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Early Stopping for Kernel Boosting Algorithms:
A General Analysis With Localized Complexities

Yuting Wei , Fanny Yang, and Martin J. Wainwright, Senior Member, IEEE

Abstract— Early stopping of iterative algorithms is a widely
used form of regularization in statistics, commonly used in
conjunction with boosting and related gradient-type algorithms.
Although consistency results have been established in some
settings, such estimators are less well-understood than their
analogues based on penalized regularization. In this paper, for a
relatively broad class of loss functions and boosting algorithms
(including L2-boost, LogitBoost, and AdaBoost, among others),
we exhibit a direct connection between the performance of a
stopped iterate and the localized Gaussian complexity of the
associated function class. This connection allows us to show that
the local fixed point analysis of Gaussian or Rademacher com-
plexities, now standard in the analysis of penalized estimators,
can be used to derive optimal stopping rules. We derive such
stopping rules in detail for various kernel classes and illustrate
the correspondence of our theory with practice for Sobolev kernel
classes.

Index Terms— Boosting, kernel, early stopping, regularization,
localized complexities.

I. INTRODUCTION

WHILE non-parametric models offer great flexibility,
they can also lead to overfitting, and poor generaliza-

tion as a consequence. For this reason, it is well understood
that procedures for fitting non-parametric models must involve
some form of regularization. When models are fit via a form
of empirical risk minimization, the most classical form of
regularization is based on adding some type of penalty to
the objective function. An alternative form of regularization is
based on the principle of early stopping, in which an iterative
algorithm is run for a pre-specified number of steps, and
terminated prior to convergence.
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While the basic idea of early stopping is fairly old (e.g., [1],
[33], [37]), recent years have witnessed renewed interests in its
properties, especially in the context of boosting algorithms and
neural network training (e.g., [13], [27]). Over the past decade,
a line of work has yielded some theoretical insight into early
stopping, including works on classification error for boosting
algorithms [4], [14], [19], [25], [41], [42], L2-boosting algo-
rithms for regression [8], [9], and similar gradient algorithms
in reproducing kernel Hilbert spaces (e.g. [11], [12], [28],
[36], [41]). A number of these papers establish consistency
results for particular forms of early stopping, guaranteeing
that the procedure outputs a function with statistical error that
converges to zero as the sample size increases. On the other
hand, there are relatively few results that actually establish
rate optimality of an early stopping procedure, meaning that
the achieved error matches known statistical minimax lower
bounds. To the best of our knowledge, Bühlmann and Yu [9]
were the first to prove optimality for early stopping of L2-
boosting as applied to spline classes, albeit with a rule that
was not computable from the data. Subsequent work by
Raskutti et al. [28] refined this analysis of L2-boosting for
kernel classes and first established an important connection
to the localized Rademacher complexity; see also the related
work [10], [29], [41] with rates for particular kernel classes.

More broadly, relative to our rich and detailed understanding
of regularization via penalization (e.g., see the books [18],
[34], [35], [39] and papers [3], [21] for details), our under-
standing of early stopping regularization is not as well devel-
oped. Intuitively, early stopping should depend on the same
bias-variance tradeoffs that control estimators based on penal-
ization. In particular, for penalized estimators, it is now well-
understood that complexity measures such as the localized
Gaussian width, or its Rademacher analogue, can be used
to characterize their achievable rates [3], [21], [34], [39].
Is such a general and sharp characterization also possible in
the context of early stopping?

The main contribution of this paper is to answer this
question in the affirmative for the early stopping of boost-
ing algorithms as applied to various regression and classi-
fication problems involving functions in reproducing kernel
Hilbert spaces (RKHS). A standard way to obtain a good
estimator or classifier is through minimizing some penalized
form of loss functions of which the method of kernel ridge
regression [38] is a popular choice. Instead, we consider an
iterative update involving the kernel that is derived from a
greedy update. Borrowing tools from empirical process theory,
we are able to characterize the “size” of the effective function
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space explored by taking T steps, and then to connect the
resulting estimation error naturally to the notion of localized
Gaussian width defined with respect to this effective function
space. This leads to a principled analysis for a broad class of
loss functions used in practice, including the loss functions that
underlie the L2-boost, LogitBoost and AdaBoost algorithms,
among other procedures.

The remainder of this paper is organized as follows. In
Section II, we provide background on boosting methods and
reproducing kernel Hilbert spaces, and then introduce the
updates studied in this paper. Section III is devoted to state-
ments of our main results, followed by a discussion of their
consequences for particular function classes in Section IV. We
provide simulations that confirm the practical effectiveness
of our stopping rules, and show close agreement with our
theoretical predictions. In Section V, we provide the proofs of
our main results, with certain more technical aspects deferred
to the appendices.

II. BACKGROUND AND PROBLEM FORMULATION

The goal of prediction is to estimate a function that maps
covariates x ∈ X to responses y ∈ Y . In a regression
problem, the responses are typically real-valued, whereas in
a classification problem, the responses take values in a finite
set. In this paper, we study both regression (Y = R) and
classification problems (e.g., Y = {−1,+1} in the binary
case). Our primary focus is on the case of fixed design,
in which we observe a collection of n pairs of the form
{(xi , Yi )}n

i=1, where each xi ∈ X is a fixed covariate, whereas
Yi ∈ Y is a random response drawn independently from a
distribution PY |xi which depends on xi . Later in the paper,
we also discuss the consequences of our results for the case
of random design, where the (Xi , Yi ) pairs are drawn in an
i.i.d. fashion from the joint distribution P = PX PY |X for some
distribution PX on the covariates.

In this section, we provide some necessary background on a
gradient-type algorithm which is often referred to as boosting
algorithm. We also discuss briefly about the reproducing kernel
Hilbert spaces before turning to a precise formulation of the
problem that is studied in this paper.

A. Boosting and Early Stopping

Consider a cost function φ : R × R → [0,∞), where
the non-negative scalar φ(y, θ) denotes the cost associated
with predicting θ when the true response is y. Some common
examples of loss functions φ that we consider in later sections
include:

• the least-squares loss φ(y, θ) : = 1
2 (y−θ)2 that underlies

L2-boosting [9],
• the logistic regression loss φ(y, θ) = ln(1 + e−yθ ) that

underlies the LogitBoost algorithm [15], [16], and
• the exponential loss φ(y, θ) = exp(−yθ) that underlies

the AdaBoost algorithm [14].
The least-squares loss is typically used for regression problems
(e.g., [9], [11], [12], [28], [36], [41]), whereas the latter two
losses are frequently used in the setting of binary classification
(e.g., [14], [16], [25]).

Given some loss function φ, we define the population cost
functional f �→ L( f ) via

L( f ) : = EY n
1

�1

n

n�
i=1

φ
�
Yi , f (xi )

��
. (1)

Note that with the covariates {xi}n
i=1 fixed, the functional L is a

non-random object. Given some function space F , the optimal
function1 minimizes the population cost functional—that is

f ∗ : = arg min
f ∈F

L( f ). (2)

As a standard example, when we adopt the least-squares loss
φ(y, θ) = 1

2 (y−θ)2, the population minimizer f ∗ corresponds
to the conditional expectation x �→ E[Y | x].

