the limiting state evolution (cf. Eq.
15). This together with the nonasymptotic results in Theorem 1
leads to a more refined risk characterization, as we shall prove in
SI Appendix, section C.

Corollary 1. With probability at least 1 − O(n−10), there exists
some t = O( log n

λ−1 ) such that

∥∥v?v?> − utu>t
∥∥2
F = 1−

α?2

λ4 + O
(√

log4 n
n(λ− 1)6

)
. [18]

In words, it only takes the AMP algorithm at most O
( log n
λ−1

)
number of iterations to achieve—up to a discrepancy of
Õ
(√ 1

n(λ−1)6

)
—the Bayes optimal risk.

Roadmap for the Proof of Theorem 1. To provide some intuition
underlying Theorem 1, we briefly give an outline of the proof;
details can be found in SI Appendix.

• First, focusing on the initial stage obeying 1 ≤ t ≤
min

{
ς , log n

c(λ−1)

}
for some constant c > 0, we develop an upper

bound on ‖ξt‖2 in SI Appendix, section A.2.1 as:

‖ξt‖2 .

√
t3 log n

n
; [19]

here, ς is a threshold defined in Eq. 6. This step, which is
accomplished by means of an inductive argument, helps us
justify the validity of the decomposition Eq. 8a with small
residual terms before the crossing time ς .

• Second, with the above decomposition Eq. 8a in place, we can
readily investigate (using the derived Gaussian approximation)
how the signal strength αt evolves during the execution of
AMP (SI Appendix, section A.2.2). Crucially, recalling that ς
reflects the first time t that satisfies |αt | &

√
λ2 − 1 (cf. Eq.

6), we can use the dynamics of αt demonstrate that

ς .
log n
λ− 1

; [20]

in words, in spite of random (and hence uninformative)
initialization, it takes AMP at most O

( log n
λ−1

)
iterations to find

an informative estimate.
• Third, with the above control of ς in place, we go on to

develop a more complete upper bound on ‖ξt‖2 that covers
the iterations after ς , that is,

‖ξt‖2 .

√
t 1(t > ς) log n

n(λ− 1)2 +

√
min{t, ς}3 log n

n
, [21]
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for any t < cn(λ−1)5

log2 n
. In order words, when the number of

iterations grows larger that an order of log3 n
λ−1 , the size of the

residual scales as

‖ξt‖2 .

√
t log n

n(λ− 1)2 .

This is the main content of SI Appendix, section A.2.3,
accomplished again via an inductive argument.

• Finally, after the iteration number exceeds the threshold
ς , we demonstrate in SI Appendix, section A.2.4 that the
asymptotic state evolution (the one characterizing large-system
limits) becomes fairly accurate in the finite-sample/finite-time
regime. In particular, a connection is established between
the nonasymptotic state evolution and its asymptotic analog,
namely,

|α2
t+1 − α

?2
t+1|

α?2t+1

≤
(
1− c(λ− 1)

)
·
|α2

t − α
?2
t |

α?2t

+ O


√√√√ (t + log3 n

λ−1 ) log n
n(λ− 1)3

 , for some c > 0,

which plays a critical role in characterizing the finite-sample
convergence behavior of AMP.

Comparisons to Li and Wei (50). While Li and Wei (50) provided
a general decomposition for the AMP iterates {xt}, the theory
therein is far from sufficient when studying AMP from random
initialization. A key reason is that during the initial stage of AMP,
the signal component is vanishingly small and asymptotically
vanishing compared to the magnitude of the residual. A direct
application of ref. 50 leads to a vacuous upper bound on ‖ξt‖2
and does not reveal the effectiveness of random initialization. In
contrast, the current paper focuses on showing that the signal
component will undergo a rapid growth phase and reach a level
comparable to the noise. A crucial step of our analysis is to prove
that η(xt) ≈ αtv? + φt−1 at the initial stage, by demonstrating
that {ηt(xt)} are almost orthogonal to each other (see SI Appendix,
section B.4 for more details). Based on this approximation, we
then argue that it takes only O(log n) iterations for the signal
strength to reach a nontrivial level. Once the signal strength
has reached this level, we then proceed to uncover a new stage
in which the signal strength starts to grow exponentially fast.
Establishing all these phenomena requires fine-grained analyses
about how AMP behaves in different stages, which was not
achievable by existing analysis in ref. 50.

3. Discussions

In this paper, we have pinned down the finite-sample convergence
behavior of AMP when initialized randomly, focusing on the
prototypical Z2 synchronization problem. This algorithm has
been shown to enjoy fast global convergence, as it takes no

more than O( log n
λ−1 ) iterations to arrive at a point whose risk is

O(
√

log4 n
n(λ−1)6 ) close to Bayes optimal. Our theory offers rigorous

evidence supporting the effectiveness of randomly initialized
AMP in low-rank matrix estimation. While the present paper
concentrates on a specific choice of denoising functions tailored
to Z2 synchronization, we expect our analysis framework to be
generalizable to a broader family of separable and Lipschitz-
continuous denoising functions.

Moving forward, there is no shortage of research directions
worth exploring. One natural extension is concerned with other
structural prior about v?; for instance, it would be interesting to
see how randomly initialized AMP performs when v? is known to
satisfy general cone constraints (see e.g., refs. 59 and 60). Another
direction of interest is to go beyond the spiked Gaussian Wigner
model. A recent work along this line (61) studied the role of
random initialization for power iteration in the problem of tensor
decomposition, which leverages upon the AMP-type analysis
for analyzing tensor power methods. Can we further extend
these to understand (randomly initialized) AMP toward solving
more challenging problems like low-rank matrix completion and
tensor completion? Moreover, while AMP serves as a versatile
machinery for understanding various statistical procedures in
high dimensions, there are several alternative analysis frameworks
like the convex Gaussian min-max theorem (CGMT) (62–
64) and the leave-one-out analysis (2, 65, 66) that also prove
effective and enjoy their own benefits. Is there any effective
way to combine them so as to exploit all of their advantages
at once? Finally, moving beyond Z2 synchronization, we believe
that our nonasymptotic framework and the analysis ideas for
understanding random initialization can both be extended to
accommodate other important settings such as sparse linear re-
gression and generalized linear models (GLMs). Take generalized
approximate message passing (GAMP) for instance (27, 67),
which can often be viewed as AMP applied to asymmetric matrix
models. More specifically, given an asymmetric design matrix X ,
GAMP maintains two sequences of updates as follows

st = XFt(βt)−
〈
F ′t
〉
Gt−1(st−1),

βt+1 = X>Gt(st)−
〈
G′t
〉
Ft(βt),

thus resembling the update rule considered in the current paper.
One can then employ similar analysis ideas as in ref. 50, while in
the meantime keeping track of two sets of orthogonal bases and
two sequences of Gaussian random vectors. Once we are equipped
with the nonasymptotic decomposition for each sequence, the
role of random initialization can be understood via similar
yet more complicated arguments as the ones provided in the
current paper, given that these two sequences are intertwined
and rely heavily on each other. We leave these questions for
future investigation.
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Abstract

This document presents the supplementary information of “Approximate message passing from ran-
dom initialization with applications to Z2 synchronization” in [1]. In Section A, we lay out the main
analysis ideas for the proof of Theorem 1, with proofs of corresponding lemmas and claims deferred to
Section B. Finally, the proof for the asymptotic optimality of AMP is included in Section C.
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A Proof of Theorem 1
In this section, we present the proof of our main result: Theorem 1. We find it helpful to introduce the
following notation that helps streamline the presentation:

vt := αtv
⋆ +

t−1∑
k=1

βk
t−1ϕk. (22)
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A.1 Preliminaries
Before we embark on our proof of the main theorem, we collect a couple of useful results that shall be used
frequently throughout this proof.

Concentration results. We first record several useful concentration results from [2]. Here and throughout,
we let |x|(i) denote the magnitude of the i-th largest entry (in magnitude) of x ∈ Rn.

Lemma 1. Consider a collection of random vectors {ϕk}1≤k<t in Rn. Suppose that for each 1 ≤ k ≤ t−1 <
n, ϕk = (ϕk,1, ϕk,2, . . . , ϕk,n) is i.i.d. drawn from N

(
0, 1

nIn
)
. Consider the following set

Es :=

{
{ϕk}t−1

k=1 : max
1≤k≤t−1

∥ϕk∥2 < 1 + C

√
log n

δ

n

}⋂{
{ϕk}t−1

k=1 : sup
a∈St−2

∥∥∥ t−1∑
k=1

akϕk

∥∥∥
2
< 1 + C

√
t log n

δ

n

}
⋂{

{ϕk}t−1
k=1 : sup

a∈St−2

s∑
i=1

∣∣∣ t−1∑
k=1

akϕk

∣∣∣2
(i)

<
C(t+ s) log n

δ

n

}⋂{
{ϕk}t−1

k=1 : max
1≤k<t,1≤i≤n

|ϕk,i| < C

√
log n

δ

n

}
,

and denote E :=
⋂n

s=1 Es. Then there exists some large enough constant C > 0 such that, for every δ > 0,

P
(
{ϕk}t−1

k=1 ∈ E
)
≥ 1− δ.

In particular, by setting δ = n−11, we see that the following event happens with probability at least 1−O(n−11):∣∣∣∣ max
1≤k≤t−1

∥ϕk∥2 − 1

∣∣∣∣ ≲
√

log n

n
, and max

1≤k≤t,1≤i≤n
|ϕk,i| ≲

√
log n

n
.

This lemma is a consequence of standard concentration of measure for Gaussian random vectors [3]; its proof
can be found in [2, Section D.1.1] and is hence omitted for brevity.

Properties of ηt, πt, and γt (cf. (3)). Next, we summarize several basic properties about the three sets
of key quantities defined in (3). We begin by gathering several basic properties for our choices of πt and γt
defined in (3); the proof is deferred to Section B.1.

Lemma 2. Suppose the decomposition (8a) is valid with ∥ξt−1∥2 ≲ 1. With probability at least 1−O(n−10),
the following properties hold true:

1√
n
πt = |αt|+O

((
∥ξt−1∥2 +

√
t log n

n

)1/2

∧ 1

|αt|

(
∥ξt−1∥2 +

√
t log n

n

))
; (23a)

γ−2
t = n

∫
tanh2

(
πt√
n
(αt + x)

)
φ(dx) + π2

tO

(
∥ξt−1∥2 +

√
t log n

n

)
. (23b)

Additionally, one has ∫
tanh2

(
πt√
n
(αt + x)

)
φ(dx) =

π2
t

n
(α2

t + 1) +O

(
π4
t

n2

)
, (23c)

which in turn implies that

γ−2
t = π2

t

(
α2
t + 1 +O

(
π2
t

n
+ ∥ξt−1∥2 +

√
t log n

n

))
. (23d)

Next, let us single out several properties about the quantity ηt in the lemma below, whose proof is
postponed to Section B.2.
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Lemma 3. Consider any 1 ≤ t ≤ n and suppose that ∥ξt−1∥2 satisfies

∥ξt−1∥2 ≲

√
t3 log n

n
for all t ≲

log n

λ− 1
. (24)

Then the following properties hold true with probability at least 1−O(n−11):

• If t ≲ n(λ−1)4

log2 n
and ∥ξt−1∥2 ≲ 1√

logn
, then any x ∈ R obeys

|ηt(x)| ≲ |x|, |η′t(x)| ≲ 1 =: ρ, |η′′t (x)| ≲
√
n =: ρ1, |η(′′′)t (x)| ≲ n =: ρ2; (25a)

• If t ≲ logn
λ−1 and αt ≲

√
λ− 1n−0.1, then one has πt ≲

√
λ− 1n0.4; and for any x obeying |x| ≲√

log n/n, we have

η′t(x) = 1 +O
(
(λ− 1)n−0.2 log n

)
and |η′′t (x)| ≲ (λ− 1)n0.8|x|; (25b)

• If t ≲ logn
λ−1 and αt ≲

√
λ− 1n−1/4, then one has πt ≲ (λ− 1)−3/4n1/4 log n; for any x, one can find a

quantity c0 ≲ (log2 n)/
√
n(λ− 1)3 independent from x, and another quantity |cx| ≲ n|x|5(log4 n)/(λ−

1)3 depending on x, such that

ηt(x) = (1− c0)

(
x− 1

3
π2
t x

3 + cx

)
. (25c)

A.2 Non-asymptotic analysis for the AMP dynamics
We are now in a position to present the proof of our main theorem. Let us recap that the structure of our
proof is outlined in what follows.

• Firstly, focusing on the initial stage obeying t ≤ ς ∧ logn
c(λ−1) , we develop an upper bound on ∥ξt∥2 in

Section A.2.1 as follows:

∥ξt∥2 ≲

√
t3 log n

n
; (26)

here, ς is a threshold defined in (6) and c > 0 is some constant small enough. This is accomplished by
means of an inductive argument.

• Secondly, we investigate in Section A.2.2 how the signal strength αt evolves during the execution of
AMP. Crucially, recalling that ς reflects the first time t that satisfies |αt| ≳

√
λ2 − 1 (cf. (6)), we

demonstrate that

ς ≲
log n

λ− 1
; (27)

in words, in spite of random (and hence uninformative) initialization, it takes AMP at most O
(
logn
λ−1

)
iterations to find an informative estimate.

• Thirdly, with the above control of ς in place, we go on to develop a more complete upper bound on
∥ξt∥2 that covers the iterations after ς, that is,

∥ξt∥2 ≲

√
t1(t > ς) log n

n(λ− 1)2
+

√
min{t, ς}3 log n

n
(28)

for any t < cn(λ−1)5

log2 n
. This is the main content of Section A.2.3, accomplished again via an inductive

argument.

• Finally, after the iteration number exceeds the threshold ς, we demonstrate in Section A.2.4 that the
asymptotic state evolution (the one characterizing large-system limits) becomes fairly accurate in the
finite-sample/finite-time regime. In particular, an intimate connection is established between the non-
asymptotic state evolution and its asymptotic analog, which plays a critical role in characterizing the
finite-sample convergence behavior of AMP.

These four steps will be explained in detail in the sequel.
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A.2.1 Controlling ξt when t ≤ ς ∧ logn
c(λ−1) (Proof of Claim (26))

In this subsection, we establish the claimed bound (26) for ∥ξt∥2, which leverages on ideas from [2]. To
begin with, let us restate [2, Theorem 2] below, with slight simplification tailored to Z2 synchronization (i.e.,
through the use of the properties ∥βt∥22 = 1, Et = 0, and (25a)). For notational convenience, define κt > 0
such that

κ2
t := max

{〈∫ [
xη′t

(
αtv

⋆ +
1√
n
x

)
− 1√

n
η′′t

(
αtv

⋆ +
1√
n
x

)]2
φn(dx)

〉
,〈∫ [

η′t

(
αtv

⋆ +
1√
n
x

)]2
φn(dx)

〉}
,

(29)

where we recall that φn(·) is the p.d.f. of N (0, In) and for any vector x = [xi]1≤i≤n, we denote ⟨x⟩ :=
1
n

∑n
i=1 xi and x2 = [x2

i ]1≤i≤n. We shall work with the following assumptions.

Assumption 1. For any 1 ≤ t ≤ n, consider arbitrary vectors µt ∈ St−1, ξt−1 ∈ Rn, and coefficients
(αt, βt−1) ∈ R×Rt−1 that might all be statistically dependent on ϕk. Let vt be defined as in (22). We assume
the existence of (possibly random) quantities At, Bt, Dt such that with probability at least 1 − O(n−11), the
following inequalities hold: ∣∣∣∣ t−1∑

k=1

µk
t

[〈
ϕk, ηt(vt)

〉
−
〈
η′t(vt)

〉
βk
t−1

]∣∣∣∣ ≤ At, (30a)∣∣∣∣v⋆⊤ηt(vt)− v⋆⊤
∫

ηt

(
αtv

⋆ +
∥βt−1∥2√

n
x
)
φn(dx)

∣∣∣∣ ≤ Bt, (30b)∥∥∥∥ t−1∑
k=1

µk
t ϕk ◦ η′t(vt)−

1

n

t−1∑
k=1

µk
t β

k
t−1η

′′
t (vt)

∥∥∥∥2
2

− κ2
t ≤ Dt. (30c)

Under these assumptions, [2, Theorem 2] developed a general non-asymptotic characterization for AMP
iterates as follows.