Since we do not have access to the population distribution
of the responses however, the computation of f ∗ is impos-
sible. Given our samples {Yi }n

i=1, we consider instead some
procedure applied to the empirical loss

Ln( f ) : = 1

n

n�
i=1

φ(Yi , f (xi )), (3)

where the population expectation has been replaced by an
empirical expectation. For example, when Ln corresponds
to the log likelihood of the samples with φ(Yi , f (xi )) =
log[P(Yi ; f (xi ))], direct unconstrained minimization of Ln

would yield the maximum likelihood estimator.
It is well-known that direct minimization of Ln over a

sufficiently rich function class F may lead to overfitting.
There are various ways to mitigate this phenomenon, among
which the most classical method is to minimize the sum of the
empirical loss with a penalty regularization term. Adjusting the
weight on the regularization term allows for trade-off between
fit to the data, and some form of regularity or smoothness
in the fit. The behavior of such penalized of regularized
estimation methods is now quite well understood (for instance,
see the books [18], [34], [35], [39] and papers [3], [21] for
more details).

In this paper, we study a form of algorithmic regularization,
based on applying a gradient-type algorithm to Ln but then
stopping it “early”—that is, after some fixed number of steps.
Such methods are often referred to as boosting algorithms,
since they are based on improving the fit of a function via
a sequence of additive updates (e.g., see the papers [6], [7],
[14], [30], [31]). Many boosting algorithms, among them
AdaBoost [14], L2-boosting [9] and LogitBoost [15], [16],
can be understood as forms of functional gradient meth-
ods [16], [25]; see the survey paper [8] for further background
on boosting. The way in which the number of steps is
chosen is referred to as a stopping rule, and the overall
procedure is referred to as early stopping of a boosting
algorithm.

1Our assumptions guarantee uniqueness of f ∗ with regard to the design
points {xi }n

i=1.
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Fig. 1. Plots of the squared error � f t − f ∗�2
n = 1

n
�n

i=1( f t (xi ) − f ∗(xi ))
2 versus the iteration number t for (a) LogitBoost using a first-order Sobolev

kernel (b) AdaBoost using the same first-order Sobolev kernel K(x, x �) = 1+min(x, x �) which generates a class of Lipschitz functions (splines of order one).
Both plots correspond to a sample size n = 100.

In more detail, a broad class of boosting algorithms [25]
generate a sequence { f t }∞t=0 via updates of the form

f t+1 = f t − αt gt (4)

with gt ∝ arg max
�d�F≤1

�∇Ln( f t ), d(xn
1 )
,

where the constraint �d�F ≤ 1 defines the
unit ball in a given function class F , and
d(xn

1 ) : = (d(x1), d(x2), . . . , d(xn)) ∈ Rn , ∇Ln( f ) ∈ Rn

denotes the gradient taken with respect to the vector�
f (x1), . . . , f (xn)), and �h, g
 is the usual inner product

between vectors h, g ∈ Rn . Here the scalar {αt }∞t=0 is a
sequence of step sizes chosen by the user. For non-decaying
step sizes and a convex objective Ln , running this procedure
for an infinite number of iterations will lead to a minimizer
of the empirical loss, thus causing overfitting. In order to
illustrate this phenomenon, Figure 1 provides plots of the
squared error � f t − f ∗�2

n : = 1
n

�n
i=1

�
f t (xi ) − f ∗(xi )

�2

versus the iteration number, for LogitBoost in panel (a) and
AdaBoost in panel (b). See Section IV-B for more details on
exactly how these experiments were conducted.

In the plots in Figure 1, the dotted line indicates the mini-
mum mean-squared error ρ2

n over all iterates of that particular
run of the algorithm. Both plots are qualitatively similar,
illustrating the existence of a “good” number of iterations to
take, after which the MSE greatly increases. Hence a natural
problem is to decide at what iteration T to stop such that the
iterate f T satisfies bounds of the form

L( f T ) − L( f ∗) � ρ2
n and � f T − f ∗�2

n � ρ2
n (5)

with high probability. Here f (n) � g(n) indicates that f (n) ≤
cg(n) for some universal constant c ∈ (0,∞). The main results
of this paper provide a stopping rule T for which bounds of
the form (5) do in fact hold with high probability over the
randomness in the observed responses.

Moreover, as shown by our later results, under suit-
able regularity conditions, the expectation of the minimum
squared error ρ2

n is proportional to the statistical minimax

risk inf�f sup
f ∈F

E[L(�f ) − L( f )], where the infimum is taken

over all possible estimators �f . Note that the minimax risk
provides a fundamental lower bound on the performance of
any estimator uniformly over the function space F . Coupled
with our stopping time guarantee (5), we are guaranteed that
our estimate achieves the minimax risk up to constant factors.
As a result, our bounds are unimprovable in general (see
Corollary 2).

B. Reproducing Kernel Hilbert Spaces

The analysis of this paper focuses on algorithms with the
update (4) when the function class F is a reproducing kernel
Hilbert space, or RKHS for short. Here we provide a brief
introduction, directing the reader to various books for more
background [5], [17], [32], [38], [39]. An RKHS H is a
function space consisting of functions mapping a domain X to
the real line R. Any RKHS is defined by a bivariate symmetric
kernel function K : X × X → R which is required to
be positive semidefinite, i.e. for any integer N ≥ 1 and a
collection of points {x j }N

j=1 in X , the matrix [K(xi , x j )]i j ∈
RN×N is positive semidefinite.

The associated RKHS is the completion of all linear com-
binations

�n
i=1 αi K(·, xi ), where n ∈ N, {x j }n

j=1 is some col-
lection of points in X , and {ω j }∞j=1 is a real-valued sequence,
with respect to the scalar product

�
n�

i=1

αi K(·, xi),

m�
j=1

α�
j K(·, x �

j )
H =
�
i, j

αiα
�
j K(xi , x �

j ).

For each x ∈ X , the function K(·, x) belongs to H , and
satisfies the reproducing relation

� f, K(·, x)
H = f (x) for all f ∈ H . (6)

Moreover, when the covariates Xi are drawn i.i.d. from a
distribution PX with domain X , suppose that X is compact,
the kernel function K is continuous and positive semidefinite,
and satisfies the bound	

X×X
K(x, x �) dPX (x)dPX (x �) < ∞.
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Then we can invoke Mercer’s theorem, which guarantees that
the kernel function can be represented as

K(x, x �) =
∞�

k=1

μkφk(x)φk(x �), (7)

where μ1 ≥ μ2 ≥ · · · ≥ 0 are the ordered eigenvalues of
the kernel function K and {φk}∞k=1 are eigenfunctions of K

which form an orthonormal basis of L2(X , PX ) with the inner
product � f, g
 : = 


X f (x)g(x)dPX (x).
Throughout this paper, we assume that the kernel function

is uniformly bounded, meaning that there is a constant L such
that supx∈X K(x, x) ≤ L. Such a boundedness condition holds
for many kernels used in practice, including the Gaussian,
Laplacian, Sobolev, other types of spline kernels, as well as
any trace class kernel with trigonometric eigenfunctions. By
rescaling the kernel as necessary, we may assume without loss
of generality that L = 1. As a consequence, for any function
f such that � f �H ≤ r , we have by the reproducing relation
that

� f �∞ = sup
x

� f, K(·, x)
H ≤ � f �H sup
x

�K(·, x)�H ≤ r.

Given samples {(xi , yi )}n
i=1, by the representer theo-

rem [20], it is sufficient to restrict ourselves to the linear
subspace Hn = �span{K(·, xi )}n

i=1, for which all f ∈ Hn can
be expressed as

f = 1√
n

n�
i=1

ωi K(·, xi ) (8)

for some coefficient vector ω ∈ Rn . Among those func-
tions which achieve the infimum in expression (1), let us
define f ∗ as the one with the minimum Hilbert norm. This
definition is equivalent to restricting f ∗ to be in the linear
subspace Hn .

C. Boosting in Kernel Spaces

Given a collection of n covariates {xi }n
i=1, let us define

the normalized kernel matrix K ∈ Rn×n with entries Kij =
K(xi , x j )/n. Recall that we can restrict the minimization of Ln

and L from H to the subspace Hn without loss of generality.
Consequently, using the expression (8), the function value
vectors f (xn

1 ) : = ( f (x1), . . . , f (xn)) can be written in the
form f (xn

1 ) = √
nKω. Moreover, if the null space of K is

empty, then there is a one-to-one correspondence between
n-dimensional vectors f (xn

1 ) ∈ Rn and the corresponding
function f ∈ Hn . In that case, minimization of an empirical
loss in the subspace Hn essentially becomes the n-dimensional
problem of fitting a response vector y over the set range(K ).
In the sequel, all updates will thus be performed on the
function value vectors f (xn

1 ).
With a change of variable d(xn

1 ) = √
n
√

K z we then have

dt (xn
1 ) : = arg max

�d�H ≤1
d∈range(K )

�∇Ln( f t ), d(xn
1 )


=
√

nK∇Ln( f t )�∇Ln( f t )K∇Ln( f t )
.

In this paper, we study the choice gt = �∇Ln( f t ), dt (xn
1 )
dt

in the boosting update (4), so that the function value iterates
take the form

f t+1(xn
1 ) = f t (xn

1 ) − αnK∇Ln( f t ), (9)

where α > 0 is a constant stepsize choice. With the
initialization f 0(xn

1 ) = 0, all iterates f t (xn
1 ) remain in the

range space of K .
In this paper, we consider the following three error measures

for an estimator �f :

L2(Pn) norm: ��f − f ∗�2
n = 1

n

n�
i=1

� �f (xi ) − f ∗(xi )
�2

,

L2(PX ) norm: ��f − f ∗�2
2 : = E

� �f (X) − f ∗(X)
�2

,

Excess risk: L(�f ) − L( f ∗).

Here the expectation defining the L2(PX )-norm is taken over
random covariates X that are independent of the samples
(Xi , Yi ) used to form the estimate �f . Our goal is to propose
a stopping time T such that the averaged function �f =
1
T

�T
t=1 f t satisfies bounds of the type (5). We begin our

analysis by focusing on the empirical L2(Pn) error, but as
we will see in Corollary 1, bounds on the empirical error are
easily transformed to bounds on the population L2(PX ) error.
Importantly, we exhibit such bounds with a statistical error
term δn that is specified by the localized Gaussian complexity
of the kernel class.

III. MAIN RESULTS

We now turn to the statement of our main results, beginning
with the introduction of some regularity assumptions.

A. Assumptions

Recall from our earlier set-up that we differentiate between
the empirical loss function Ln in expression (3), and the
population loss L in expression (1). Apart from assuming
differentiability of both functions, all of our remaining con-
ditions are imposed on the population loss. Such conditions
at the population level are weaker than their analogues at the
empirical level.

For a given radius r > 0, let us define the Hilbert ball
around the optimal function f ∗ as

BH ( f ∗, r) : = { f ∈ H | � f − f ∗�H ≤ r}. (10)

Our analysis makes particular use of this ball defined for the
radius C2

H : = 2 max{� f ∗�2
H , 32, σ 2} where the effective

noise level σ is defined in the sequel.
We assume that the population loss is m-strongly con-

vex and M-smooth over BH ( f ∗, 2CH ), meaning that the
m-M-condition

m

2
� f − g�2

n ≤ L( f ) − L(g) − �∇L(g), f (xn
1 ) − g(xn

1 )


≤ M

2
� f − g�2

n
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holds for all f, g ∈ BH ( f ∗, 2CH ) and all design points
{xi }n

i=1. In addition, we assume that the function φ is M-
Lipschitz in its second argument over the interval

θ ∈
�

min
i∈[n] f ∗(xi) − 2CH , max

i∈[n] f ∗(xi ) + 2CH



.

To be clear, here ∇L(g) denotes the vector in Rn obtained
by taking the gradient of L with respect to the vector g(xn

1 ).
It can be verified by a straightforward computation that when
L is induced by the least-squares cost φ(y, θ) = 1

2 (y − θ)2,
the m-M-condition holds for m = M = 1. The logistic and
exponential loss satisfy this condition (see the supplementary
material), where it is key that we have imposed the condition
only locally on the ball BH ( f ∗, 2CH ).

In addition to the least-squares cost, our theory also applies
to losses L induced by scalar functions φ that satisfy the
φ�-boundedness condition:

max
i=1,...,n

����∂φ(y, θ)

∂θ

����
θ= f (xi )

≤ B

for all f ∈ BH ( f ∗, 2CH ) and y ∈ Y.

This condition holds with B = 1 for the logistic loss for all
Y , and B = exp(2.5CH ) for the exponential loss for binary
classification with Y = {−1, 1}, using our kernel boundedness
condition. Note that whenever this condition holds with some
finite B , we can always rescale the scalar loss φ by 1/B so
that it holds with B = 1, and we do so in order to simplify
the statement of our results.

B. Upper Bound in Terms of Localized Gaussian Width

Our upper bounds involve a complexity measure known as
the localized Gaussian width. In general, Gaussian widths are
widely used to obtain risk bounds for least-squares and other
types of M-estimators. In our case, we consider Gaussian
complexities for “localized” sets of the form

En(δ, 1) : =
�

f − g | f, g ∈ H such that

� f − g�H ≤ 1 and � f − g�n ≤ δ
�
. (11)

The Gaussian complexity localized at scale δ is given by

Gn
�En(δ, 1)

� : = E

�
sup

g∈En(δ,1)

1

n

n�
i=1

wi g(xi )
�
, (12)

where (w1, . . . , wn) denotes an i.i.d. sequence of standard
Gaussian variables.

An essential quantity in our theory is specified by a certain
fixed point equation that is now standard in empirical process
theory [3], [21], [28], [34], [39]. Let us define the effective
noise level

σ : =

⎧⎪⎪⎨
⎪⎪⎩

min
�

t | max
i=1,...,n

E[e((Yi− f ∗(xi ))
2/t2)] < ∞

�
for least-squares loss

4 (2M + 1)(1 + 2CH ) for φ�-bounded losses.

(13)

As a remark, for the quadratic loss function, the above
assumption is equivalent to assume that each Yi − f ∗(xi) is a
sub-Gaussian random variable.

The critical radius δn is the smallest positive scalar such
that

Gn(En(δ, 1))

δ
≤ δ

σ
. (14)

We note that past work on localized Rademacher and Gaussian
complexity [3], [26] guarantees that there exists a unique
δn > 0 that satisfies this condition, so that our definition is
sensible. In particular, one can show (more details see e.g.
Wainwright [39, Lemma 13.6,]) that the left hand side of this
inequality is a non-increasing function in terms of δ and the
right hand side of the inequality is an increasing function of δ.
Therefore there exists a smallest positive solution to the above
inequality.

1) Upper Bounds on Excess Risk and Empirical L2(Pn)-
Error: With this set-up, we are now equipped to state our main
theorem. It provides high-probability bounds on the excess risk
and L2(Pn)-error of the estimator f̄ T : = 1

T

�T
t=1 f t defined

by averaging the T iterates of the algorithm. It applies to both
the least-squares cost function, and more generally, to any loss
function satisfying the m-M-condition and the φ�-boundedness
condition.