Proposition 1. [Adapted from [2, Theorem 2]] Suppose that Assumption 1 holds, and consider any t ≤ n.
With probability at least 1 − O(n−11), the AMP iterates (2) for Z2-synchronization satisfy the decomposi-
tion (8a) with ∥βt∥22 = 1 and

αt+1 = λv⋆⊤
∫

ηt

(
αtv

⋆ +
1√
n
x

)
φn(dx) + ∆α,t (31)

where the residual terms obey

|∆α,t| ≲ Bt +
∣∣v⋆⊤ηt(xt)− v⋆⊤ηt(vt)

∣∣ ≲ Bt + ∥ξt−1∥2, (32a)

∥ξt∥2 ≤
√
κ2
t +Dt ∥ξt−1∥2 +O

(√
t log n

n
+At +

√
(1 + t1t≤ς) log n ∥ξt−1∥22 +

√
t log n

n
∥ξt−1∥2

)
. (32b)

Remark 1. With regards to the above bound (32b) for ∥ξt∥2, a direct application of [2, Theorem 2] results
in a term

√
t log n ∥ξt−1∥22 (as opposed to

√
(1 + t1t≤ς) log n ∥ξt−1∥22 in (32b)). We make slight modifications

here to make it better-suited for the current setting.

(i) When t ≤ ς, such a term
√
t log n ∥ξt−1∥22 works fine for our purpose;

(ii) When t > ς (so that αt exceeds the order of
√
λ2 − 1), one can simply invoke [2, display (249)] to

improve the factor in front of ∥ξt−1∥22 from
√
t log n to

√
log n.

Putting these together leads to the claimed bound (32b). Notably, this seemingly minor change turns out
to be essential in order to push the number of iterations to O(n/poly(log n)) instead of O(

√
n/poly(log n)).
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With Proposition 1 in mind, in order to control |∆α,t| and ∥ξt∥2, it boils down to determining At, Bt, Dt,
and κt, respectively.

• Bounding At, Bt, Dt. Repeating the same analysis as in [2, Section D.2], we obtain

At ≲

√
t log n

n
, Bt ≲

√
t log n

n
, Dt ≲

√
t log2 n

n
. (33)

The only term that needs more discussion is At, as [2] only proved that At ≲ 1
αt

√
t logn

n (taking s = 1

therein) for AMP with independent initialization. To get rid of the prefactor 1/αt, we rely on an
improved control of ηt(x) (cf. (25a)). In particular, property (25a) tells us that

∥ηt(vt)∥2 ≲ ∥vt∥2 =
∥∥∥αtv

⋆ +

t−1∑
k=1

βk
t−1ϕk

∥∥∥
2
≲ 1,

where the last inequality can be found in display (90). In turn, this leads to

∥∇Φfθ(Φ)∥2 ≲
1√
n

(34)

through the same analyses as detailed around [2, Section D.2.1, inequality (229)]. Here, ∇Φfθ(Φ) is
the key quantity to control At in [2, Section D.2.1], and our desired bound for At follows immediately.
Given that this only consists of very minor and straightforward changes to [2, Section D.2.1], we omit
the details for brevity and refer the readers to [2, Section D.2.1] for more details.

• Bounding κt. The main step then comes down to bounding κt. Towards this end, we claim that the
following relation holds for κt, whose proof is postponed to Section B.3.

Lemma 4. With probability at least 1−O(n−10), the following results hold true:

– Under the inductive assumption (26) for ξt−1, one has

κt ≤ 1 + o
(λ− 1

log n

)
(35a)

provided that t ≤ ς ∧ logn
c(λ−1) ;

– Under the inductive assumption (28) for ξt−1, one has

κt ≤ 1− 1

15
(λ− 1), (35b)

provided that t ≤ cn(λ−1)5

log2 n
and |αt| ≳

√
λ2 − 1.

With the above estimates of At, Bt, Dt, κt in place, we are ready to apply Theorem 1. Under the inductive
assumption (26), the recursive formula (32) in Theorem 1 taken together with (33) yields

∥ξt∥2 ≤

√√√√
κt +

√
t log2 n

n
∥ξt−1∥2 +O

(√
t log n

n
+
√

(1 + t1t≤ς) log n ∥ξt−1∥22 +
√

t log n

n
∥ξt−1∥2

)
, (36)

which combined with (35) further implies that

∥ξt∥2 ≤

1 + o
(λ− 1

log n

)
+O

(√
t4 log2 n

n

) ∥ξt−1∥2 +O
(√ t log n

n

)
, (37)
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with the proviso that t ≤ ς ∧ logn
c(λ−1) .

We are now ready to prove relation (26) via induction. To verify its validity for the base case (i.e. t = 1),
we note that by construction (see, e.g. [2, Step 3, Proof of Theorem 1]), ξ1 takes the form

ξ1 =
(√2

2
− 1
)
z1z

⊤
1 Wz1, where z1 = η1(x1) is independent of W.

Elementary calculations reveal that, with probability at least 1−O(n−11),

∥ξ1∥2 =
∣∣∣√2

2
− 1
∣∣∣ · ∥z1∥2 · |z⊤1 Wz1| ≲

√
log n

n
, (38)

given that ∥z1∥2 = 1 and z⊤1 Wz1 ∼ N (0, 2
nIn). This already establishes (26) for the base case with t = 1.

Next, consider the case where t ≤ ς ∧ logn
c(λ−1) for some small enough constant c > 0. Given that

√
t4 log2 n

n =

o( λ−1
logn ) under our assumption on λ− 1, the recursive relation (37) immediately leads to

∥ξt∥2 ≤
(
1 + o

(λ− 1

log n

))
∥ξt−1∥2 +O

(√ t log n

n

)
≤
(
1 + o

(λ− 1

log n

))t−1

∥ξ1∥2 +
t−2∑
j=0

(
1 + o

(λ− 1

log n

))j

O
(√ (t− j) log n

n

)
≲

√
t3 log n

n
(39)

for all t ≤ ς ∧ logn
c(λ−1) , as claimed.

Remark 2. Careful readers might note that the recursive formula established in (37) for t ≤ ς ∧ logn
c(λ−1) does

not rely on the relation (27) (a relation that shall be established in the next subsection).

A.2.2 Evolution of αt and a bound on ς (Proof of Claim (27))

We now move on to establish the claim (27) concerning an upper bound on the threshold ς, which requires
careful analysis about how the signal strength αt evolves at the initial stage. Towards this end, we divide
into two cases based on the magnitude of αt, which we shall detail after presenting several preliminary facts.

Preliminary facts. Before proceeding, we first recall some additional preliminary facts already established
in [2]. From the analysis of [2, Theorem 1], we know that: by construction,

ξt ∈ span(Ut−1) = span
{
η1(x1), . . . , ηt−1(xt−1)

}
, (40)

where Ut−1 ∈ Rn×(t−1) is a matrix whose columns are formed by a set of orthonormal basis {z1, . . . , zt−1}.
In fact, we can specify Ut in a more explicit manner. Following [2, Section 4.1], let us define

z1 :=
η1(x1)

∥η1(x1)∥2
∈ Rn and W1 := W ∈ Rn×n, (41a)

which are statistically independent from each other; and then any 2 ≤ t ≤ n, we can define the following
objects recursively:

Ut−1 := [zk]1≤k≤t−1 ∈ Rn×(t−1), (41b)

and also

zt :=

(
In − Ut−1U

⊤
t−1

)
ηt(xt)∥∥(In − Ut−1U⊤

t−1

)
ηt(xt)

∥∥
2

, (41c)

Wt :=
(
In − zt−1z

⊤
t−1

)
Wt−1

(
In − zt−1z

⊤
t−1

)
, (41d)
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where {xt} is the sequence generated by the AMP updates (2). This process thus leads to more explicit
forms for {Ut} and the orthonormal basis {zt} (see [2, Section 4.1] for the orthonormality of {zt}). What is
more, the orthonormality of {zt} reveals the decomposition

ηt(xt) =

t∑
k=1

βk
t zk, with βk

t := ⟨ηt(xt), zk⟩, (42)

which satisfies ∥ηt(xt)∥2 = ∥βt∥2 with βt = [β1
t , . . . , β

t
t ]. Additionally, we find it convenient to generate

ϕk := Wkzk + ζk, where ζk :=
(√2

2
− 1
)
z⊤k Wkzk · zk +

k−1∑
i=1

gki zi, 1 ≤ k ≤ n, (43)

where the gki ’s are independently drawn from N (0, 1
n ). The following properties have been shown in [2,

Lemma 2], which play a crucial role in our subsequent analysis:

• ϕk
i.i.d∼ N (0, 1

nIn), for 1 ≤ k ≤ n;

• The randomness of ϕk only comes from Wk, and ϕk is independent of x1 and {zi}i<k.

• xk and zk are conditionally independent from Wk given {zi}i<k and x1.

• ϕk is independent from {xj}j≤k and {zj}j≤k.

Stage I: small correlation (|αt| ≲
√
λ− 1n−1/4). Let us start from the very beginning when the corre-

lation coefficient αt is reasonably small. Towards this, we define a threshold τ0 such that

τ0 := max
{
τ : |αt| ≲

√
λ− 1n−1/4 for all t ≤ τ

}
; (44)

in words, τ0 + 1 represents the first term that exceeds the level of
√
λ− 1n−1/4. In the following, we would

like to prove that, with probability at least 1−O(n−10), this threshold is not too large in the sense that

τ0 ≲
log n

λ− 1
. (45)

Proof of Claim (45). In order to establish this result (45), we first state an important claim: the AMP
iterates — when initialized at a random point — satisfy the following recursive relation with high probability:

αt+1 = λt−k+1αk +

t−k+1∑
i=1

λigt−i +O

(
λt−k log4 n

n3/4(λ− 1)1.5

)
(46)

for any 1 ≤ k ≤ t, where we denote

gk := v⋆⊤ϕk (1 ≤ k ≤ t) and g0 = 0. (47)

This claimed relation lies at the heart of the analysis for Stage I, in which the correlation between the AMP
iterate and v⋆ keeps growing to a non-trivial value. To streamline the presentation, we defer the proof of
this claim to Section B.4.

Equipped with the above recursive formula (46), we now turn to proving the relation (45). Define
ti := C ′i log n for some quantity C ′ = C′′

λ−1 , where C ′′ is some large enough constant. Observe that

P
(
|αk| ≲

√
λ− 1

n1/4
, for all k ≤ 201C ′ log n

)
≤ P

(
|αti+1| ≲

√
λ− 1

n1/4
, for all 1 ≤ i ≤ 200

)
=

200∏
i=1

P
(
|αti+1| ≲

√
λ− 1

n1/4

∣∣∣ |αtj+1| ≲
√
λ− 1

n1/4
, ∀1 ≤ j < i

)
.
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To control the right-hand side of the above relation, consider the following random variable

Xi :=

C′ logn∑
j=1

λjgti−j ∼ N

(
0,

λ2C′ logn+2 − λ2

n(λ2 − 1)

)
(48)

for each 1 ≤ i ≤ 200. Armed with this piece of notation, invoking relation (46) gives

αti+1 = λti−ti−1αti−1+1 +Xi +O

(
λti−ti−1−1 log4 n

n3/4(λ− 1)1.5

)
. (49)

As mentioned in the above preliminary facts, each ϕj is independent with the AMP iterate xi for i ≤ j and
therefore αi+1, given that αi+1 = v⋆⊤ηi(xi). As a result, the random variable Xi defined above is independent
from αtj+1 for all j ≤ i− 1. Taking this together with the relation (46) then leads to

P
(
|αti+1| ≲

√
λ− 1

n1/4

∣∣∣ |αtj+1| ≲
√
λ− 1

n1/4
, 1 ≤ j < i

)
≤ P

(
|λti−ti−1αti−1+1 +Xi| ≲

√
λ− 1

n1/4
+ λti−ti−1−1 log4 n

n3/4(λ− 1)1.5

∣∣∣ |αtj+1| ≲
√
λ− 1

n1/4
, 1 ≤ j < i

)
= P

(
|λti−ti−1αti−1+1 +Xi| ≲

√
λ− 1

n1/4
+ λC′ logn log4 n

n3/4(λ− 1)1.5

∣∣∣ |αti−1+1| ≲
√
λ− 1

n1/4

)
≤ P

(
|Xi| ≲

√
λ− 1

n1/4
+ λC′ logn log4 n

n3/4(λ− 1)1.5

)
. (50)

Here, the penultimate line follows from the independence relation stated above, whereas the last line follows
from the elementary fact that

PX∼N (µ,σ2) (|X| < x) ≤ PX∼N (0,σ2) (|X| < x) , ∀x > 0.

Putting these pieces together, we conclude that

P
(
|αk| ≲

√
λ− 1

n1/4
, for all k ≤ 201C ′ log n

)
≤

200∏
i=1

P

(
|Xi| ≲

√
λ− 1

n1/4
+

λC′ logn log4 n

n3/4(λ− 1)1.5

)

=

200∏
i=1

P

(√
n(λ2 − 1)

λ2C′ logn+2 − λ2
|Xi| ≲

(λ− 1)n1/4

λC′ logn
+

log4 n

n1/4(λ− 1)

)

≲
( log4 n

n1/4(λ− 1)

)200
≲ n−11, (51)

where we invoke the distribution of Xi in expression (48), and the last inequality results from the assumption
that λ− 1 ≳ n−1/9. Therefore, the above inequality guarantees that with probability at least 1− O(n−10),
there exists some k ≲ logn

λ−1 such that

|αk| ≳
√
λ− 1n−1/4. (52)

It thus implies that τ0 ≲ logn
λ−1 (see the definition (44)), as claimed in (45). In other words, after at most

O( logn
λ−1 ) iterations, |αt| shall surpass the order of

√
λ− 1n−1/4.

Stage II: moderate-to-large correlation (
√
λ− 1n−1/4 ≲ |αt| ≤ 1

2

√
λ2 − 1). Next, let us look at

the time interval after |αt| surpasses the level of
√
λ− 1n−1/4 but before it reaches the level of 1

2

√
λ2 − 1.

Mathematically, this refers to the interval (τ0, ς], where τ0 and ς are defined in (44) and (6), respectively. In
fact, we shall start by examining

t ∈
(
τ0, ς ∧

c5 log n

λ− 1

]
(53)

8



for some constant c5 > 0; we shall demonstrate that ς ≲ logn
λ−1 shortly.

In view of Theorem 1 and the bounds (33), we can write

αt+1 = λv⋆⊤
∫

ηt

(
αtv

⋆ +
1√
n
x

)
φn(dx) + ∆α,t, (54)

where the residual term obeys

|∆α,t| ≲
√

t log n

n
+
∣∣v⋆⊤ηt(xt)− v⋆⊤ηt(vt)

∣∣. (55)

We first make a claim concerned with a refined recursive relation for αt+1:

|αt+1| ≥
λ|αt|√
α2
t + 1

+ o
(
(λ− 1)|αt|

)
+O(|∆α,t|); (56)

the proof of this result is postponed to Section B.5. Observe that whenever αt <
1
2

√
λ2 − 1, it holds that(

λ√
1 + α2

t

)2

≥ λ2

1
4λ

2 + 3
4

> 1 +
1

3
(λ− 1), for λ ∈ (1, 1.2], (57)

which when taken together with expression (56), implies

|αt+1| ≥

(√
1 +

1

3
(λ− 1) + o(λ− 1)

)
|αt|+O(|∆α,t|). (58)

In addition, we claim that for every t ≤ τ ′ where τ ′ := min{t : αt ≥ (λ− 1)−3/4n−1/4}, it satisfies

|∆α,t| ≪ (λ− 1)|αt|, (59)

which we shall establish in Section B.6. With the relations (58) and (59) in place, it obeys |ατ ′+1| ≥ |ατ ′ |.
Moreover, observe that the bound (55) taken together with (39) ensures that

|∆α,τ ′+1| ≲
√

(τ ′ + 1)3 log n

n
≪ (λ− 1)|ατ ′+1|. (60)

Invoking this argument recursively, we thus arrive at

|αt+1| ≥

(√
1 +

1

3
(λ− 1) + o(λ− 1)

)
|αt|.