Theorem 1. Given a sample size n sufficiently large to ensure
that δn ≤ M

m , suppose that we compute the sequence { f t }∞t=0
using the update (9) with initialization f 0 = 0 and any
step size α ∈ (0, min{ 1

M , M}]. Then for any iteration T ∈�
0, 1, . . . � m

8Mδ2
n
��, the averaged function estimate f̄ T satisfies

the bounds

L( f̄ T ) − L( f ∗) ≤ C M
� 1

αmT
+ δ2

n

m2

�
(15a)

and � f̄ T − f ∗�2
n ≤ C

� 1

αmT
+ δ2

n

m2

�
, (15b)

where both inequalities hold with probability at least

1 − c1 exp(−C2
m2nδ2

n
σ 2 ).

We prove Theorem 1 in Section V-A.
A few comments about the constants in our statement: in

all cases, constants of the form c j are universal, whereas the
capital C j may depend on parameters of the joint distribution
and population loss L. In Theorem 1, we have the explicit
value C2 = {m2

σ 2 , 1} and C2 is proportional to the quantity
2 max{� f ∗�2

H , 32, σ 2}. While inequalities (15a) and (15b)
are stated as high probability results, similar bounds for
expected loss (over the response yi , with the design fixed)
can be obtained by a simple integration argument. As another
remark, since the function class En(δ, 1) does not depend
on the minimizer f ∗, quantity δn in expression (14) is also
independent of f ∗, and therefore our bound holds for all f ∗
in the unit ball of the given RKHS.

In order to gain intuition for the claims in the theorem,
note that apart from factors depending on (m, M), the first

term 1
αmT dominates the second term δ2

n
m2 whenever T � 1/δ2

n .
Consequently, up to this point, taking further iterations reduces
the upper bound on the error. This reduction continues until
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we have taken of the order 1/δ2
n many steps, at which point

the upper bound is of the order δ2
n .

More precisely, suppose that we perform the updates with
step size α = m

M ; then, after a total number of τ : = 1
δ2

n max{8,M}
many iterations, the extension of Theorem 1 to expectations
guarantees that the mean squared error is bounded as

E� f̄ τ − f ∗�2
n ≤ C � δ2

n

m2 , (16)

where C � is another constant depending on CH . Here we
have used the fact that M ≥ m in simplifying the expression.
It is worth noting that guarantee (16) matches the best known
upper bounds for kernel ridge regression (KRR)—indeed,
this must be the case, since a sharp analysis of KRR is
based on the same notion of localized Gaussian complexity
(e.g. [2], [3]). Thus, our results establish a strong parallel
between the algorithmic regularization of early stopping,
and the penalized regularization of kernel ridge regression.
Moreover, as will be clarified in Section III-C, under suitable
regularity conditions on the RKHS, the critical squared radius
δ2

n also acts as a lower bound for the expected risk, meaning
that our upper bounds are not improvable in general.

Note that the critical radius δ2
n only depends on our obser-

vations {(xi , yi )}n
i=1 through the solution of inequality (14). In

many cases, it is possible to compute and/or upper bound this
critical radius, so that a concrete and valid stopping rule can
indeed by calculated in advance. In Section IV, we provide a
number of settings in which this can be done in terms of the
eigenvalues {�μ j }n

j=1 of the normalized kernel matrix.
2) Consequences for Random Design Regression: Thus far,

our analysis has focused purely on the case of fixed design, in
which the sequence of covariates {xi}n

i=1 is viewed as fixed.
If we instead view the covariates as being sampled in an
i.i.d. manner from some distribution PX over X , then the
empirical error ��f − f ∗�2

n = 1
n

�n
i=1

�
f (xi ) − f ∗(xi )

�2 of a
given estimate �f is a random quantity, and it is interesting to
relate it to the squared population L2(PX )-norm ��f − f ∗�2

2 =
E
�
(�f (X) − f ∗(X))2

�
.

In order not to unnecessarily complicate the discussion,
in this section we assume that the data is drawn from the
generative model

yi = f ∗(xi) + �i , i = 1, 2, . . . , n, (17)

with f ∗ ∈ H , and where we assume that the noise �i : =
yi − f ∗(xi ) variables are uncorrelated with xi . Under these
conditions, the function f ∗ is both the minimizer of the
population risk when the expectation is taken over the pair
(X, Y ) jointly, and the minimizer of the empirical risk when
the expectation is only taken with respect to the randomness
in Y . In this way, our results from the case of non-random
design can be generalized directly.

In order to state an upper bound on this error, we introduce a
population analogue of the critical radius δn , which we denote
by �δn . Consider the set

�E(δ, 1) : =
�

f − g | f, g ∈ H , � f − g�H ≤ 1, (18)

� f − g�2 ≤ δ
�
.

It is analogous to the previously defined set E(δ, 1), except that
the empirical norm � · �n has been replaced by the population
version. The population Gaussian complexity localized at scale
δ is given by

�Gn
��E(δ, 1)

� : = Ew,X

�
sup

g∈�E(δ,1)

1

n

n�
i=1

wi g(Xi )
�
, (19)

where {wi }n
i=1 are an i.i.d. sequence of standard normal

variates, and {Xi }n
i=1 is a second i.i.d. sequence, indepen-

dent of the normal variates, drawn according to PX . Finally,
the population critical radius �δn is defined by equation (19),
in which Gn is replaced by �Gn .

Corollary 1. Under the conditions of Theorem 1, suppose
in addition that the sequence {Xi }n

i=1 are drawn i.i.d. from
distribution PX and the responses {Yi }n

i=1 are generated from
regression model (17). If we compute the boosting updates with
step size α ∈ (0, min{ 1

M , M}] and initialization f 0 = 0, then
the averaged function estimate f̄ T at time T : = � 1

δ̄2
n max{8,M} �

satisfies the bound

EX
�

f̄ T (X) − f ∗(X)
�2 = � f̄ T − f ∗�2

2 ≤ c̃ �δ2
n

with probability at least 1−c1 exp(−C2
m2nδ̄2

n
σ 2 ) over the random

samples.

The proof of Corollary 1 consists of two main steps:

• From standard empirical process theory bounds [3], [28],
the difference between empirical risk � f̄ T − f ∗�2

n and
population risk � f̄ T − f ∗�2

2 can be controlled for uni-
formly bounded f̄ T − f ∗. Note that the latter holds
when T ≤ � 1

δ̄2
n max{8,M} � by uniform boundedness of the

kernel and Lemma 4 used for the proof of Theorem 1. In
particular, it can be shown that

|� f̄ T − f ∗�2
n − � f̄ T − f ∗�2

2| ≤ c�δn,

for a fixed positive constant c.
• Furthermore, one can show (e.g. Wainwright [39, Propo-

sition 14.25]) that the empirical critical quantity δn is
bounded by the population �δn up to multiplicative con-
stant.

By combining both arguments the corollary follows. We refer
the reader to the papers [3], [28] for further details on such
equivalences.

It is worth comparing this guarantee with the past work of
Raskutti et al. [28], who analyzed the kernel boosting iterates
of the form (9), but with attention restricted to the special
case of the least-squares loss. Their analysis was based on first
decomposing the squared error into bias and variance terms,
then carefully relating the combination of these terms to a
particular bound on the localized Gaussian complexity (see
equation (23) below). In contrast, our theory more directly
analyzes the effective function class that is explored by taking
T steps, so that the localized Gaussian width (19) appears
more naturally. In addition, our analysis applies to a broader
class of loss functions.
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C. Achieving Minimax Lower Bounds

In this section, we show that the upper bound (16) for fixed
design matches known minimax lower bounds on the error,
so that our results are unimprovable in general. We establish
this result for the class of regular kernels, as previously defined
by Yang et al. [40], which includes the Gaussian and Sobolev
kernels as special cases.

The class of regular kernels is defined as follows. Let�μ1 ≥ �μ2 ≥ · · · ≥ �μn ≥ 0 denote the ordered eigenvalues
of the normalized kernel matrix K , and define the quantity
dn : = argmin j=1,...,n{�μ j ≤ δ2

n}. A kernel is called regular
whenever there is a universal constant c such that the tail
sum satisfies

�n
j=dn+1 �μ j ≤ c dnδ

2
n . In words, the tail sum

of the eigenvalues for regular kernels is roughly on the
same or smaller scale as the sum of the eigenvalues bigger
than δ2

n .
For such kernels and under the Gaussian observation model

(Yi ∼ N( f ∗(xi ), σ
2)), Yang et al. [40] prove a minimax lower

bound involving δn . In particular, they show that the minimax
risk over the unit ball of the Hilbert space is lower bounded
as

inf�f sup
� f ∗�H ≤1

E��f − f ∗�2
n ≥ cδ2

n, (20)

for some fixed positive constant c. Comparing the lower
bound (20) with upper bound (16) for our estimator f̄ T

stopped after O(1/δ2
n) many steps, it follows that the bounds

proven in Theorem 1 are unimprovable apart from constant
factors.

We now state a generalization of this minimax lower
bound, one which applies to a sub-class of generalized linear
models, or GLM for short. In these models, the conditional
distribution of the observed vector Y = (Y1, . . . , Yn) given�

f ∗(x1), . . . , f ∗(xn)
�

takes the form

Pθ (y) =
n�

i=1

�
h(yi ) exp

� yi f ∗(xi ) − �( f ∗(xi))

s(σ )

��
, (21)

where s(σ ) is a known scale factor and � : R → R is the
cumulant function of the generalized linear model. As some
concrete examples:

• The linear Gaussian model is recovered by setting s(σ ) =
σ 2 and �(t) = t2/2.

• The logistic model for binary responses
y ∈ {−1, 1} is recovered by setting s(σ ) = 1 and
�(t) = log(1 + exp(t)).

Our minimax lower bound applies to the class of GLMs
for which the cumulant function � is differentiable and
has uniformly bounded second derivative |���| ≤ L. This
class includes the linear, logistic, multinomial families, among
others, but excludes (for instance) the Poisson family. Under
this condition, we have the following:

Corollary 2. Suppose that we are given i.i.d. samples {yi}n
i=1

from a GLM (21) for some function f ∗ in a regular kernel
class with � f ∗�H ≤ 1. Then running T : = � 1

δ2
n max{8,M} �

iterations with step size α ∈ (0, min{ 1
M , M}] and f 0 = 0

yields an estimate f̄ T such that

E� f̄ T − f ∗�2
n � inf�f sup

� f ∗�H ≤1
E��f − f ∗�2

n . (22)

Here f (n) � g(n) means f (n) = cg(n) up to a universal
constant c ∈ (0,∞). As always, in the minimax claim (22),
the infimum is taken over all measurable functions of the
input data and the expectation is taken over the random-
ness of the response variables {Yi }n

i=1. Since we know that
E� f̄ T − f ∗�2

n � δ2
n , the way to prove bound (22) is by estab-

lishing inf �f sup� f ∗�H ≤1 E��f − f ∗�2
n � δ2

n . See Section V-B
for the proof of this result.

At a high level, the statement in Corollary 2 shows that
early stopping prevents us from overfitting to the data; in
particular, using the stopping time T yields an estimate that
attains the optimal balance between bias and variance. Note
that for the special case of the squared loss, related works
such as [11], [24] have proved bounds which adapt to the
smoothness and regularity of f ∗ for an early stopping time
(which also depends on the regularity parameter). The novelty
in our work is that our general unified framework which
connects penalized and algorithmic regularization, can be used
to compute bounds for a large variety of loss functions.

IV. CONSEQUENCES FOR VARIOUS KERNEL CLASSES

In this section, we apply Theorem 1 to derive some concrete
rates for different kernel spaces for the random design case
and then illustrate them with some numerical experiments. It
is known that the complexity of an RKHS in association with
a distribution over the covariates PX can be characterized by
the decay rate (7) of the eigenvalues of the kernel operator
(also called eigen-decay). The representation power of a kernel
class is directly correlated with the eigen-decay: the faster the
decay, the smaller the function class.

A. Theoretical Predictions as a Function of Decay

In this section, let us consider two forms of decay of kernel
eigenvalues μi defined in equation (7).

• γ -exponential decay: For some γ > 0, the
eigenvalues satisfy a decay condition of the form
μ j ≤ c1 exp(−c2 jγ ), where c1, c2 are universal con-
stants. Examples of kernels in this class include the
Gaussian kernel, which for the Lebesgue measure satisfies
such a bound with γ = 2 (over the real line) or γ = 1
(on a compact domain).

• β-polynomial decay: For some β > 1/2, the eigenvalues
satisfy a decay condition of the form μ j ≤ c1 j−2β ,
where c1 is a universal constant. Examples of kernels
in this class include the kth-order Sobolev spaces for
some fixed integer k ≥ 1 with Lebesgue measure on a
bounded domain. We consider Sobolev spaces that consist
of functions that have kth-order weak derivatives f (k)

being Lebesgue integrable and f (0) = f (1)(0) = · · · =
f (k−1)(0) = 0. For such classes, the β-polynomial decay
condition holds with β = k.

Given eigendecay conditions of these types, it is possible
to compute an upper bound on the critical radius �δn by upper
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bounding the localized Gaussian complexity by a function of
the eigenvalues. In particular, we have the following lemma:

Lemma 1. Letting μ1 ≥ μ2 ≥ · · · ≥ 0 denote the ordered
eigenvalues of the kernel operator, it holds that

�Gn(�E(δ, 1)) ≤
�

2

n

���� ∞�
j=1

min{δ2, μ j }. (23)

The proof can be found in Section E. As a direct conse-
quence, the smallest δ which satisfies the following inequality�

2

n

���� ∞�
j=1

min{δ2, μ j } ≤ δ2

σ
(24)

is an upper bound on the critical radius�δn . We can now see that
�δn is directly related to the representation power of a kernel
class by means of the eigenvalues of the corresponding kernel
operator.

Consequently, we can show that for γ -exponentially decay-
ing kernels, we have �δ2

n � (log n)1/γ

n , whereas for β-polynomial

kernels, we have �δ2
n � n− 2β

2β+1 , where � denotes an inequality
holding with a universal constant pre-factor. Combining with
our Theorem 1, we obtain the following result:

Corollary 3 (Bounds based on eigendecay). Under the con-
ditions of Corollary 1 and for {xi }n

i=1 drawn i.i.d. from PX ,
the following bounds on the expected empirical errors over
the outputs hold with probability at least 1 − e−n�δn

(a) For kernels with γ -exponential eigen-decay, we have

E� f̄ T − f ∗�2
n ≤ c

log1/γ n

n

at T � n
log1/γ n

steps.