Now taking the above recursive relation collectively with the assumption λ− 1 ≳ n−1/9 reveals that |αt|
surpasses 1

2

√
λ2 − 1 within at most O

(
logn
λ−1

)
iterations. Therefore, recalling our definition (6) of ς, we can

readily conclude that

ς = O

(
log n

λ− 1

)
. (61)

A.2.3 A more complete bound for ξt (Proof of Claim (28))

We now move on to establish claim (28) for any t obeying ς < t < cn(λ−1)5

log2 n
(recall from (61) that ς =

O
(
logn
λ−1

)
), again via an inductive argument. Along the way, we also need to demonstrate that

|αt| ≥
1

2

√
λ2 − 1 (62)

within this stage (namely, once |αt| exceeds 1
2

√
λ2 − 1, the signal strength will never fall below this level).

9



To begin with, the claim (28) for the base case t = ς has already been validated in expression (39); the
condition (62) also holds with high probability when t = ς. Next, assuming that the claim (28)) holds up till
iteration t− 1, we would like to establish its validity for time t. Towards this end, inequality (36) together
with Lemma 4 tells us that

∥ξt∥2 ≤

√√√√
κt +

√
t log2 n

n
∥ξt−1∥2 +O

(√
t log n

n
+
√
(1 + t1t≤ς) log n ∥ξt−1∥22 +

√
t log n

n
∥ξt−1∥2

)

≤

√√√√
1− 1

15
(λ− 1) +

√
t log2 n

n
∥ξt−1∥2 +O

(√
t log n

n

)

+O

(√
(1 + t1t≤ς) log n

(√
t1t>ς log n

n(λ− 1)2
+

√
min{t, ς}3 log n

n

)
+

√
t log n

n

)
∥ξt−1∥2

≤

1− 1

15
(λ− 1) +O

(√( t
(λ−1)2 + ς3

)
log2 n

n

) ∥ξt−1∥2 +O
(√ t log n

n

)
, (63)

where the second line comes from (35b) and the induction hypothesis (28) for t− 1. In addition, the validity
of (62) for αt+1 in the (t+ 1)-th iteration can be justified as well, which we shall detail in Section B.7.

With the above recursive relation in mind, recognizing
√

(t/(λ−1)2+ς3) log2 n
n ≤ 2c(λ−1) for some constant

c > 0 small enough, we can readily derive

∥ξt∥2 ≤
(
1− 1

20
(λ− 1)

)
∥ξt−1∥2 +O

(√ t log n

n

)
≤
(
1− 1

20
(λ− 1)

)t−ς

∥ξς∥2 +
t−ς−1∑
j=0

(
1− 1

20
(λ− 1)

)j

O
(√ (t− j) log n

n

)

≲

√
ς3 log n

n
+

√
t log n

n(λ− 1)2
(64)

for all ς ≤ t ≤ cn(λ−1)5

log2 n
. Combining this with the bound (39) (for t ≤ ς) immediately establishes Claim (28)

for all t ≤ cn(λ−1)5

log2 n
.

A.2.4 Analysis for approximate state evolution (Proof of Property (10))

Once the signal strength αt reaches the order of
√
λ2 − 1, AMP enters the stage of local refinement. According

to (28) and (27), for any t ≤ cn(λ−1)5

log2 n
, the AMP iterate xt admits the decomposition (8a) with the error

term bounded by

∥ξt∥2 ≲

√
(t+ log3 n

λ−1 ) log n

n(λ− 1)2
. (65)

In the meantime, to describe how αt evolves, we bound ∆α,t based on the relation (32a) as follows:

|∆α,t| ≲ Bt + ∥ξt−1∥2 ≲

√
(t+ log3 n

λ−1 ) log n

n(λ− 1)2
, (66)

where the last inequality arises from (33). Combining this with relation (31) leads to

αt+1 = λv⋆⊤
∫

ηt

(
αtv

⋆ +
1√
n
x

)
φn(dx) +O

√ (t+ log3 n
λ−1 ) log n

n(λ− 1)2

 .

10



Next, we shall characterize the distance between αt+1 and its asymptotic counterpart to further under-
stand the evolution of αt+1. More specifically, recall that the asymptotic state evolution is defined as

α⋆
t+1 = λ

[∫
tanh

(
α⋆
t (α

⋆
t + x)

)
φ(dx)

]1/2
, (67)

assuming we start from α⋆
ς = |ας | for some ς = O

(
logn
λ−1

)
. We aim to control the difference between αt+1

and α⋆
t+1. To simplify the presentation, we assume without loss of generality that αt > 0, and employ the

notation
τt :=

(
α⋆
t

)2
.

To begin with, the same analysis as in the proof of claim (56) (with different error bound (66) here) gives

αt+1 = λ

[∫
tanh

(
α2
t + αtx

)
φ(dx)

]1/2
+O

∣∣∣∣ π2
t

α2
tn

− 1

∣∣∣∣α3
t +

√
(t+ log3 n

λ−1 ) log n

n(λ− 1)2


= λ

[∫
tanh

(
α2
t + αtx

)
φ(dx)

]1/2
+O

√ (t+ log3 n
λ−1 ) log n

n(λ− 1)2

 . (68)

Here, the last line follows from inequality (23a) which indicates

(
πt√
n

)2

= α2
t +O

(
∥ξt−1∥2 +

√
t log n

n

)
= α2

t +O

√ (t+ log3 n
λ−1 ) log n

n(λ− 1)2

 .

It then follows from relations (68) and (67) that

α2
t+1 − τt+1

τt+1
=

∫ [
tanh

(
α2
t + αtx

)
− tanh

(
τt +

√
τtx
)]

φ(dx)∫
tanh

(
τt +

√
τtx
)
φ(dx)

+O

√ (t+ log3 n
λ−1 ) log n

n(λ− 1)3

 . (69)

Here, we remind the readers that (see also (116) and [4, Appendix B.2])∫
tanh

(
α2 + αx

)
φ(dx) =

∫
tanh2

(
α2 + αx

)
φ(dx) ≍ α2, for α ∈ (0, λ],

where the last inequality results from relation (116). The recursive formula (69) quantifies how the difference
between αt and α⋆

t changes over time, which plays a key role in our following analysis.
In order to better understand the above recursion, let us define — for every τ ∈ [0, λ2] — that

h(τ) :=

∫
tanh

(
τ +

√
τx
)
φ(dx).

Armed with this function, one can write

α⋆2
t+1 = λ2h(α⋆2

t ). (70)

Also, direct calculations yield

h′(τ) :=

∫ (
1 +

x

2
√
τ

) (
1− tanh2

(
τ +

√
τx
))

φ(dx) ∈ (0, 1),

where its range follows from display (263) in [2, Section D.3.3]. We make note of a few direct consequences
of the above results.

• Recognizing that h′(τ) > 0, one has α⋆
t+1 > α⋆

t ≳
√
λ2 − 1 for t ≥ ς.
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• In view of display (264) in [2, Section D.3.3], we have 0 ≤ λ2h′(τ) ≤ 1− (λ− 1). If we define α⋆ to be
the limiting point of (67) (as t → ∞)), we can then see that

|α⋆2
t+1 − α⋆2| ≤

(
1− (λ− 1)

)
· |α⋆2

t − α⋆2|, for t ≥ ς. (71)

In other words, the asymptotic state evolution parameter α⋆2
t converges exponentially to some fixed

point α⋆2.

• In light of the above notation, we can also write

|α2
t+1 − τt+1|
τt+1

=
|h(α2

t )− h(τt)|
h(τt)

+O

√ (t+ log3 n
λ−1 ) log n

n(λ− 1)3


=

h′(τ)

h(τt)/τt
· |α

2
t − τt|
τt

+O

√ (t+ log3 n
λ−1 ) log n

n(λ− 1)3

 (72)

for some τ satisfying min{τt, α2
t } ≤ τ ≤ max{τt, α2

t }.

We first prove that α2
t = (1 + o(1))τt. By definition, α⋆

ς = ας ≳
√
λ2 − 1, and hence this claim holds

trivially for t = ς. Next, assuming the validity of the inductive assumption α2
t = (1 + o(1))τt, we would like

to prove it for the (t+1)-th step. Towards this end, we first claim that there exists some universal constant
c > 0 small enough such that

h′(τ)

h(τt)/τt
≤ 1− c(λ− 1), (73)

whose proof is postponed to Section B.9. This further allows us to derive

|α2
t − τt|
τt

≲

√
(t+ log3 n

λ−1 ) log n

n(λ− 1)5
, (74)

which we shall demonstrate via an inductive argument. Given that (74) holds trivially when t = ς, we intend
to establish (74) for the (t+ 1)-th iteration, assuming that it holds for all s ≤ t. To do so, we combine (73)
and (72) to show that

|α2
t+1 − τt+1|
τt+1

≤
(
1− c(λ− 1)

)
· |α

2
t − τt|
τt

+O

√ (t+ log3 n
λ−1 ) log n

n(λ− 1)3


=
(
1− c(λ− 1)

)t+1−ς ·
|α2

ς − τς |
τς

+O

t−1∑
k=ς

(
1− c(λ− 1)

)t−k

√
(k + log3 n

λ−1 ) log n

n(λ− 1)3


≤

t−1∑
k=ς

(
1− c(λ− 1)

)t−k ·O

√ (t+ log3 n
λ−1 ) log n

n(λ− 1)3


≲

√
(t+ log3 n

λ−1 ) log n

n(λ− 1)5
, (75)

where the second line is obtained by applying (74) recursively. Hence, it also leads to α2
t+1 = (1+ o(1))τt+1,

which concludes the inductive assumption for the (t + 1)-th iteration. Putting the above results together
with expression (71) also gives

|α2
t+1 − α⋆2| =

(
1− (λ− 1)

)t−ς · |α⋆2
ς − α⋆2|+ α⋆2

t+1O

√ (t+ log3 n
λ−1 ) log n

n(λ− 1)5


≲
(
1− (λ− 1)

)t−ς
+

√
(t+ log3 n

λ−1 ) log n

n(λ− 1)5
. (76)
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B Proof of auxiliary lemmas and claims

B.1 Proof of Lemma 2
Proof of property (23a). Recall that πt :=

√
n(∥xt∥22 − 1) ∨ 1. To show property (23a), the first step is

to calculate ∥xt∥2. Notice that for independent Gaussian vectors ϕk ∼ N
(
0, 1

nIn
)
, one has

v⋆⊤ [ϕ1, . . . , ϕt−1] ∼ N
(
0,

1

n
It−1

)
,

given that ∥v⋆∥2 = 1. Therefore, it is easily seen that

∣∣∣〈v⋆, t−1∑
k=1

βk
t−1ϕk

〉∣∣∣ = ∣∣∣〈v⋆⊤ [ϕ1, . . . , ϕt−1] ,
[
β1
t−1, . . . , β

t−1
t−1

]〉∣∣∣ ≤ ∥∥∥v⋆⊤ [ϕ1, . . . , ϕt−1]
∥∥∥
2
∥βt−1∥2

≲

√
t log n

n
(77)

with probability at least 1−O(n−11). Combining inequalities (77) and (89), we reach

∥vt∥22 =

∥∥∥∥∥αtv
⋆ +

t−1∑
k=1

βk
t−1ϕk

∥∥∥∥∥
2

2

= ∥αtv
⋆∥22 +

∥∥∥∥∥
t−1∑
k=1

βk
t−1ϕk

∥∥∥∥∥
2

2

+ 2

〈
αtv

⋆,

t−1∑
k=1

βk
t−1ϕk

〉

= α2
t + 1 +O

(√
t log n

n

)
≍ 1, (78)

which in turn leads to

∥xt∥22 =
(
∥vt∥2 +O(∥ξt−1∥2)

)2
= α2

t + 1 +O

(
∥ξt−1∥2 +

√
t log n

n

)
. (79)

Based on the above properties, we can also derive that

√
n(∥xt∥22 − 1) =

√√√√n

(
α2
t +O

(
∥ξt−1∥2 +

√
t log n

n

))
≤

√
n |αt|+O

√n

(
∥ξt−1∥2 +

√
t log n

n

)
=

√
n

(
|αt|+O

((
∥ξt−1∥2 +

√
t log n

n

)1/2))
. (80)

where the first inequality based on the fact that
√
a+ b ≤

√
a +

√
b for a, b ≥ 0. In particular, if α2

t ≲

∥ξt−1∥2 +
√

t logn
n , then the basic relation

√
a+ b =

√
a + O(

√
b) (0 ≤ a ≲ b) enables us to replace “≤” in

(81) with “=” to obtain√
n(∥xt∥22 − 1) =

√
n

(
αt +O

((
∥ξt−1∥2 +

√
t log n

n

)1/2))
. (81)

In contrast, if α2
t ≳ ∥ξt−1∥2 +

√
t logn

n , then the basic relation
√
a+ b =

√
a+O( b√

a
) (0 ≤ b ≲ a) yields

√
n(∥xt∥22 − 1) =

√√√√n

(
α2
t +O

(
∥ξt−1∥2 +

√
t log n

n

))
=

√
n|αt|

√√√√1 +
1

α2
t

O

(
∥ξt−1∥2 +

√
t log n

n

)

=
√
n

(
|αt|+

1

|αt|
O

(
∥ξt−1∥2 +

√
t log n

n

))
.

(82)
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The preceding two bounds taken collectively demonstrate that√
n(∥xt∥22 − 1) =

√
n|αt|+

√
n

{
1

|αt|
O

(
∥ξt−1∥2 +

√
t log n

n

)
∧ O

((
∥ξt−1∥2 +

√
t log n

n

)1/2)}
.

The above bound also leads to the desired form (23a) for πt when
√
n(∥xt∥22 − 1) ≥ 1. Consequently, it

remains to examine the case where
√

n(∥xt∥22 − 1) < 1, which clearly can only happen if

c10|αt| ≤
(
∥ξt−1∥2 +

√
t log n

n

)1/2

for some sufficiently small constant c10 > 0. But in this situation, we still have

πt = 1 ≲
√
n

(
∥ξt−1∥2 +

√
t log n

n

)1/2

≍
√
n

(
|αt|+O

((
∥ξt−1∥2 +

√
t log n

n

)1/2))

≍
√
n|αt|+

√
n

{
O

((
∥ξt−1∥2 +

√
t log n

n

)1/2)
∧ 1

|αt|
O

(
∥ξt−1∥2 +

√
t log n

n

)}
,

and hence the claimed bound is still valid.

Proof of property (23b). First recall the definition γ−2
t := ∥ tanh(πtxt)∥22. Towards establishing prop-

erty (23b), consider the following difference∣∣∣∣∥tanh(πtxt)∥22 −
∫ ∥∥∥ tanh( πt√

n
(αt + x)

)∥∥∥2
2
φn(dx)

∣∣∣∣
≤
∣∣∣∥tanh(πtxt)∥22 − ∥tanh(πtvt)∥22

∣∣∣+ ∣∣∣∣∥tanh(πtvt)∥22 −
∫ ∥∥∥ tanh( πt√

n
(αt + x)

)∥∥∥2
2
φn(dx)

∣∣∣∣
where φn ∼ N (0, In). To bound the right-hand side above, note that the Lipschitz property of tanh gives

∥tanh(πtxt)− tanh(πtvt)∥2 ≤ ∥tanh(πt(xt − vt))∥2 ≤ πt∥ξt−1∥2.