(b) For kernels with β-polynomial eigen-decay, we have

E� f̄ T − f ∗�2
n ≤ c n−2β/(2β+1)

at T � n2β/(2β+1) steps.

In particular, these bounds hold for LogitBoost and AdaBoost.
See Section V-C for the proof of Corollary 3. These bounds
directly carry over to bounds on the excess risk L( f T )−L( f ∗)
as outlined in the proof of Theorem 1 and also hold for the
population errors by invoking Corollary 1.

To the best of our knowledge, our results are the first
to show non-asymptotic and minimax optimal rates for the
� · �2

n-error when applying early stopping to either the Log-
itBoost or AdaBoost updates, along with an explicit depen-
dence of the stopping rule on n. Our results yield analogous
guarantees for L2-boosting, as have been established in past
work [28]. Note that we observe a similar trade-off between
computational efficiency and statistical accuracy as in the case
of kernel least-squares regression [28], [41]: although larger
kernel classes (e.g. Sobolev classes) yield higher estimation
errors, boosting updates reach the optimum faster than for a
smaller kernel class (e.g. Gaussian kernels).

It is worth noting that whiel Lemma 1 is stated in terms of
the kernel operator eigenvalues, an analogous bound also holds

in terms of the eigenvalues of the kernel matrix. The proof of
this claim is similar; see Lemma 13.22 in the book [39] for
details. Since the empirical and population critical quantities
are close up to constants ( [39, Lemma 13.6,]), this connection
provides an explicit way to compute the optimal stopping
rule T up to a constant factor. It does entail computing (a
subset of) the eigenvalues of the n-dimensional kernel matrix.
In applications where there are multiple estimation problems
involving the same set of design points, this cost could be
amortized. In other settings, this cost could be significant, and
it would be interesting to devise algorithms that approximate
the kernel eigenvalues to sufficient accuracy. We leave this as
a direction for future work.

B. Numerical Experiments

We now describe some numerical experiments that pro-
vide illustrative confirmations of our theoretical predictions.
While we have applied our methods to various kernel classes,
in this section, we present numerical results for the first-order
Sobolev kernel as two typical examples for exponential and
polynomial eigen-decay kernel classes.

Let us start with the first-order Sobolev space of Lip-
schitz functions on the unit interval [0, 1], defined by the
kernel K(x, x �) = 1 + min(x, x �), and with the design points
{xi}n

i=1 set equidistantly over [0, 1]. Note that the equidistant
design yields β-polynomial decay of the eigenvalues of K
with β = 1 as in the case when xi are drawn i.i.d. from
the uniform measure on [0, 1]. Consequently we have that
δ2

n � n−2/3. Accordingly, our theory predicts that the stopping
time T = (cn)2/3 should lead to an estimate f̄ T such that
� f̄ T − f ∗�2

n � n−2/3.
In our experiments for L2-Boost, we sampled Yi according

to Yi = f ∗(xi ) + wi with wi ∼ N (0, 0.5), which corresponds
to the probability distribution P(Y | xi ) = N ( f ∗(xi); 0.5),
where f ∗(x) = |x − 1

2 | − 1
4 is defined on the unit interval

[0, 1]. By construction, the function f ∗ belongs to the first-
order Sobolev space with � f ∗�H = 1. For LogitBoost,
we sampled Yi according to Bin(p(xi), 5) where p(x) =

exp( f ∗(x))
1+exp( f ∗(x)) . In all cases, we fixed the initialization f 0 = 0,
and ran the updates (9) for L2-Boost and LogitBoost with
the constant step size α = 0.75. We compared various
stopping rules to the oracle rule G, meaning the procedure that
examines all iterates { f t }, and chooses the stopping time G =
arg mint≥1 � f t − f ∗�2

n that yields the minimum prediction
error. Of course, this procedure is unimplementable in practice,
but it serves as a convenient lower bound with which to
compare.

Each panel in Figure 2 shows plots of the mean-squared
error � f̄ T − f ∗�2

n versus the sample size n, with each point
corresponding to an average over 40 trials, for four differ-
ent stopping rules. Error bars correspond to the standard
errors computed from our simulations. The top two panels
((a) and (b)) show results for L2-Boost, whereas the bottom
two panels ((c) and (d)) show results for LogitBoost. The
left two panels ((a) and (c)) gives plots on a linear-linear
scale, whereas the corresponding right two panels ((b) and
(d)) replots the same data on a log-log scale. The blue-solid
curve corresponds to the performance of the oracle stopping
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Fig. 2. Plots of the mean-squared error versus the sample size n for various types of stopping rules. Panel (a) shows plots on a linear-linear scale, whereas
panel (b) shows plots on a log-log scale. The blue-solid curve corresponds the oracle rule of stopping the algorithm at the time T with the minimum error;
it is an oracle procedure, since we cannot actually determine the point of minimum error in practice. The remaining three curves show the behavior of three
different practical stopping rules, all based on stopping at the time T = (7n)κ for different choices of exponent κ . The performance of the rules given by
κ ∈ {1/3, 2/3, 1} are plotted in black-dotted, red-dashed, and green-dot-dashed curves, respectively. The choice κ = 0.67 is the theoretically optimal choice.
On the log-log plot, we see linear fits with slopes −0.80 for the oracle rule versus −0.85 for the rule with κ = 2/3 in the case of L2-boost, and −0.71 for
the oracle rule versus −0.77 for the rule with κ = 2/3 in the case of LogitBoost.

time T = G described above; the other three curves show
the performance of rules of the form T = (7n)κ for different
choices of κ . Note that the behavior of the stopping rules
for L2-Boost and LogitBoost are qualitatively similar. In both
cases, the theoretically derived stopping rule T = (7n)κ

with κ∗ = 2/3 ≈ 0.67, while slightly worse than the
oracle, tracks its performance closely. We also performed
simulations for some “bad” stopping rules, in particular for
an exponent κ not equal to the theoretically optimal choice
2/3; the performance of these bad rules is indicated in the
green-dot-dashed and black-dotted curves. The log scale plots
in Figure 2, namely panels (b) and (d), show that with
rules defined by κ ∈ {1/3, 1}, the resulting performance is
indeed substantially worse, with the difference in slope even
suggesting a different scaling of the error with the number
of observations n. Recalling our discussion for Figure 1, this
phenomenon likely occurs due to underfitting and overfitting
effects. These qualitative shifts are consistent with our theory.
As regards to the choice of pre-factor 7 in our stopping rule,
this was made on a heuristic basis, mainly to ensure that we
had reasonable rules for all choices of κ . Our main goal here

was to illustrate the correspondence between our theoretical
predictions and behavior in simulation.

V. PROOF OF MAIN RESULTS

We now turn to the proofs of our main results, with the bulk
of the technical details deferred to the appendices. We begin
by recalling some notation from Section II-C. We denote the
vector of function values of a function f ∈ H evaluated at
(x1, x2, . . . , xn) as

θ f : = f (xn
1 ) = ( f (x1), f (x2), . . . f (xn)) ∈ R

n,

where we omit the subscript f when it is clear from the
context. As mentioned in the main text, updates on the function
value vectors θ t ∈ Rn correspond uniquely to updates of the
functions f t ∈ H (see a complete discussion in Section A).
In the following we repeatedly abuse notation by defining the
Hilbert norm and empirical norm on vectors in � ∈ range(K )
as

���2
H = 1

n
�T K †� and ���2

n = 1

n
���2

2,
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where K † is the pseudoinverse of K . We also use BH (θ, r)
to denote the ball with respect to the � · �H -norm in
range(K ).