This in turn yields∣∣∣∥tanh(πtxt)∥22 − ∥tanh(πtvt)∥22
∣∣∣ = ∣∣ ∥tanh(πtxt)∥2 + ∥tanh(πtvt)∥2

∣∣ · ∣∣ ∥tanh(πtxt)∥2 − ∥tanh(πtvt)∥2
∣∣

≤
(
2 ∥tanh(πtvt)∥2 + πt∥ξt−1∥2

)
πt∥ξt−1∥2

≲
(
πt ∥vt∥2 + πt∥ξt−1∥2

)
πt∥ξt−1∥2 ≍ π2

t ∥ξt−1∥2,

where the last line makes use of the assumption ∥ξt−1∥2 ≲ 1 and the equation (78). Thus, we arrive at∣∣∣∣∥tanh(πtxt)∥22 −
∫ ∥∥∥ tanh( πt√

n
(αt + x)

)∥∥∥2
2
φn(dx)

∣∣∣∣
≲ π2

t ∥ξt−1∥2 +
∣∣∣∣∥tanh(πtvt)∥22 −

∫ ∥∥∥ tanh( πt√
n
(αt + x)

)∥∥∥2
2
φn(dx)

∣∣∣∣ . (83)

Next we develop a bound on the second term of (83), which turns out to be a consequence of the uniform
concentration property. Specifically, let us consider functions of the following form

fθ(Φ) := ∥tanh(πv)∥22 −
∫ ∥∥∥∥tanh( π√

n
(α+ x)

)∥∥∥∥2
2

φn(dx), where v = αv⋆ +

t−1∑
k=1

βkϕk;

here, we define

Φ =
√
n [ϕ1, ϕ2, . . . , ϕt−1] , β =

[
β1, β2, . . . , βt−1

]
, θ = [α, β, π] ∈ Rt+1.
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Then, it suffices to bound fθ(Φ) uniformly over all θ in the following set

Θ :=
{
θ = (α, β, π) | ∥β∥2 = 1, α ≲

√
λ2 − 1, π ≲

√
n
}
. (84)

In order to achieve this, first consider the derivative of f with respect to Φ, which by direct calculations
satisfies

∥∇Φfθ(Φ)∥2 ≤ 2π∥β∥2√
n

∥ tanh(πv) ◦ tanh′(πv)∥2

≤ 2π∥β∥2√
n

∥ tanh(πv)∥2 ≲
π2

√
n
∥v∥2 ≲

π2

√
n
, (85)

where we note that ∥v∥2 ≤ α + 1√
n
∥Φ∥ ≲ 1. Additionally, since function fθ(Φ) is uniformly bounded by 2,

if we take δ = n−300 for the set E defined in Lemma 1, it satisfies (we refer the readers to [2, Section D.1.1]
for the proof of this property)

E [|f(Φ)− f(PE(Φ))|] ≲ n−100.

where PE(·) denotes the Euclidean projection onto the set E . Combining the above inequality with the
following properties of function fθ(Φ),

1. ∥∇θfθ(Φ)∥2 ≲ n100 for any Φ ∈ E ,

2. For any fixed θ, one has E[fθ(Φ)] = 0,

we can apply [2, Corollary 3] to reach

sup
θ∈Θ

∣∣∣ 1
π2

fθ(Φ)
∣∣∣ ≲√ t log n

n
. (86)

Taking everything collectively, we conclude that∣∣∣∣∣∥tanh(πtxt)∥22 −
∫ ∥∥∥∥tanh( πt√

n
(αt + x)

)∥∥∥∥2
2

φn(dx)

∣∣∣∣∣ ≲ π2
t

(
∥ξt−1∥2 +

√
t log n

n

)
, (87)

which leads to the property (23b) by recognizing that∫ ∥∥∥∥tanh( πt√
n
(αt + x)

)∥∥∥∥2
2

φn(dx) = n

∫
tanh2

( πt√
n
(αt + x)

)
φ(dx).

Proof of property (23c). We are only left with calculating the value of
∫
tanh2

(
πt√
n
(αt+x)

)
φ(dx) which

shall be done as follows. First, by observing that tanh(0) = tanh′′(0) = 0, tanh′(0) = 1, | tanh′′′(x)| ≤ 4 for
x ∈ R, we find

| tanh(x)− x| ≤ 2

3
|x|3,

as a consequence of the mean value theorem. Combining this relation with the fact that | tanh(x)−x| ≤ |x|,
we can further obtain

| tanh(x)− x| ≤ |x| ∧ |x|3.

As a result, we see that

| tanh(x) + x| = |2x+ tanh(x)− x| = 2|x|+O(|x| ∧ |x|3) ≲ |x|,
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which in turn leads to

tanh2(x) = x2 +O(| tanh(x)− x|| tanh(x) + x|) = x2 +O(x4).

Now we are ready to compute the value of
∫
tanh2

(
πt√
n
(αt+x)

)
φ(dx). In view of the expressions obtained

above, it follows that∫
tanh2

(
πt√
n
(αt + x)

)
φ(dx) =

∫ (
πt√
n
(αt + x)

)2

φ(dx) +O

(∫ (
πt√
n
(αt + x)

)4

φ(dx)

)

=
π2
t

n
(α2

t + 1) +O

(
π4
t

n2

)
. (88)

We thus complete the proof of the advertised result.

B.2 Proof of Lemma 3
Proof of property (25a). The property (25a) is concerned with the magnitudes of ηt and its derivatives.
In view of the definition of ηt, we proceed to bounding the parameters πt and γt separately. Towards this,
recall from Lemma 1 that: with probability at least 1−O(n−11),∥∥∥∥∥

t−1∑
k=1

βk
t−1ϕk

∥∥∥∥∥
2

= 1 +O

(√
t log n

n

)
(89)

holds simultaneously for all βt−1 = [βk
t−1]1≤k<t ∈ St−2. It then follows from this result and the definition

(22) of vt that

∥vt∥2 =

∥∥∥∥∥αtv
⋆ +

t−1∑
k=1

βk
t−1ϕk

∥∥∥∥∥
2

≤ ∥αtv
⋆∥2 +

∥∥∥∥∥
t−1∑
k=1

βk
t−1ϕk

∥∥∥∥∥
2

= |αt|+ 1 +O

(√
t log n

n

)
≲ 1, (90)

given that t ≲ n
logn and

|αt| =
∣∣λv⋆⊤ηt−1(xt−1)

∣∣ ≤ λ ≲ 1. (91)

These properties together with the assumption on ξt enable us to control the ℓ2 norm of xt as follows:

∥xt∥2 = ∥vt + ξt−1∥2 ≤ ∥vt∥2 + ∥ξt−1∥2 ≲ 1. (92)

Given that ∥xt∥2 ≲ 1, the value of πt can be controlled as

πt :=
√

n(∥xt∥22 − 1) ∨ 1 ≲
√
n. (93)

Additionally, by observing that tanh(0) = 0, tanh′(x) = 1− tanh2(x) ∈ [0, 1] and | tanh(x)| ≤ 1, one has

| tanh(x)| ≍ |x| ∧ 1. (94)

We claim that this leads to the following consequence:∥∥ tanh(πtxt)
∥∥
2
≍ πt; (95)

for the moment, let us first take this as given and we shall come back to its proof after establishing the
property (25a). In view of this claim (95), we find that

γt := ∥ tanh(πtxt)∥−1
2 ≍ π−1

t . (96)
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In order to prove property (25a), it suffices to recall the definition of ηt as in expression (3). For any x ∈ R,
direct calculations give

ηt(x) = γt tanh(πtx) (97a)

η′t(x) = γtπt

(
1− tanh2(πtx)

)
(97b)

η′′t (x) = −2γtπ
2
t tanh(πtx)

(
1− tanh2(πtx)

)
(97c)

η′′′t (x) = −2γtπ
3
t

(
1− tanh2(πtx)

)(
1− 3 tanh2(πtx)

)
. (97d)

Combining these identities with (94), (96) and the fact that | tanh(x)| ≤ 1, one can easily validate expres-
sion (25a). It then boils down to justifying the claim (95), which we accomplish below.

Proof of relation (95). Note that from display (94), one has
∥∥ tanh(πtxt)

∥∥
2
≍
∥∥|πtxt| ∧ 1

∥∥
2
, where both

operators | · | and ∧ are applied in an entrywise manner and we overlad the notation 1 to denote an all-one
vector. To establish the relation (95), it is sufficient to prove that ∥|πtxt| ∧ 1

∥∥
2
≍ πt. Towards this end, first

we invoke (93) to make the observation that∥∥|πtxt| ∧ 1
∥∥
2
≤ ∥πtxt∥2 ∧ ∥1∥2 = ∥πtxt∥2 ∧

√
n ≍ πt ∧

√
n ≍ πt.

In addition, let us introduce an index set I as follows:

I :=

{
i ∈ [n]

∣∣∣ |ξt−1,i| ≤ 0.9|vt,i| and |vt,i| ≲
1√
n

}
, (98)

which clearly satisfies

0.1|πtvt,i| ≤ |πtxt,i| ≤ 1.9|πtvt,i|, ∀i ∈ I.

It then follows that: ∥∥|πtxt| ∧ 1
∥∥
2
≥
∥∥|πtxt ◦ 1I | ∧ 1

∥∥
2
≍ ∥|πtvt ◦ 1I | ∧ 1

∥∥
2
. (99)

To further control the right-hand side of display (99), we claim that

∥∥|πtvt ◦ 1I | ∧ 1
∥∥
2

(i)
≍
∥∥πtvt ◦ 1I

∥∥
2

(ii)
≍ πt. (100)

In order to see this, relation (i) can be verified using expression (93) and the definition of (98), as they
guarantee that

|πtvt,i| ≤ |πt| · |vt,i| ≲ 1, ∀i ∈ I.

To validate (ii), note that on the index set Ic, one has |vt,i| ≲ |ξt−1,i|. Therefore, it holds that

∥πtvt ◦ 1Ic ∥2 ≲ ∥πtξt−1 ◦ 1Ic ∥2 ≲ πt∥ξt−1∥2 ≲ πt

√
1

log n
, (101)

where we recall our assumption ∥ξt−1∥2 ≲
√

1
logn . Equipped with the above calculation, we can recall

∥vt∥2 ≍ 1 from expression (90) to obtain

∥πtvt ◦ 1I ∥22 = ∥πtvt∥22 − ∥πtvt ◦ 1Ic ∥22 ≍
(
1−O

(
1

log n

))
π2
t ≍ π2

t , (102)

as claimed in Part (ii) of (100).
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Proof of property (25b). To study the derivatives of ηt(xt), we first consider the parameters πt and γt.
Given that ∥ξt−1∥2 satisfies the expression (24), when t ≲ logn

λ−1 , it holds true that

∥ξt−1∥2 ≲

√
t3 log n

n
≲

√
log4 n

n(λ− 1)3
. (103)

Under the assumption λ− 1 ≳ n−1/9 log n, we see that ∥ξt−1∥2 also satisfies

∥ξt−1∥2 ≲ (λ− 1) ·

√
log4 n

n
· 1

(λ− 1)5
≲ (λ− 1) ·

√
log4 n

n
· n5/9

log5 n
≲ (λ− 1)n−0.2.

Similarly, it is also easily seen that ( t log n
n

)1/2
≲ (λ− 1)n−0.2.

Taking these together with the relation (81) in the proof of Lemma 2 and the assumption αt ≲
√
λ− 1n−0.1

yields

πt ≤
√
nαt +O

(√
n
(
∥ξt−1∥2 +

√
t log n

n

)1/2)
≲

√
λ− 1n0.4. (104)

Similarly, the relation (23d) of Lemma 2 combined with the assumption αt ≤
√
λ− 1n−0.1 and the above

bounds leads to

(γtπt)
−2 = α2

t + 1 +O

(
π2
t

n
+ ∥ξt−1∥2 +

√
t log n

n

)
= 1 +O

(
(λ− 1)n−0.2

)
,

which by direct calculation also gives γtπt = 1 +O((λ− 1)n−0.2) under our assumption on λ− 1.
Armed with the above properties, some algebra together with (97) further results in

η′t(x) = γtπt(1− tanh2(πtx)) = 1 +O
(
(λ− 1)n−0.2 log n

)
,

|η′′t (x)| ≲ πt · |πtx| ≲ (λ− 1)n0.8|x|,

where we invoke the relation |1− tanh2(πtx)| ≍ 1 for any |x| ≲
√

logn
n .

Proof of property (25c). Again when t ≲ logn
λ−1 , ∥ξt−1∥2 satisfies inequality (103). Taking this collectively

with the assumption αt ≲
√
λ− 1n−1/4 and the relation (81) in the proof of Lemma 2, we obtain

πt ≤
√
nαt +O

(√
n
(
∥ξt−1∥2 +

√
t log n

n

)1/2)
≲

√
λ− 1n1/4 + (λ− 1)−3/4n1/4 log n

≍ (λ− 1)−3/4n1/4 log n. (105)

Similarly, the relation (23d) of Lemma 2 together with our assumption on λ− 1 yields

γtπt = 1 +O

(
log2 n√
n(λ− 1)3

)
. (106)

To derive property (25c), we make note of some simple facts that tanh(0) = tanh′′(0) = tanh′′′′(0) = 0,
tanh′(0) = 1, tanh′′′(0) = −2 and | tanh(5)(x)| ≤ K for some constant K. As a result, the mean value
theorem ensures that for any x, there exists a quantity c such that

tanh(x) = x− 1

3
x3 + cx5 for some 0 ≤ c ≤ K ′,
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for K ′ = K/120. Based on the calculations above, we can conclude that

ηt(x) = γt tanh(πtx) = (1− c0)π
−1
t tanh(πtx) = (1− c0)

(
x− 1

3
π2
t x

3 + cx

)
,

where c0 and cx are some quantities obeying

|c0| ≲
log2 n√
n(λ− 1)3

and |cx| ≲ π4
t |x|5 ≲

n|x|5 log4 n
(λ− 1)3

.

This completes the proof of the desired property.

B.3 Proof of Lemma 4
Without loss of generality, throughout this proof, we assume αt > 0. Before we begin to bound κt, let us
simplify the term of interest a little bit. First of all, as each entry follows v⋆i

i.i.d.∼ Unif{ 1√
n
,− 1√

n
}, one can

easily derive 〈∫ [
xη′t

(
αtv

⋆ +
1√
n
x

)
− 1√

n
η′′t

(
αtv

⋆ +
1√
n
x

)]2
φn(dx)

〉
=

∫ [
xη′t

(
αtv

⋆
1 +

1√
n
x

)
− 1√

n
η′′t

(
αtv

⋆
1 +

1√
n
x

)]2
φ(dx)

=

∫ [
xη′t

(
1√
n
(αt + x)

)
− 1√

n
η′′t

(
1√
n
(αt + x)

)]2
φ(dx),

where φ(·) is the p.d.f. of N (0, 1), and we have used the fact that ηt(·) is symmetric about 0 and the
integration is over the distribution N (0, In). Similarly, we obtain〈∫ [

η′t

(
αtv

⋆ +
1√
n
x

)]2
φn(dx)

〉
=

∫ [
η′t

( 1√
n
(αt + x)

)]2
φ(dx).

Therefore, it holds that

κ2
t = max

{∫
|I1(x)|2φ(dx),

∫
|I2(x)|2φ(dx)

}
, (107)

where we define

I1(x) := xη′t

( 1√
n
(αt + x)

)
− 1√

n
η′′t

( 1√
n
(αt + x)

)
,

I2(x) := η′t

( 1√
n
(αt + x)

)
.

We now proceed to the proof of Lemma 4, and begin by restricting our attention to the range t < ς∧ logn
c(λ−1) .

We divide into two cases depending on the value of αt.