A. Proof of Theorem 1

On a high-level, the key to the proof is the fact that the
Hilbert norm is bounded for all iterations t such that t ≤

m
8Mδ2

n
. Doing so involves combining arguments from convex

optimization with arguments from empirical process theory,
with the latter being required to relate the derivatives of the
sample and population-based objective functions.

The proof of our main theorem is based on a sequence
of lemmas, all of which are stated with the assumptions of
Theorem 1 in force. The first lemma establishes a bound on the
empirical norm �·�n of the error �t+1 : = θ t+1 − θ∗, provided
that its Hilbert norm is suitably controlled.

Lemma 2. For any stepsize α ∈ (0, 1
M ] and any iteration t

we have

m

2
��t+1�2

n ≤ 1

2α

�
��t�2

H − ��t+1�2
H

�
+ �∇L(θ∗ + �t ) − ∇Ln(θ∗ + �t ), �t+1
. (26)

See Appendix B for the proof of this claim.
The second term on the right-hand side of the bound (26)

involves the difference between the population and empirical
gradient operators. Since this difference is being evaluated
at the random points �t and �t+1, the following lemma
establishes a form of uniform control on this term.

Let us define the set

S : =
 
�,!� ∈ R

n | ���H ≥ 1,

and �, !� ∈ BH (0, 2CH )

"
,

and consider the uniform bound

�∇L(θ∗ + !�) − ∇Ln(θ∗ + !�), �
 ≤ 2δn���n

+ 2δ2
n���H + m

c3
���2

n for all �,!� ∈ S. (27)

Lemma 3. Let E be the event that bound (27)
holds. There are universal constants (c1, c2) such that

P[E] ≥ 1 − c1 exp(−c2
m2nδ2

n
σ 2 ).

See Appendix C for the proof of this claim.
Note that Lemma 2 applies only to error iterates with a

bounded Hilbert norm. Our last lemma provides this control
for some number of iterations:

Lemma 4. There are constants (C1, C2) independent of n
such that for any step size α ∈ �

0, min{M, 1
M }�, we have

��t�H ≤ CH for all iterations t ≤ m
8Mδ2

n
(28)

with probability at least 1 − C1 exp(−C2nδ2
n), where C2 =

max{m2

σ 2 , 1}.
See Appendix D for the proof of this lemma; note that this
proof also uses Lemma 3.

Taking these lemmas as given, we now complete the proof
of the theorem. We first condition on the event E from
Lemma 3, so that we may apply the bound (27). We then
fix some iterate t such that t < m

8Mδ2
n

− 1, and condition on
the event that the bound (28) in Lemma 4 holds, so that we are
guaranteed that ��t+1�H ≤ CH . We then split the analysis
into two cases:

a) Case 1: First, suppose that ��t+1�n ≤ δnCH . In this
case, inequality (15b) holds directly.

b) Case 2: Otherwise, we may assume that ��t+1�n >
δn��t+1�H . Applying bound (27) with the choice (!�,�) =
(�t ,�t+1) yields

�∇L(θ∗ + �t ) − ∇Ln(θ∗ + �t ), �t+1
 ≤ 4δn��t+1�n

+ m

c3
��t+1�2

n . (29)

Substituting inequality (29) back into equation (26) yields

m

2
��t+1�2

n ≤ 1

2α

�
��t�2

H − ��t+1�2
H

�
+ 4δn��t+1�n + m

c3
��t+1�2

n .

Re-arranging terms yields the bound

γ m��t+1�2
n ≤ Dt + 4δn��t+1�n, (30)

where we have introduced the shorthand notation
Dt : = 1

2α

�
��t�2

H − ��t+1�2
H

�
, as well as γ = 1

2 − 1
c3

Equation (30) defines a quadratic inequality with respect to
��t+1�n ; solving it and making use of the inequality (a +
b)2 ≤ 2a2 + 2 b2 yields the bound

��t+1�2
n ≤ cδ2

n

γ 2m2 + 2Dt

γ m
, (31)

for some universal constant c. By telescoping inequality (31),
we find that

1

T

T�
t=1

��t�2
n ≤ cδ2

n

γ 2m2 + 1

T

T�
t=1

2Dt

γ m
(32)

≤ cδ2
n

γ 2m2 + 1

αγ mT
[��0�2

H − ��T �2
H ]. (33)

By Jensen’s inequality, we have

� f̄ T − f ∗�2
n = � 1

T

T�
t=1

�t�2
n ≤ 1

T

T�
t=1

��t�2
n,

so that inequality (15b) follows from the bound (32).
On the other hand, by the smoothness assumption, we have

L( f̄ T ) − L( f ∗) ≤ M

2
� f̄ T − f ∗�2

n,

from which inequality (15a) follows.

B. Proof of Corollary 2

We first provide a proof outline before proceeding with
the details. Our proof is based on a standard application of
Fano’s inequality, together with a random packing argument.
Fano’s inequality helps reduce proving lower bounds to finding
an upper bound on the Kullback-Leibler divergence between
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distributions associated to the packing set. Then we control the
Kullback-Leibler divergence between the GLM (21) through
the properties of their cumulant functions. See Chapter 15 in
the book [39] for more background on arguments of this type.

Our proof builds on and generalizes Theorem 1 in Yang et
al. [40]. By definition of the transformed vector θ = DUα
with K = U T DU , we have for any estimator �f = √

nU T θ
that ��f − f ∗�2

n = ��θ − θ∗�2
2. Therefore our goal is to lower

bound the Euclidean error ��θ − θ∗�2 of any estimator of θ∗.
Borrowing Lemma 4 in Yang et al. [40], there exists δ/2-
packing of the set B = {θ ∈ Rn | �D−1/2θ�2 ≤ 1} of
cardinality M = edn/64 with dn : = arg min

j=1,...,n
{�μ j ≤ δ2

n}.
The packing actually belongs to the set

E(δ) : =
�
θ ∈ R

n |
n�

j=1

θ2
j

min{δ2,�μ j } ≤ 1
�
,

which is a subset of B . Let us denote the packing set by
{θ1, . . . , θ M }. Since θ ∈ E(δ), by simple calculation, we have
�θ i�2 ≤ δ.

By considering the random ensemble of regression problems
in which we first draw an index Z at random from the index set
[M] and then condition on Z = z, we observe n i.i.d samples
yn

1 := {y1, . . . , yn} from Pθ z , Fano’s inequality implies that

P(��θ − θ∗�2 ≥ δ2

4
) ≥ 1 − I (yn

1 ; Z) + log 2

log M
.

where I (yn
1 ; Z) is the mutual information between the samples

Y and the random index Z .
So it is only left for us to control the mutual information

I (yn
1 ; Z). Using the mixture representation P̄ = 1

M

�M
i=1 Pθ i

and the convexity of the Kullback–Leibler divergence, we have

I (yn
1 ; Z) = 1

M

M�
j=1

�Pθ j , P̄�KL ≤ 1

M2

�
i, j

�Pθ i , Pθ j �KL.

In order to proceed, we claim that

�Pθ (y), Pθ �(y)�KL ≤ nL�θ − θ ��2
2

s(σ )
. (34)

Taking this claim as given for the moment, since each �θ i�2 ≤
δ, triangle inequality yields �θ i − θ j�2 ≤ 2δ for all i �= j . It
is therefore guaranteed that

I (yn
1 ; Z) ≤ 4nLδ2

s(σ )
.