Case I: αt ≲
√
λ2 − 1n−0.1. Let us introduce an event A :=

{
x : |x| ≤

√
24 log n

}
. For x ∼ N (0, 1), it is

easily verified that P (A) = 1−O(n−12). Conditional on A and assuming αt ≲
√
λ2 − 1n−0.1, one has∣∣∣ 1√

n
(αt + x)

∣∣∣ ≲√ log n

n
.

Meanwhile, recall that
√
λ+ 1 ≍ 1, and therefore αt ≲

√
λ2 − 1n−0.1 is equivalent to αt ≲

√
λ− 1n−0.1. As

a result, according to the property (25b) established in Lemma 3, we see that: when |z| ≲
√

logn
n , one has

η′t(z) = 1 +O
(
(λ− 1)n−0.2 log n

)
and |η′′t (z)| ≲ (λ− 1)n0.8|z|. (108)
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Hence, for all x residing within A, we can bound the difference between I1(x) and x uniformly as follows:

|I1(x)− x| ≤
∣∣∣∣η′t( 1√

n
(αt + x)

)
− 1

∣∣∣∣ |x|+ 1√
n

∣∣∣∣η′′t ( 1√
n
(αt + x)

)∣∣∣∣
≲
(
(λ− 1)n−0.2 log n

)
|x|+ (λ− 1)n0.3

∣∣∣∣ 1√
n
(αt + x)

∣∣∣∣
≲
(
(λ− 1)n−0.2 log n

)
|x|+ (λ− 1)n0.3

(
1√
n
+

1√
n
|x|
)

≲
(
(λ− 1)n−0.2 log n

)
(1 + |x|). (109)

In addition, consider any x ∈ R. Recalling the relation (25a) of Lemma 3 — which reveals that |η′t(x)| ≲ 1,
|η′′t (x)| ≲

√
n — we observe the crude bound that |I1(x)| ≲ |x| + 1. Putting the preceding two bounds

together, we arrive at∫
|I1(x)|2φ(dx) =

∫
x2φ(dx) +

∫
(I1(x)− x)(I1(x) + x)φ(dx)

= 1 +

∫
A
(I1(x)− x)(I1(x) + x)φ(dx) +

∫
Ac

(I1(x)− x)(I1(x) + x)φ(dx)

= 1 +O

(∫
A
(λ− 1)n−0.2 log n · (|x|+ 1)2φ(dx) +

∫
Ac

(|x|+ 1)2φ(dx)

)
= 1 +O

(
(λ− 1)n−0.2 log n

)
, (110)

where the last equality utilizes the fact that for cn =
√
24 log n, one has∫

Ac

x2φ(dx) = 2

∫ ∞

cn

x2φ(dx) ≲
∫ ∞

cn

x2 exp

(
−1

2
x2

)
dx ≲

log n

n12
.

Regarding the other term I2(x), relation (25a) of Lemma 3 implies that |I2(x)| ≲ 1. Furthermore, if
|x| ≤

√
24 log n, in view of the relation (25b) we have |I2(x)| = 1 + O((λ − 1)n−0.2 log n). Putting these

together, we obtain ∫
|I2(x)|2φ(dx) =

∫
A
|I2(x)|2φ(dx) +

∫
Ac

|I2(x)|2φ(dx)

= 1 +O
(
(λ− 1)n−0.2 log n

)
+O

(
P (Ac)

)
= 1 +O

(
(λ− 1)n−0.2 log n

)
.

(111)

Combining inequalities (110) and (111) then leads to

κ2
t = 1 +O

(
(λ− 1)n−0.2 log n

)
= 1 + o

(
λ− 1

log n

)
.

Case II:
√
λ2 − 1n−0.1 ≲ αt ≲

√
λ2 − 1. We first note that under the assumption (26), the following

relation holds for ∥ξt−1∥2 when t ≲ logn
λ−1 :

∥ξt−1∥2 ≲

√
t3 log n

n
≲

√
log4 n

n(λ− 1)3
. (112)

We recall the basic facts obtained in property (97), and as a result,∫
|I1(x)|2φ(dx) =

∫ [(
γtπtx+

2√
n
γtπ

2
t tanh

( πt√
n

(
αt + x

)))
·
(
1− tanh2

( πt√
n

(
αt + x

)))]2
φ(dx)

(113)∫
|I2(x)|2φ(dx) =

∫ [
γtπt

(
1− tanh2

( πt√
n

(
αt + x

)))]2
φ(dx). (114)
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It then comes down to controlling the right-hand side of the above two expressions, under the condition that√
λ2 − 1n−0.1 ≲ αt ≤

√
λ2 − 1.

For notational convenience, let us introduce additional shorthand notation as follows:

J1(x) := γtπtx+
2√
n
γtπ

2
t tanh

( πt√
n

(
αt + x

))
,

J2(x) := µtαtx+ 2µtα
2
t tanh

(
αt

(
αt + x

))
,

K1(x) := 1− tanh2
( πt√

n

(
αt + x

))
,

K2(x) := 1− tanh2
(
αt

(
αt + x

))
µt :=

[∫
tanh2

(
αt(αt + x)

)
φ(dx)

]− 1
2

.

With this set of notation in place, it follows from (113) and a little algebra that∫
|I1(x)|2φ(dx) =

∫
[J1(x)K1(x)]

2φ(dx)

=

∫
[J2(x)K2(x)]

2φ(dx) +O

(∫
|J2(x)|2 |K1(x)−K2(x)| |K1(x) +K2(x)|φ(dx)

)
+O

(∫
|J1(x)− J2(x)||J1(x) + J2(x)||K1(x)|2φ(dx)

)
. (115)

To bound
∫
|I1(x)|2φ(dx), it is thus sufficient to control these three terms on the right-hand side of (115)

separately. Before proceeding, we find it helpful to make note of several preliminary properties.

• First, we would like to show that

µt ≍ α−1
t . (116)

In order to see this, note that the elementary fact tanh2(x) ≤ x2 implies that∫
tanh2(αt(αt + x))φ(dx) ≤

∫
α2
t (αt + x)2φ(dx) ≍ α2

t , for αt ≤ λ.

On the other hand, when |x| ≤ 1/2, αt ∈ (0, λ] and λ ∈ (1, 1.2], one has αt(αt + x) ∈ [−0.0625, 2.04].
Clearly, for any z ∈ [−0.0625, 2.04], we have tanh2(z)/z2 ≥ 0.22, and as a consequence,∫

tanh2(αt(αt + x))φ(dx) ≥
∫

tanh2(αt(αt + x))1(|x| ≤ 0.5)φ(dx)

≳
∫

α2
t (αt + x)21(|x| ≤ 0.5)φ(dx) ≍ α2

t .

The preceding two bounds taken collectively justify the claim (116).

• Additionally, based on equation (23a) of Lemma 2 and the bound (112), we have

πt =
√
nαt +

√
n

αt
O

(
∥ξt−1∥2 +

√
t log n

n

)
= αt

√
n+O

√ log4 n

α2
t (λ− 1)3

 (117)

= αt

√
n

1 +O

√ log4 n

nα4
t (λ− 1)3

 ≍ αt

√
n (118)
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as long as t ≲ logn
λ−1 . Here, the last inequality holds since√

log4 n

(λ− 1)3
≲ (λ− 1) · log2 n

(λ− 1)5/2
= o
(
(λ− 1)n0.3

)
= o
(
α2
t

√
n
)
,

provided that αt ≳
√
λ2 − 1n−0.1 and λ− 1 ≳ n−1/9 log n.

• Moreover, by combining equation (23b) of Lemma 2 with (117), (118) and (112), we see that

γ−2
t = n

∫
tanh2

(
πt√
n
(αt + x)

)
φ(dx) +O

α2
t

√
n log4 n

(λ− 1)3


= n

∫
tanh2 (αt(αt + x))φ(dx) +O

√ n log4 n

(λ− 1)3


= nµ−2

t +O

√ n log4 n

(λ− 1)3

 .

Here, the second equality arises from the following fact (see also (149)):∣∣∣∣∫ tanh2
(

πt√
n
(αt + x)

)
− tanh2 (αt(αt + x))φ(dx)

∣∣∣∣
≤
∣∣∣∣1− α2

tn

π2
t

∣∣∣∣ ∫ tanh2
(

πt√
n
(αt + x)

)
φ(dx) +

∣∣∣∣∫ α2
tn

π2
t

tanh2
(

πt√
n
(αt + x)

)
− tanh2 (αt (αt + x))φ(dx)

∣∣∣∣
≲

∣∣∣∣1− α2
tn

π2
t

∣∣∣∣α2
t +

∣∣∣∣ π2
t

α2
tn

− 1

∣∣∣∣α4
t = O

√ log4 n

n(λ− 1)3

 . (119)

As a result, we can express γt in term of µt as

γt =

nµ−2
t +O

√ n log4 n

(λ− 1)3

−1/2

=
µt√
n

1 +O

µ2
t

√
log4 n

n(λ− 1)3

 ≍ µt√
n
. (120)

• With (118) and (120) in place, a little algebra further leads to

|γtπt − µtαt| ≲ µtαt

√
log4 n

n(λ− 1)3

(
1

α2
t

+ µ2
t

)
≲

1

α2
t

√
log4 n

n(λ− 1)3
, (121)

∣∣∣∣ 1√
n
γtπ

2
t − µtα

2
t

∣∣∣∣ ≲ µtα
2
t

√
log4 n

n(λ− 1)3

(
1

α2
t

+ µ2
t

)
≲

1

αt

√
log4 n

n(λ− 1)3
. (122)

In addition, according to the relation (23d) in Lemma 2, we have

γ2
t π

2
t = (α2

t + 1)−1 +O

(
π2
t

n
+ ∥ξt−1∥2 +

√
t log n

n

)
,

and using similar analysis as for (23c) yields

µ−2
t =

∫
tanh2 (αt(αt + x))φ(dx) = α2

t (α
2
t + 1) +O

(
α4
t

)
.

These two bounds taken together with a little algebra leads to

|γtπt − µtαt| ≲
π2
t

n
+ α2

t + ∥ξt−1∥2 +
√

t log n

n
≲ α2

t +

√
log4 n

n(λ− 1)3
≲ α2

t , (123)
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recognizing the range
√
λ2 − 1n−0.1 ≲ αt ≲

√
λ2 − 1 and our assumption λ − 1 ≳ n−1/9 log n. Com-

bining the above bound with (121) gives

|γtπt − µtαt| ≲ α2
t ∧

1

α2
t

√
log4 n

n(λ− 1)3
≲

(
log4 n

n(λ− 1)3

)1/4

, (124)

where the last inequality follows from the elementary fact that min{a, b} ≤
√
ab.

• Taking inequalities (118), (121) and (122) collectively with the fact that µtα
2
t ≍ αt (cf. (116)) yields

|K1(x)−K2(x)| ≲
∣∣∣∣ πt√

n
− αt

∣∣∣∣ |αt + x| ≲ 1

αt

√
log4 n

n(λ− 1)3
· (|x|+ αt), (125)

and

|J1(x)− J2(x)| ≤ |γtπt − µtαt| |x|+ 2

∣∣∣∣ 1√
n
γtπ

2
t − µtα

2
t

∣∣∣∣ ∣∣∣∣tanh( πt√
n
(αt + x)

)∣∣∣∣
+ µtα

2
t

∣∣∣∣tanh( πt√
n
(αt + x)

)
− tanh (αt(αt + x))

∣∣∣∣
≲

(
log4 n

n(λ− 1)3

)1/4

|x|+ 1

αt

√
log4 n

n(λ− 1)3
+

√
log4 n

n(λ− 1)3
(|x|+ αt)

≲

(
log4 n

n(λ− 1)3

)1/4

|x|+ 1

αt

√
log4 n

n(λ− 1)3
. (126)

Equipped the above relations, we are positioned to control the right-hand side of expression (115).
Combining (125) and (126) directly yields∫

|I1(x)|2φ(dx) =
∫
[J2(x)K2(x)]

2φ(dx) +O

 1

αt

√
log4 n

n(λ− 1)3

+O

( log4 n

n(λ− 1)3

)1/4

+
1

αt

√
log4 n

n(λ− 1)3


=

∫ [
µtαtx+ 2µtα

2
t tanh

(
αt

(
αt + x

))]2[
1− tanh2

(
αt

(
αt + x

))]2
φ(dx)

+O

( log4 n

n(λ− 1)3

)1/4

+
1

αt

√
log4 n

n(λ− 1)3

 , (127)

where the first line invokes the simple observations that |Ji(x)| ≲ |x| + αt and |Ki(x)| ≲ 1 for i = 1, 2.
Similarly, one can derive in the same manner that∫

|I2(x)|2φ(dx) = µ2
tα

2
t

∫ [
1− tanh2

(
αt

(
αt + x

))]2
φ(dx) +O

( log4 n

n(λ− 1)3

)1/4

+
1

αt

√
log4 n

n(λ− 1)3

 .

(128)

As it turns out, the main terms in the above two identities satisfy∫ [
µtαtx+ 2µtα

2
t tanh

(
αt

(
αt + x

))]2[
1− tanh2

(
αt

(
αt + x

))]2
φ(dx) ≤ 1− cα2

t , (129a)

µ2
tα

2
t

∫ [
1− tanh2

(
αt

(
αt + x

))]2
φ(dx) ≤ 1− cα2

t , (129b)

which we shall justify momentarily. Combine these results with (107) to conclude that: if
√
λ2 − 1n−0.1 ≲

αt ≲
√
λ2 − 1, then

κ2
t ≤ 1− cα2

t +O

( log4 n

n(λ− 1)3

)1/4

+
1

αt

√
log4 n

n(λ− 1)3

 = 1 + o

(
λ− 1

log n

)
, (130)
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where the last inequality follows by recognizing that(
log4 n

n(λ− 1)3

)1/4

+
1√

λ− 1n−0.1

√
log4 n

n(λ− 1)3
= o

(
λ− 1

log n

)
under our assumption λ− 1 ≳ n−1/9 log n.

Proof of relation (129). To proceed, consider the problem of estimating v⋆ (which obeys v⋆i ∼ Unif{± 1
n})

from the noisy observation Y = αtv
⋆ + g, where g ∼ N (0, 1

nIn). As alluded to previously, the Bayes-optimal
estimate (or minimum mean square estimator (MMSE)) is given by

E[v⋆ | Y ] = tanh(
√
nαtY ),

which satisfies (due to its optimality)

Cor (v⋆, f(Y )) ≤ Cor (v⋆,E[v⋆ | Y ]) , (131)

for any measurable function f ; here Cor(·, ·) denotes the correlation of two random vectors. In particular,
the Bayes-optimal estimator outperforms the identity estimator (i.e., f(Y ) = Y ), so that (131) translates to

E[⟨v⋆, αtv
⋆ + g⟩]√

E[∥αtv⋆ + g∥22]
≤ E[⟨v⋆, tanh(

√
nαt(αtv

⋆ + g))⟩]√
E[∥ tanh(

√
nαt(αtv⋆ + g)∥22]

=

∫
tanh(αt(αt + x))φ(dx)√∫
tanh2(αt(αt + x))φ(dx)

=

√∫
tanh2(αt(αt + x))φ(dx), (132)

where the fist equality holds due to the symmetry of φ(·), and the second equality holds since
∫
tanh(α2 +

αx)φ(dx) =
∫
tanh2(α2 + αx)φ(dx) (see [4, Appendix B.2]). As a consequence, the above relation implies

that

αt√
α2
t + 1

=
E[⟨v⋆, αtv

⋆ + g⟩]√
E[∥αtv⋆ + g∥22]

≤

√∫
tanh2(αt(αt + x))φ(dx) =

1

µt
, (133)

which in turns reveals that
µtαt ≤

√
α2
t + 1 =: γ.

Armed with this relation, we can conclude that

max

{∫ [
µtαtx+ 2µtα

2
t tanh

(
αt

(
αt + x

))][
1− tanh2

(
αt

(
αt + x

))]
φ(dx),

µ2
tα

2
t

∫ [
1− tanh2

(
αt

(
αt + x

))]2
φ(dx)

}
≤ γ2 max

{∫ [
x+ 2αt tanh

(
αt

(
αt + x

))][
1− tanh2

(
αt

(
αt + x

))]
φ(dx),∫ [

1− tanh2
(
αt

(
αt + x

))]2
φ(dx)

}
=: κ2(γ, α2

t ).

As it turns out, this function κ2(·, ·) has been studied in [2]; more specifically, [2, relation (272)] together
with γ :=

√
α2
t + 1 indicates that κ(γ, α2

t ) ≤ 1− γ−1
12 , and hence

κ2(γ, α2
t ) ≤ 1− γ − 1

12
≤ 1− cα2

t (134)

for some constant c > 0. Here, notice that we view γ and α2
t as λ and τ respectively in [2, relation (272)].

Putting everything together completes the proof of the required relation (129).
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Case III: αt ≳
√
λ2 − 1 and t < cn(λ−1)5

log2 n
. The calculation of κt in this case follows from similar arguments

as in [2, Section D.3.4.]. The only difference lies in the computing the parameters πt and γt, which was done
in [2, Lemma 14] therein but requires a different proof here. Specifically, we aim to show that

πt =
(
1 + o(λ− 1)

)
αt

√
n and γ−2

t =
(
1 + o(λ− 1)

)
n

∫
tanh(αt(αt + x))φ(dx). (135)

If these two relations were valid, then one could follow the argument in [2, Section D.3.4.] verbatim to
demonstrate that

κt ≤ 1− 1

15
(λ− 1),

as claimed.
We now present how to prove relation (135). In view of the equation (23a) of Lemma 2, we have

πt = αt

√
n

(
1 +

1

α2
t

O
(
∥ξt−1∥2 +

√
t log n

n

))
= αt

√
n

(
1 +O

(√
(t+ log3 n/(λ− 1)) log n

n(λ− 1)2

))

= αt

√
n

(
1 +O

(√
(λ− 1)2

log n

))
= αt

√
n(1 + o(λ− 1))

under the condition t ≲ n(λ−1)5

log2 n
and the assumption (28). In addition, with the same analysis as inequal-

ity (119), we can guarantee that

∫
tanh2

(
πt√
n
(αt + x)

)
φ(dx) =

∫
tanh2 (αt(αt + x))φ(dx) +O

√ (t+ log3 n/(λ− 1)) log n

nα2
t (λ− 1)2


=

∫
tanh (αt(αt + x))φ(dx) +O

(√
(λ− 1)2

log n

)
=

∫
tanh (αt(αt + x))φ(dx) + o(λ− 1).

Then according to equation (23b), we can reach

γ−2
t = n

(∫
tanh(αt(αt + x))φ(dx) + o(λ− 1)

)
+ nα2

t

(
1 + o(λ− 1)

)
O

(√
(t+ log3 n/(λ− 1)) log n

n

)
=
(
1 + o(λ− 1)

)
n

∫
tanh(αt(αt + x))φ(dx),

where the last equality follows from the fact that
∫
tanh(αt(αt + x))φ(dx) ≍ α2

t ≍ 1 (see relation (116)).
This establishes the claim (135).

B.4 Proof of Claim (46)
This subsection aims to establish the advertised decomposition (46). To do so, recall that {ηi(xi)}1≤i≤t−1

spans the same linear space as {zi}1≤i≤t−1 (see (40) and (41b)). It is important to notice that {η1(x1), . . . , ηt−1(xt−1)}
are almost orthogonal to each other, thus forming a set of near-orthonormal basis; this property is summa-
rized in the lemma below, whose proof is provided in Section B.8.

Lemma 5. Suppose that the assumptions of Theorem 1 hold. With probability at least 1−O(n−11), we have

∥∥∥ t∑
i=1

wiηi(xi)
∥∥∥
2
=
(
1 + o(1)

)
∥w∥2 (136)

simultaneously for all t ≤ τ0 and all w = [wi]1≤i≤t ∈ Rt, where τ0 is defined in (45).
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In view of Lemma 5 and the fact that ξt ∈ span(Ut−1) = span{η1(x1), . . . , ηt−1(xt−1)} (cf. (40)), one can
write ξt as a linear combination of {ηi(xi)}1≤i≤t−1 as follows:

ξt =

t−1∑
k=1

γk
t ηk(xk), with γt = [γk

t ]1≤k<t ∈ Rt−1 obeying ∥γt∥2 ≍ ∥ξt∥2. (137)

Armed with this decomposition, we intend to prove that

αt+1 = λv⋆⊤ηt (xt) = λv⋆⊤ηt

(
vt +

t−1∑
k=1

γk
t−1ηk(xk)

)
= λv⋆⊤ηt (vt) +O

(
log2.5 n

n3/4(λ− 1)1.5

)
, (138)

which shall be done as follows.

• In order to see this, first note that ηt(·) is a Lipschitz function with Lipschitz constant O(1) (see
Lemma 3). Therefore, for every t ≲ logn

λ−1 we have∣∣∣∣∣v⋆⊤ηt(vt +
t−1∑
k=1

γk
t−1ηk(xk)

)
− v⋆⊤ηt

(
vt +

t−1∑
k=1

γk
t−1ηk(vk)

)∣∣∣∣∣
≤
∥∥∥ηt(vt + t−1∑

k=1

γk
t−1ηk(xk)

)
− ηt

(
vt +

t−1∑
k=1

γk
t−1ηk(vk)

)∥∥∥
2
≲

t−1∑
k=1

∣∣γk
t−1

∣∣ ∥ηk(xk)− ηk(vk)∥2 .

In view of the decomposition (137) and the Cauchy-Schwarz inequality, we can further obtain∣∣∣∣∣v⋆⊤ηt(vt +
t−1∑
k=1

γk
t−1ηk(xk)

)
− v⋆⊤ηt

(
vt +

t−1∑
k=1

γk
t−1ηk(vk)

)∣∣∣∣∣ ≲
t−1∑
k=1

∣∣γk
t−1

∣∣ ∥ηk(xk)− ηk(vk)∥2

≲
t−1∑
k=1

∣∣γk
t−1

∣∣ ∥ξk−1∥2 ≤ ∥γt−1∥2
( t−1∑

k=1

∥ξk−1∥22
)1/2

≍ ∥ξt−1∥2
( t−1∑

k=1

∥ξk−1∥22
)1/2

≲

√
t3 log n

n
·

(
t−1∑
k=1

k3 log n

n

)1/2

≲
log4.5 n

n(λ− 1)3.5
,

where the last line invokes ∥ξt∥2 ≲
√

t3 logn
n (cf. (39)) and t ≲ logn

λ−1 .

• In addition, when |αt| ≲
√
λ− 1n−1/4, we know that

∥∥∥∑t−1
k=1 β

k
t−1ϕk

∥∥∥
∞

≲
√

t logn
n conditioned on the

event {ϕk}t−1
k=1 ∈ E (defined in Lemma 1 with δ = O(n−10)). It therefore guarantees that

|vt,i| =

∣∣∣∣∣αtv
⋆
i +

t−1∑
k=1

βk
t−1ϕk,i

∣∣∣∣∣ ≤ |αt|√
n
+
∣∣∣ t−1∑
k=1

βk
t−1ϕk,i

∣∣∣ ≲√ t log n

n
, (139a)∣∣∣∣∣vt,i +

t−1∑
k=1

γk
t−1ηk(vk,i)

∣∣∣∣∣ ≲ |vt,i|+
t−1∑
k=1

∣∣γk
t−1

∣∣ |vk,i| ≲ |vt,i|+ ∥γt−1∥2∥ṽt−1,i∥2

≲

√
t log n

n
+

√
t3 log n

n
·
√

t2 log n

n
≲

√
t log n

n
, (139b)

for every 1 ≤ i < t, where we denote ṽt−1,i := (v1,i, v2,i, . . . , vt−1,i). To see why (139b) is valid, we
note that the first inequality applies Lemma 3, the second inequality results from the Cauchy-Schwarz

inequality, whereas the last line makes use of (139a) and the fact ∥γt−1∥2 ≍ ∥ξt−1∥2 ≲
√

t3 logn
n
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(cf. (137) and (39)). In addition, given that t ≲ log n/(λ − 1) and λ − 1 ≳ n−1/9 log n, we have
t8 ≲ n/ log n. Repeating the argument for inequality (169) in the proof of Lemma 5, one can ensure
that for any 2 ≤ k ≤ 14,

n∑
i=1

|vt,i|k =

t∑
i=1

∣∣vt,(i)∣∣k +

n∑
i=t+1

∣∣vt,(i)∣∣k ≲

(
log n

n

)k/2−1

, (140a)

and

n∑
i=1

∣∣∣∣∣vt,i +
t−1∑
k=1

γk
t−1ηk(vk,i)

∣∣∣∣∣
k

≲

(
1 + t2k

(
log n

n

)k/2
)(

log n

n

)k/2−1

≲

(
log n

n

)k/2−1

. (140b)

Here, we have made the observation that

n∑
i=1

∣∣∣∣∣
t−1∑
k=1

γk
t−1ηk(vk,i)

∣∣∣∣∣
k

≲
n∑

i=1

∥γt−1∥k2
( t−1∑

k=1

η2k(vk,i)
)k/2

≲
n∑

i=1

(
t3 log n

n

)k/2 ( t−1∑
k=1

v2k,i

)k/2
≲

(
t3 log n

n

)k/2 n∑
i=1

( t−1∑
k=1

v2k,(i)

)k/2
≲

(
t3 log n

n

)k/2

· t
(
t2 log n

n

)k/2

+

(
t3 log n

n

)k/2 ( t−1∑
k=1

v2k,(t+1)

)k/2−1

·
n∑

i=t+1

( t−1∑
k=1

v2k,(i)

)
≲ t

5k
2 +1

(
log n

n

)k

+ t2k
(
log n

n

)k−1

≲ t2k
(
log n

n

)k−1

,

where the second line uses the fact ∥γt−1∥2 ≍ ∥ξt−1∥2 ≲
√

t3 logn
n (cf. (137) and (39)) and Lemma 3,

the ante-penultimate line invokes inequality (139); the penultimate line follows from the fact that
∥vk∥2 ≲ 1 (see e.g. (90)) and conditional on event {ϕk}t−1

k=1 ∈ E ,

|vk,(t+1)| ≤
|αk|√
n

+
∣∣∣ k−1∑
i=1

βi
k−1ϕi

∣∣∣
(t+1)

≲

√
log n

n
;

and the last line follows from the fact that tk/2+1 ≲ t8 ≲ n/ log n. Therefore, combining Lemma 3 with
expression (139) gives

ηt

(
vt +

t−1∑
k=1

γk
t−1ηk(vk)

)
− ηt (vt)

= (1− c0)

t−1∑
k=1

γk
t−1ηk(vk) +O

(
π2
t

)
·

(vt + t−1∑
k=1

γk
t−1ηk(vk)

)3

− (vt)
3

+ cx (141)

for some vectors cx ∈ Rn, where the parameters obey πt ≲ (λ − 1)−3/4n1/4 log n and c0 ≲ log4 n√
n(λ−1)3

.

Here, the last equation makes use of the fact that

∥cx∥2 ≲

∥∥∥∥∥n
∣∣vt +∑t−1

k=1 γ
k
t−1ηk(vk)

∣∣5 log4 n
(λ− 1)3

∥∥∥∥∥
2

+

∥∥∥∥n|vt|5 log4 n(λ− 1)3

∥∥∥∥
2
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≲
n log4 n

(λ− 1)3

√(
log n

n

)4

≲
log6 n

n(λ− 1)3
, (142)

where the property (140) is invoked with k = 10. Next, observe that∥∥∥∥∥
(
vt +

t−1∑
k=1

γk
t−1ηk(vk)

)3

− (vt)
3

∥∥∥∥∥
2

=

∥∥∥∥∥
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k=1

γk
t−1ηk(vk) ◦

(
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2 + (vt)
2
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)∥∥∥∥∥
2

≲
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)∥∥∥
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·
√
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2
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∥∥ (vt)2 ∥∥2) · √t∥ξt−1∥2

≲
t log n
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· ∥ξt−1∥2 ≲

log4 n

n1.5(λ− 1)2.5
,

where the last line can be obtained by invoking property (139) and (140) with k = 4. Here, we have

used the facts that ∥ξt∥2 ≲
√

t3 logn
n (cf. (39)), t ≲ logn

λ−1 and

∥∥∥vt + t−1∑
k=1

γk
t−1ηk(vk)

∥∥∥
2
≤ ∥vt∥2 +

∥∥∥ t−1∑
k=1

γk
t−1ηk(vk)

∥∥∥
2
≤ 1 +

√
t∥γt−1∥2 ≤ 1 +

√
t4 log n

n
≲ 1.

Putting these together, we arrive at∥∥∥∥∥ηt
(
vt +

t−1∑
k=1

γk
t−1ηk(vk)

)
− ηt (vt)− (1− c0)

t−1∑
k=1

γk
t−1ηk(vk)

∥∥∥∥∥
2

= O

(
log6 n

n(λ− 1)3

)
.

• Finally, it is sufficient for us to consider v⋆⊤
∑t−1

k=1 γ
k
t−1ηk(vk) which shall be controlled as follows:∣∣∣∣∣

t−1∑
k=1

γk
t−1v

⋆⊤ηk (vk)
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=
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λ
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√
λ− 1

n1/4
≲

log2.5 n

n3/4(λ− 1)1.5
.

Putting the above three inequalities together yields the desired bound (138).
Built upon expression (138), we now proceed to the proof of claim (46). To begin with, let us recall that

vt := αtv
⋆+
∑t−1

k=1 β
k
t−1ϕk. If we define gt−1 := v⋆⊤ϕt−1 ∼ N

(
0, 1

n

)
and β̃t−1 := [β1

t−1, . . . , β
t−2
t−1 ], some direct

algebra thus leads to

∣∣v⋆⊤ (vt − αtv
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]∣∣∣∣∣
≤
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βk
t−1gk

∣∣∣+ |1− βt−1
t−1 ||gt−1|
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(gk)2 + ∥β̃t−1∥22|gt−1| ≲ ∥β̃t−1∥2

√
t log n

n

≲

√
t log n

n
·

(
t
√
λ− 1

n1/4
+

t log4 n√
n(λ− 1)3

)
≲

log2 n

n3/4(λ− 1)
+

log6 n

n(λ− 1)3
,

where the last inequality comes from the bound (165) in the proof of Lemma 5 and the condition t ≲ logn
λ−1 .

By virtue of the above calculations, we can deduce that

v⋆⊤vt = αt + gt−1 +O

(
log2 n

n3/4(λ− 1)
+

log6 n

n(λ− 1)3

)
.

In fact, a direct application of Lemma 3 further leads to the following claim:

∣∣v⋆⊤(ηt(vt)− vt
)∣∣ ≲ ∣∣∣∣v⋆⊤ [c0vt + π2

t (vt ◦ vt ◦ vt) +O

(
n log4 n

(λ− 1)3
|vt|5

)]∣∣∣∣
≲

log4 n

n3/4(λ− 1)
, (143)

whose the proof of the last inequality is postponed to the end of this subsection.
To summarize, taking the above results collectively and using the relation (138), we arrive at

αt+1 = λv⋆⊤vt + λv⋆⊤
(
ηt (vt)− vt

)
+O

(
log2.5 n

n3/4(λ− 1)1.5

)
= λαt + λgt−1 +O

(
log4 n

n3/4(λ− 1)1.5

)
. (144)

Therefore, invoking the above relation recursively leads to our desired decomposition:

αt+1 = λt−k+1αk +

t−k+1∑
i=1

λigt−i +O

(
t−k+1∑
i=1

λi log4 n

n3/4(λ− 1)1.5

)

for any 1 ≤ k ≤ t.

Proof of inequality (143). In order to establish inequality (143), let us first make note of the following
simple properties: with probability at least 1−O(n−11),

v⋆⊤(v⋆ ◦ v⋆ ◦ v⋆) = 1

n
;

v⋆⊤
(
v⋆ ◦ v⋆ ◦

t−1∑
k=1

βk
t−1ϕk

)
=

1

n
v⋆⊤

( t−1∑
k=1

βk
t−1ϕk

)
≲

1

n
;

v⋆⊤
(
v⋆ ◦

t−1∑
k=1

βk
t−1ϕk ◦

t−1∑
k=1

βk
t−1ϕk

)
=

1

n

∥∥∥ t−1∑
k=1

βk
t−1ϕk

∥∥∥2
2
≍ 1

n
;

v⋆⊤
( t−1∑

k=1

βk
t−1ϕk ◦

t−1∑
k=1

βk
t−1ϕk ◦

t−1∑
k=1

βk
t−1ϕk

)
≲

t log n

n
v⋆⊤

( t−1∑
k=1

βk
t−1ϕk

)
≲

√
t3 log3 n

n3
.

We remind the readers that v⋆i ∼ Unif(± 1√
n
) and we have invoked Lemma 1.
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Next, recall vt := αtv
⋆ +

∑t−1
k=1 β

k
t−1ϕk to obtain

∣∣v⋆⊤(vt ◦ vt ◦ vt)∣∣ =
∣∣∣∣∣α3

t v
⋆⊤(v⋆ ◦ v⋆ ◦ v⋆) + 3α2

t v
⋆⊤
(
v⋆ ◦ v⋆ ◦

t−1∑
k=1

βk
t−1ϕk

)
+3αtv

⋆⊤
(
v⋆ ◦

t−1∑
k=1

βk
t−1ϕk ◦

t−1∑
k=1

βk
t−1ϕk

)
+ v⋆⊤

( t−1∑
k=1

βk
t−1ϕk ◦

t−1∑
k=1

βk
t−1ϕk ◦

t−1∑
k=1

βk
t−1ϕk

)∣∣∣∣∣
≲

α3
t

n
+

α2
t

n
+

αt

n
+

√
t3 log3 n

n3

≲
1

n5/4
,

where the last line holds as long as αt ≲
√
λ− 1n−1/4. Consequently, in order to derive (143), it suffices to

notice (140), c0 ≲ log4 n√
n(λ−1)3

, πt ≲ n1/4

(λ−1)3/4
and

∣∣v⋆⊤vt∣∣ =
∣∣∣∣∣αt + v⋆⊤

( t−2∑
k=1

βk
t−1ϕk

)∣∣∣∣∣ ≲
√
λ− 1

n1/4
+

√
t log n

n
≲

√
λ− 1

n1/4
.

B.5 Proof of Claim (56)
For notational simplicity, we assume without loss of generality that αt > 0 throughout this proof. Before
delving into the proof of claim (56), let us recall Lemma 2 to obtain

πt

αt
√
n
= 1 +O

(
1

α2
t

(
∥ξt−1∥2 +

√
t log n

n

)
∧ 1

αt

(
∥ξt−1∥2 +

√
t log n

n

)1/2)

= 1 +O

(
log2 n

α2
t

√
(λ− 1)3n

∧

(
log2 n

α2
t

√
(λ− 1)3n

)1/2)
,

where we have used ∥ξt∥2 ≤
√

t3 logn
n (see (39)) and t ≲ logn

λ−1 . In turn, this implies∣∣∣∣ π2
t

α2
tn

− 1

∣∣∣∣α2
t ≲

log2 n√
(λ− 1)3n

. (145)

Now, let us move on to establish a recursive relation of αt. Recalling the definition (3) of ηt and Theorem 1,
one sees that

αt+1 = λv⋆⊤
∫

ηt

(
αtv

⋆ +
1√
n
x

)
φn(dx) + ∆α,t

= λγtv
⋆⊤
∫

tanh

(
πt

(
αtv

⋆ +
1√
n
x
))

φn(dx) + ∆α,t

= λγt
√
n

∫
tanh

(
πt√
n
(αt + x)

)
φ(dx) + ∆α,t, (146)

where the last equality holds by symmetry of φ(·), namely,

1√
n

∫
tanh

(
πt√
n
(αt + x)

)
φ(dx) = − 1√

n

∫
tanh

(
πt√
n
(−αt + x)

)
φ(dx).

We note that similar analysis as for relation (116) leads to
∫
tanh2

(
πt√
n
(αt + x)

)
φ(dx) ≍ π2

t

n . Combining
this result with Lemma 2 and (39), we arrive at

γ−2
t = n

(
1 +O

(√
t3 log n

n

))∫
tanh2

(
πt√
n
(αt + x)

)
φ(dx). (147)
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Taking (146) and (147) together, we arrive at

αt+1 =
(
1 +O

(√ t3 log n

n

)) λ
∫
tanh

(
πt√
n
(αt + x)

)
φ(dx)[∫

tanh2
(

πt√
n
(αt + x)

)
φ(dx)

]1/2 +∆α,t. (148)

To prove claim (56), it then suffices to control
∫
tanh

(
πt√
n
(αt + x)

)
φ(dx) and

∫
tanh2

(
πt√
n
(αt + x)

)
φ(dx).

Towards this goal, we find it helpful to first make several observations. Define two functions:

f(z) :=
1

z
tanh(zy)− tanh(y),

g(z) :=
1

z2
tanh2(zy)− tanh2(y).

The Taylor expansion of tanh(zy) gives

f ′(z) = − 1

z2
[
tanh(zy)− zy + zy tanh2(zy)

]
= −2

3
zy3 +O(z3y5),

g′(z) = −2 tanh(zy)

z3
[
tanh(zy)− zy + zy tanh2(zy)

]
=

1

3
zy4 +O(z3y6),

which leads the following relation by direct calculation

f(z) =

∫ z

1

f ′(t)dt = −1

3
(z2 − 1)y3 +O((z4 − 1)y5),

g(z) =

∫ z

1

g′(t)dt =
1

6
(z2 − 1)y4 +O((z4 − 1)y6).

By taking z = πt

αt
√
n
, y = αt(αt + x), we can see that

αt
√
n

πt
tanh

(
πt√
n
(αt + x)

)
− tanh (αt (αt + x)) = −1

3

(
π2
t

α2
tn

− 1

)
α3
t (αt + x)3 +O

(
π4
t

α4
tn

2
− 1

)
α5
t (αt + x)5,

α2
tn

π2
t

tanh2
(

πt√
n
(αt + x)

)
− tanh2 (αt (αt + x)) =

1

6

(
π2
t

α2
tn

− 1

)
α4
t (αt + x)4 +O

(
π4
t

α4
tn

2
− 1

)
α6
t (αt + x)6.

Hence, we can conclude that∣∣∣∣∫ αt
√
n

πt
tanh

(
πt√
n
(αt + x)

)
− tanh (αt (αt + x))φ(dx)

∣∣∣∣
=

∣∣∣∣∫ 1

3

(
π2
t

α2
tn

− 1

)
α3
t (αt + x)3φ(dx)

∣∣∣∣+ ∫ O

(
π4
t

α4
tn

2
− 1

)
α5
t (αt + x)5φ(dx)

≲

∣∣∣∣ π2
t

α2
tn

− 1

∣∣∣∣α4
t .

Similarly, we can show that∣∣∣∣∫ α2
tn

π2
t

tanh2
(

πt√
n
(αt + x)

)
− tanh2 (αt (αt + x))φ(dx)

∣∣∣∣ ≲ ∣∣∣∣ π2
t

α2
tn

− 1

∣∣∣∣α4
t . (149)

Substituting these relations into (148), we arrive at

αt+1 = λ
(
1 +O

(√ t3 log n

n

)) ∫
tanh (αt (αt + x))φ(dx) +O

(∣∣∣ π2
t

α2
tn

− 1
∣∣∣α4

t

)
[∫

tanh2 (αt (αt + x))φ(dx) +O
(∣∣∣ π2

t

α2
tn

− 1
∣∣∣α4

t

)]1/2 +∆α,t
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= λ
(
1 +O

(√ t3 log n

n

)) ∫
tanh (αt (αt + x))φ(dx)[∫

tanh2 (αt (αt + x))φ(dx)
]1/2 ·

1 +O
(∣∣∣ π2

t

α2
tn

− 1
∣∣∣α2

t

)
1 +O

(∣∣∣ π2
t

α2
tn

− 1
∣∣∣α2

t

) +∆α,t

= λ

[∫
tanh2

(
α2
t + αtx

)
φ(dx)

]−1/2 ∫
tanh

(
α2
t + αtx

)
φ(dx) +O

(∣∣∣∣ π2
t

α2
tn

− 1

∣∣∣∣α3
t +

√
t3 log n

n
αt +∆α,t

)
,

(150)

where we make use of the fact that (see, (116))∫
tanh

(
α2
t + αtx

)
φ(dx) =

∫
tanh2

(
α2
t + αtx

)
φ(dx) ≍ α2

t .

In addition, (133) ensures that

αt√
α2
t + 1

≤

√∫
tanh2(αt(αt + x))φ(dx) =

[∫
tanh2

(
α2
t + αtx

)
φn(dx)

]−1/2 ∫
tanh

(
α2
t + αtx

)
φ(dx),

which in turn gives

αt+1 ≥ λαt√
α2
t + 1

+O

(∣∣∣∣ π2
t

α2
tn

− 1

∣∣∣∣α3
t +

√
t3 log n

n
αt + |∆α,t|

)
.

To finish up, putting the above results together with (145) leads to

αt+1 ≥ λαt√
α2
t + 1

+ o
(
(λ− 1)αt

)
+O(∆α,t) (151)

where we again invoke the assumption that λ− 1 ≳ n−1/9 log n. This concludes the proof of claim (56).

B.6 Proof of Claim (59)
Consider the regime where

|αt| < (λ− 1)−3/4n−1/4 ≲
√
λ− 1n−0.1.

First, invoke property (25b) in Lemma 3 to ensure that∣∣v⋆⊤ηt(xt)− v⋆⊤ηt(vt)
∣∣ ≲ |v⋆⊤ξt−1|+ (λ− 1)n−0.2(log n)∥ξt−1∥2. (152)

To further bound (152), note that ξt−1 admits the following decomposition in terms of {ηk(xk)}:

ξt−1 =

t−2∑
k=1

γk
t−1ηk(xk), with γt−1 = [γk

t−1]1≤k≤t−2 ∈ Rt−2 obeying ∥γt−1∥2 ≲ ∥ξt−1∥2;

the proof of this claim can be found in Section B.4 (see Lemma 5 therein and its proof). In view of this
relation, we can apply (152) and the Cauchy-Schwarz inequality to reach

∣∣v⋆⊤ηt(xt)− v⋆⊤ηt(vt)
∣∣ ≲ ∣∣∣∣ t−2∑

k=1

γk
t−1v

⋆⊤ηk(xk)

∣∣∣∣+ (λ− 1)n−0.2(log n)∥ξt−1∥2

≲ ∥γt−1∥2
( t−2∑

k=1

(
v⋆⊤ηk(xk)

)2)1/2

+ (λ− 1)n−0.2(log n)∥ξt−1∥2

≲
√
t∥ξt−1∥2 max

τ0≤s≤t
|αs|+ (λ− 1)n−0.2(log n)∥ξt−1∥2 ≲

√
t log n

n
,

32



provided that t ≲ logn
λ−1 and max

τ0≤s≤t
|αs| ≲

√
λ− 1n−0.1. Here the last inequality invokes ∥ξt∥2 ≲

√
t3 logn

n

(see (39)). Substitution into (55) yields

|∆α,t| ≲
√

t log n

n
≪ (λ− 1)|αt|, (153)

given |αt| ≳
√
λ− 1n−1/4 and λ− 1 ≳ n−1/9 log n. It thus completes the proof of the relation (59).

B.7 Proof of Claim (62)
Throughout this section, we assume without loss of generality that αt > 0. As computed in Section B.5 for
relation (56), applying Lemma 2 reveals that∣∣∣∣ π2

t

α2
tn

− 1

∣∣∣∣α2
t ≲

(
∥ξt−1∥2 +

√
t log n

n

)
∧ αt

(
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√
t log n

n

)1/2

≲ αt

(
(λ− 1)3

log n

)1/4

,

γ−2
t = n

(
1 +O

(√
(λ− 1)3

log n

))∫
tanh2

(
πt√
n
(αt + x)

)
φ(dx),

|∆α,t| ≲ ∥ξt−1∥2 +
√

t log n

n
≲

√
(λ− 1)3

log n
,

given the inductive assumptions ∥ξt−1∥2 ≲
√

(λ−1)3

logn when t ≲ n(λ−1)5

log2 n
and αt ≳

√
λ2 − 1. Now in view of

similar calculations for (150), we can deduce that

αt+1 = λ

[∫
tanh

(
α2
t + αtx

)
φn(dx)

]1/2
+O

(∣∣∣∣ π2
t

α2
tn

− 1

∣∣∣∣α3
t +

λ− 1√
log n

αt +∆α,t

)
≥ λαt√

1 + α2
t

+ o
(
(λ− 1)3/4α2

t + (λ− 1)αt

)
(154)

where we have made use of the fact that
√

(λ−1)3

logn ≪ (λ− 1)αt.
We then demonstrate that this relation (154) together with a little algebra indicates that αt+1 ≥

1
2

√
λ2 − 1. Specifically, consider the following two cases separately.

• First, consider the case where αt ≤ 2
3

√
λ2 − 1. Akin to inequality (57), relation (154) implies the

existence of some constant c > 0 such that

αt+1 ≥
(
1 + c(λ− 1)

)
αt + o

(
(λ− 1)αt

)
≥ αt ≥

1

2

√
λ2 − 1.

• Otherwise, consider the case where αt >
2
3

√
λ2 − 1. Recognizing the fact that λαt√

1+α2
t

is monotonically

increasing in αt, we arrive at

αt+1 ≥
(
1 + c(λ− 1)

)2
3

√
λ2 − 1 + o

(
(λ− 1)3/4

)
≥ 1

2

√
λ2 − 1.

Thus, this completes the proof of our desired bound (28).

B.8 Proof of Lemma 5
Throughout the proof, we work with the event that {ϕk}t−1

k=1 ∈ E (defined in Lemma 1 with δ = O(n−11)),

which holds true with probability at least 1−O(n−11). On this event, one has ∥ϕt∥∞ ≲
√

logn
n and

∥xt∥∞ ≤ ∥αtv
⋆∥∞ +

∥∥∥ t−1∑
k=1

βk
t−1ϕk

∥∥∥
∞

+ ∥ξt−1∥2 ≲
|αt|√
n
+

√
t log n

n
+

√
t3 log n

n
≲

√
log4 n

n(λ− 1)3
(155)
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for any t ≤ τ0, where we remind the readers that (see (39), the property ∥βt−1∥2 = 1, the definition of E1,
and the definition (44) of τ0)

|αt| ≲
√
λ− 1n−1/4,

∥∥∥ t−1∑
k=1

βk
t−1ϕk

∥∥∥
∞

≲

√
t log n

n
and ∥ξt−1∥2 ≲

√
t3 log n

n
(156)

as long as t ≲ logn
λ−1 (see (45)).

To show that {η1(x1), . . . , ηt(xt)} forms a near-orthogonal basis, one strategy is to show that ηi(xi) ≈ ϕi−1

for each 1 ≤ i ≤ t ≤ τ0, which in turn implies that∥∥∥∥∥
t∑

i=1

wiηi(xi)

∥∥∥∥∥
2

≈
∥∥∥ t∑

i=1

wiϕi−1

∥∥∥
2
≍ ∥w∥2, (157)

given that ϕk ∼ N (0, 1
nIn) are independent Gaussian vectors; here, we introduce ϕ0 := x1 ∼ N (0, 1

nIn) for
notational convenience. Guided by this intuition, we first use the triangle inequality to derive that∣∣∣∣∣∥∥∥

t∑
i=1

wiηi(xi)
∥∥∥
2
−
∥∥∥ t∑

i=1

wiβ
i−1
i−1ϕi−1

∥∥∥
2

∣∣∣∣∣
≤
∥∥∥ t∑

i=1
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[
ηi(xi)− ηi(β

i−1
i−1ϕi−1)

]∥∥∥
2
+
∥∥∥ t∑

i=1

wi

[
ηi(β

i−1
i−1ϕi−1)− βi−1

i−1ϕi−1

]∥∥∥
2

(158)

for any vector w ∈ Rt. In order to bound these terms, we proceed with the following three steps.

• Let us first consider the difference between ηt(xt) and xt. Invoking property (25c) in Lemma 3 allows
us to express

ηt(xt) = (1− c0)

(
xt −

π2
t

3
xt ◦ xt ◦ xt + cxt

)
,

where c0 ≲ log2 n√
n(λ−1)3

, πt ≲
n1/4 logn
(λ−1)3/4

, and cxt
is a vector obeying (cf. (155))

∥cxt∥∞ ≲
n∥xt∥5∞ log4 n

(λ− 1)3
≲

log14 n

n3/2(λ− 1)10.5
. (159)

Then one has
∥ηt(xt)− xt∥2 ≲ c0∥xt∥2 +

1

3
πt2∥xt ◦ xt ◦ xt∥2 +

√
n ∥cxt∥∞. (160)

We then claim that

∥ηt(xt)− xt∥2 ≲
log3 n√
n(λ− 1)3

; (161)

to streamline the presentation, the proof of this claim is deferred to the end of this section. Applying
the same argument once gain also leads to

∥∥ηt(βt−1
t−1ϕt−1)− βt−1

t−1ϕt−1

∥∥
2
≲

log3 n√
n(λ− 1)3

. (162)

• Combining relations (161) and (162) and invoking the triangle inequality, we obtain∥∥ηt (xt)− ηt
(
βt−1
t−1ϕt−1

)∥∥
2
≤ ∥ηt(xt)− xt∥2 +
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2

=
∥∥xt − βt−1
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2
+O

(
log3 n√
n(λ− 1)3

)
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=
∥∥∥αtv
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∥∥∥
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)
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where the last line makes use of (156). Let us denote β̃t−1 := (β1
t−1, . . . , β

t−2
t−1) ∈ Rt−2, obtained by

removing the last entry of βt−1. According to Lemma 1, we note that with probability 1−O(n−11),∣∣∣∣∥∥∥ t−2∑
k=1

βk
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∥∥∥
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∣∣∣∣ ≤ ∥β̃t−1∥2 · sup
a=[ak]1≤k<t−2∈St−3

∣∣∣∣∥∥∥ t−2∑
k=1

akϕk

∥∥∥
2
− 1

∣∣∣∣ ≲
√

t log n

n
∥β̃t−1∥2,

which in turn implies that(
1−O

(√ t log n

n

))
∥β̃t−1∥2 ≤

∥∥∥ t−2∑
k=1

βk
t−1ϕk

∥∥∥
2
≤
(
1 +O

(√ t log n

n

))
∥β̃t−1∥2.

As a consequence, we can further control the right-hand side of (163) by

∥∥ηt (xt)− ηt
(
βt−1
t−1ϕt−1

)∥∥
2
≤
(
1 +O

(√ t log n

n

))
∥β̃t−1∥2 +O

(
|αt|+

log3 n√
n(λ− 1)3

)
. (164)

• Our next step is concerned with bounding the term ∥β̃t−1∥2. First, recall that βt corresponds to the
linear coefficients of ηt(xt) when projected to the linear space Ut (see (42) and (41b)). We can thus
write

∥β̃t∥2 =
∥∥U⊤

t−1ηt (xt)
∥∥
2

≤
∥∥U⊤

t−1

[
ηt (xt)− ηt

(
βt−1
t−1ϕt−1

)]∥∥
2
+
∥∥U⊤

t−1

[
ηt
(
βt−1
t−1ϕt−1

)
− βt−1

t−1ϕt−1

]∥∥
2
+
∥∥U⊤

t−1

(
βt−1
t−1ϕt−1

)∥∥
2

≤
(
1 +O

(√ t log n

n

))
∥β̃t−1∥2 +O

(
|αt|+

log3 n√
n(λ− 1)3

)
+O

(
log3 n√
n(λ− 1)3

)
+
∥∥U⊤

t−1

(
βt−1
t−1ϕt−1

)∥∥
2

=

(
1 +O

(√ t log n

n

))
∥β̃t−1∥2 +O

(
|αt|+

log3 n√
n(λ− 1)3

)
+O

(√
t log n

n

)

=

(
1 +O

(√ t log n

n

))
∥β̃t−1∥2 +O

(
|αt|+

log3 n√
n(λ− 1)3

)
.

Here, the third line follows from (162) and (164); the penultimate line holds due to the independence
between ϕt−1 and Ut−1 (see the properties below display (43)) and hence U⊤

t−1ϕt−1 ∼ N (0, 1
nIt); and

the last line holds as long as t ≲ logn
λ−1 . Recognizing that ∥β̃1∥2 =

√
1− ∥β1∥22 = 0, we can apply the

above relation recursively to yield

∥β̃t∥2 ≤
t∑

τ=1

(
1 +O

(√ t log n

n

))t−1−τ

·O

(
|ατ |+

log3 n√
n(λ− 1)3

)

≲
t∑

τ=1

(
|ατ |+

log3 n√
n(λ− 1)3

)
≲

t
√
λ− 1

n1/4
+

t log3 n√
n(λ− 1)3

,

where the penultimate inequality follows from the fact
√

t logn
n ≲ 1

t as t ≲ logn
λ−1 , and the last inequality

uses |αt| ≲
√
λ− 1n−1/4 for t ≤ τ0 (see the definition of τ0 in (44)). Under the assumption that
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λ− 1 ≳ n−1/9 log n, we can further obtain

∥β̃t∥2 ≲
t
√
λ− 1

n1/4
. (165)

Plugging this relation into (164) and using the condition |αt| ≲
√
λ− 1n−1/4 (∀t ≤ τ0) give

∥∥ηt (xt)− ηt
(
βt−1
t−1ϕt−1

)∥∥
2
≲

t
√
λ− 1

n1/4
. (166)

It is worth noting that the inequality (165) also implies

|βt
t | =

√
∥βt∥22 − ∥β̃t∥22 =

√
1− ∥β̃t∥22 = 1−O

(
t2(λ− 1)

n1/2

)
.

To finish up, putting the above bounds together with expression (158), we conclude that∣∣∣∣∣∥∥∥
t∑

i=1

wiηi(xi)
∥∥∥
2
−
∥∥∥ t∑

i=1

wiϕi−1

∥∥∥
2

∣∣∣∣∣
≤ (1− βt−1

t−1)
∥∥∥ t∑

i=1

wiϕi−1

∥∥∥
2
+
∥∥∥ t∑

i=1

wi

[
ηi(xi)− ηi(β

i−1
i−1ϕi−1)

]∥∥∥
2
+
∥∥∥ t∑

i=1

wi

[
ηi(β

i−1
i−1ϕi−1)− βi−1

i−1ϕi−1

]∥∥∥
2

= O

(
t2(λ− 1)

n1/2

)∥∥∥ t∑
i=1

wiϕi−1

∥∥∥
2
+O

(
t
√
λ− 1

n1/4

)
·
√
t∥w∥2 +O

(
log3 n√
n(λ− 1)3

)
·
√
t∥w∥2

= O

 t3/2
√
λ− 1

n1/4
+

√
t log6 n

n(λ− 1)3

 ∥w∥2 = o(∥w∥2),

where the last relation results from the facts t < τ0 ≲ log n/(λ − 1) and the assumption λ − 1 ≥ n−1/9.

Finally, observing ∥
∑t

i=1 wiϕi−1∥2 = (1 +O(
√

t logn
n ))∥w∥2, we reach

∥∥∥ t∑
i=1

wiηi(xi)
∥∥∥
2
=
(
1 + o(1)

)
∥w∥2,

which completes the proof of our desired bound.

Proof of inequality (161). For any fixed integer k ≥ 2 that does not scale with n, we can write

n∑
i=1

|xt,i|k ≲
n∑

i=1

|αtv
⋆
i |k +

n∑
i=1

|ut,i|k +

n∑
i=1

|ξt−1,i|k, with ut :=

t−1∑
k=1

βk
t−1ϕk.

Let us bound each term separately. Firstly, recalling that ∥ξt−1∥2 ≲
√

t3 logn
n (cf. (39)) gives

n∑
i=1

|ξt−1,i|k ≤ ∥ξt−1∥k2 ≲

(
t3 log n

n

)k/2

. (167)

Secondly, on the event {ϕk}t−1
k=1 ∈ E (see Lemma 1), we see that ∥ut∥2 ≲ 1 and ∥ut∥∞ ≤

√
(t log n)/n. This

in turn gives

n∑
i=1

|ut,i|k =
∑
i≤t

|ut,(i)|k +
∑
i>t

|ut,(i)|k
(∗)
≲ t

(
t log n

n

)k/2

+

(
log n

n

)k/2−1∑
i>t

|ut,(i)|2
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≲ t

(
t log n

n

)k/2

+

(
log n

n

)k/2−1

≲

(
1 +

tk/2+1 log n

n

)(
log n

n

)k/2−1

, (168)

with x(i) denoting the i-th largest entry of x (in magnitude). Here, to see why inequality (∗) holds, we recall
that on the event {ϕk}t−1

k=1 ∈ E (see Lemma 1), one has

sup
a∈St−2

t∑
i=1

∣∣∣∣∣
t−1∑
k=1

akϕk

∣∣∣∣∣
2

(i)

≲
t log n

n
,

which also guarantees that |ut,(t+1)| ≲
√
log n/n. Putting the above pieces together, we obtain

n∑
i=1

|xt,i|k ≲ n

(
1

n(λ− 1)

)3k/4

+

(
1 +

tk/2+1 log n

n

)(
log n

n

)k/2−1

+

(
t3 log n

n

)k/2

≲

(
log n

n

)2

, (169)

where the last inequality is valid if we take k = 6, t ≲ log n/(λ − 1) and assume λ − 1 ≳ n−1/9 log n. It
therefore leads to

π2
t ∥xt ◦ xt ◦ xt∥2 = π2

t

( n∑
i=1

|xt,i|6
)1/2

≲
n1/2 log2 n

(λ− 1)3/2
· log n

n
=

log3 n√
n(λ− 1)3

,

where we have used the bound on πt in Lemma 3 (the 3rd case). This together with (159), (160) and the
fact c0 ≲ log2 n√

n(λ−1)3
concludes the proof of inequality (161).

B.9 Proof of inequality (73)
Before proceeding, let us make several observations about τt

h(τt)
. As discussed around [2, display (254)], the

sequence τt with τt+1 = λ2h(τt) is monotonically increasing, which implies that τt
h(τt)

≤ λ2. In addition, the
optimality of the Bayes estimator (cf. (133)) implies that τt

h(τt)
≤ τt + 1. Combining these two observations,

we obtain
τt

h(τt)
≤ (τt + 1) ∧ λ2.

In view of the inductive assumption, we have α2
t = (1 + o(1))τt for t ≳ ς. Hence, for every τ obeying

min{τt, α2
t } ≤ τ ≤ max{τt, α2

t }, it holds that τ = (1+ o(1))τt with τt ≳ λ2 − 1. Define T2 as in display (263)
of [2] such that

T2(s, τ) := s2h′(τ) = s2
∫ (

1 +
x

2
√
τ

)(
1− tanh2

(
τ +

√
τx
))

φ(dx). (170)

Armed with this notation, we can bound the target quantity as
τt

h(τt)
h′(τ) ≤ T2(

√
τt + 1 ∧ λ, τ).

Therefore, it suffices to upper bound the right-hand side of the above inequality by 1− c(λ− 1).
Towards this end, direct calculations yield

T2(
√
τt + 1 ∧ λ, τ)− T2(

√
τ + 1 ∧ λ, τ)

T2(
√
τ + 1 ∧ λ, τ)

= (
√
τ + 1 ∧ λ)2 − (

√
τt + 1 ∧ λ)2 = o(λ− 1). (171)

Moreover, it has been proved numerically (see Figure 1 in [2]) that

T2(λ, τ) ≤ 1− (λ− 1), for λ ∈ (0, 1.2] and τ >
√

λ2 − 1.
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Recognizing that τ = (1 + o(1))τt ≳ λ2 − 1, we can deduce from the relation above that

T2(
√
τ + 1 ∧ λ, τ) ≤ 1−

(
(
√
τ + 1 ∧ λ)− 1

)
= 1− c1(λ− 1) (172)

for some universal constant c1 > 0. Finally, putting relations (171) and (172) together, we arrive at
τt

h(τt)
h′(τ) ≤ T2(

√
τt + 1 ∧ λ, τ) = (1 + o(λ− 1))T2(

√
τ + 1 ∧ λ, τ) ≤ 1− c(λ− 1)

for some universal constant c > 0. We have thus finished the proof of relation (73).

C Proof of expression (17) and Corollary 1
To begin with, by definition (16) of ut, one has

∥ut∥2 =

∥∥∥∥∥ 1

λ
√
n(α2

t + 1)
tanh(πtxt)

∥∥∥∥∥
2

≤ 1

λ
,

where we have used the fact that | tanh(πtxt)| < 1. Therefore the quantity of interest ∥v⋆v⋆⊤ − utu
⊤
t ∥2F is

uniformly upper bounded by a constant 1 + 1
λ4 . In addition, we find it helpful to observe that

∥v⋆v⋆⊤ − utu
⊤
t ∥2F = ∥v⋆∥42 − 2(v⋆⊤ut)

2 + ∥ut∥42

= 1− 2
1

nλ2(α2
t + 1)

(
v⋆⊤ tanh(πtxt)

)2
+

1

n2λ4(α2
t + 1)2

∥ tanh(πtxt)∥42

= 1− 1

λ4

(
2α2

t+1

(α2
t + 1)nγ2

t

+
1

(α2
t + 1)2n2γ4

t

)
. (173)

To validate expression (17), it is sufficient to notice that γ−2
t − nα2

t (α
2
t + 1) = o(1) with probability at

least 1−O(n−10) (according to Lemma 2), which in turn leads to

lim
t→∞

lim
n→∞

E
[
∥v⋆v⋆⊤ − utu

⊤
t ∥2F

]
= 1− α⋆4

λ4
.

To prove Corollary 1, we again invoke Lemma 2 to demonstrate that

1

n
γ−2
t =

1

n
π2
t

(
α2
t + 1 +O

(
π2
t

n
+ ∥ξt−1∥2 +

√
t log n

n

))
=

(
α2
t +O

((
∥ξt−1∥2 +

√
t log n

n

)1/2))(
α2
t + 1 +O

(
π2
t

n
+ ∥ξt−1∥2 +

√
t log n

n

))
= (α2

t +O(δ1/2))(α2
t + 1 +O(δ))

= α2
t (α

2
t + 1) +O(δ1/2) (174)

with δ :=
√

t logn
n(λ−1)2 +

√
log4 n

n(λ−1)3 , where we plug in the bound on ∥ξt∥2 as in expression (8c). Substituting
the expression (174) into (173) yields

∥v⋆v⋆⊤ − utu
⊤
t ∥2F = 1− α2

t

λ4

(
2α2

t+1 − α2
t +O(δ1/2)

)
. (175)

After an order of logn
λ−1 iterations, property (14) ensures that α2

t − α⋆2 = O(
√

log4 n
n(λ−1)6 ). Putting everything

together, we arrive at

∥v⋆v⋆⊤ − utu
⊤
t ∥2F = 1− α⋆4

λ4
+O

(√
log4 n

n(λ− 1)6

)
,

which holds true with probability at least 1−O(n−10).
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