Therefore, similar to Yang et al. [40], following the fact that
the kernel is regular and hence s(σ )dn ≥ cnδ2

n , any estimator�f has prediction error lower bounded as

sup
� f ∗�H ≤1

E��f − f ∗�2
n ≥ clδ

2
n .

This lower bound, in conjunction with the upper bound from
Theorem 1, yields the statement of Corollary 2.

Proof of inequality (34): Recall that we define the trans-
formed parameter θ = DUα with K = U T DU , and any
estimator �f = √

nU T θ . Let us write U = [u1, u2, . . . , un].
Direct calculation of the KL divergence yields

�Pθ (y), Pθ �(y)�KL =
	

log(
Pθ (y)

Pθ �(y)
)Pθ (y)dy

= 1

s(σ )

n�
i=1

�(
√

n�ui , θ �
) − �(
√

n�ui , θ
)

+
√

n

s(σ )

	 n�
i=1

�
yi �ui , θ − θ �
�Pθdy. (35)

To further control the right hand side of expression (35),
we concentrate on expressing


 �n
i=1 yiui Pθdy differently.

Leibniz’s rule allow us to inter-change the order of integral
and derivative, so that	

d Pθ

dθ
dy = d

dθ

	
Pθ dy = 0. (36)

Observe that	
d Pθ

dθ
dy =

√
n

s(σ )

	
Pθ ·

n�
i=1

ui
�
yi − ��(

√
n�ui , θ �
)�dy

so that equality (36) yields	 n�
i=1

yi uiPθdy =
n�

i=1

ui�
�(
√

n�ui , θ
).

Combining the above inequality with expression (35), the KL
divergence between two generalized linear models Pθ , Pθ � can
thus be written as

�Pθ (y), Pθ �(y)�KL = 1

s(σ )

n�
i=1

�(
√

n�ui , θ �
)

−�(
√

n�ui , θ
) − √
n�ui , θ � − θ
��(

√
n�ui , θ
). (37)

Together with the fact that

|�(
√

n�ui , θ �
) − �(
√

n�ui , θ
)
− √

n�ui , θ � − θ
��(
√

n�ui , θ
)| ≤ nL�θ − θ ��2
2.

which follows by assumption on � having a uniformly
bounded second derivative. Combining the above inequality
with inequality (37) establishes our claim (34).

C. Proof of Corollary 3

Throughout the proof, we condition on the event

E = ��δn

4
≤ δn ≤ 3�δn

�
which holds with probability at least 1 − c1e−c2n�δn for
some universal constants c1, c2 (see Proposition 14.1 in the
book [39]). The expectations are with respect to the outputs
Y1, . . . , Yn . When the conditions in Theorem 1 are satis-
fied, it then follows from the extension (16) of the theorem
that

E� f̄ T − f ∗�2
n ≤ C � δ2

n

m2 ≤ C
�� �δ2

n

m2 at T � 1
δ2

n
steps. (38)
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In order to invoke Theorem 1 for the particular cases of Log-
itBoost and AdaBoost, we need to verify the conditions, i.e.
that the m-M-condition and φ�-boundedness conditions hold
for the respective loss function over the ball BH (θ∗, 2CH ).
The following lemma provides such a guarantee:

Lemma 5. With D : = CH + �θ∗�H , the logistic regression
cost function satisfies the m-M-condition with parameters

m = 1

e−D + eD + 2
, M = 1

4
, and B = 1.

The AdaBoost cost function satisfies the m-M-condition with
parameters

m = e−D, M = eD, and B = eD .

In particular, the conditions hold for any sequence {xi}n
i=1 in

the domain X .

See Appendix F for the proof of Lemma 5.
It follows from Lemma 1 that is suffices to compute the

function

R(δ) : =
�

2

n

���� ∞�
j=1

min{δ2, μ j } (39)

to obtain an upper bound for the critical radius �δn .
c) γ -exponential decay: Suppose that the kernel operator

eigenvalues satisfy a decay condition of the form μ j ≤
c1 exp(−c2 jγ ), where c1, c2 are universal constants. Then
the function R from equation (39) can be upper bounded as

R(δ) =
����1

n

∞�
i=1

min{δ2, μ j }

≤
�

1

n

����kδ2 +
∞�

j=k+1

c1e−c2 j 2
,

and R(δ) ≥ √
kδ2 where k is the smallest integer such that

c1 exp(−c2 kγ ) < δ2. Some algebra then shows that the critical
radius scales as �δ2

n � n
log(n)1/γ σ 2 .

Consequently, if we take T � log(n)1/γ σ 2

n steps, then Theo-
rem 1 guarantees that the averaged estimator θ̄T satisfies the
bound

�θ̄T − θ∗�2
n �

#
1

αm
+ 1

m2

$
log1/γ n

n
σ 2,

with probability 1 − c1exp(−c2m2 log1/γ n).
d) β-polynomial decay: Now suppose that the kernel

eigenvalues satisfy a decay condition of the form μ j ≤
c1 j−2β for some β > 1/2 and constant c1. In this case,
a direct calculation yields the bounds

R(δ) ≤
����kδ2 + c2

∞�
j=k+1

j−2 and R(δ) ≥
�

kδ2,

where k is the smallest integer such that c2 k−2 < δ2.
Combined with upper bound

c2

n�
j=k+1

j−2 ≤ c2

	
k+1

j−2 ≤ kδ2,

we find that the critical radius scales as �δ2
n � n−2β/(1+2β).

Consequently, if we take T � n−2β/(1+2β) many steps, then
Theorem 1 guarantees that the averaged estimator θ̄T satisfies
the bound

�θ̄T − θ∗�2
n ≤

#
1

αm
+ 1

m2

$#
σ 2

n

$2β/(2β+1)

,

with probability at least 1 − c1exp(−c2m2( n
σ 2 )1/(2β+1)).

VI. DISCUSSION

In this paper, we have proven non-asymptotic bounds
for early stopping of kernel boosting for a relatively broad
class of loss functions. These bounds allowed us to propose
simple stopping rules which, for the class of regular kernel
functions [40], yield minimax optimal rates of estimation.
Although the connection between early stopping and regular-
ization has long been studied and explored in the theoretical
literature and applications alike, to the best of our knowledge,
this paper is the first one to establish a general relationship
between the statistical optimality of stopped iterates and the
localized Gaussian complexity. This connection is important,
because this localized Gaussian complexity measure, as well
as its Rademacher analogue, are now well-understood to play
a central role in controlling the behavior of estimators based
on regularization [3], [21], [34], [39].

There are various open questions suggested by our results.
The stopping rules in this paper depend on the eigenvalues
of the empirical kernel matrix; for this reason, they are data-
dependent and computable given the data. However, in prac-
tice, it would be desirable to avoid the cost of computing all
the empirical eigenvalues. Can fast approximation techniques
for kernels be used to approximately compute our optimal
stopping rules? Second, our current theoretical results apply
to the averaged estimator f̄ T . We strongly suspect that the
same results apply to the stopped estimator f T , but some new
ingredients are required to extend our proofs.

APPENDIX

A. Notation and Three Equivalent Iteration Forms

Before directly diving into the proofs, let us first introduce
some shorthand notation and provide more details on RKHS
that are relevant for developing our main results.

Recalling the discussion in Section II-C, we denote the
vector of function values of a function f ∈ H evaluated
at (x1, x2, . . . , xn) as

θ f : = f (xn
1 ) = ( f (x1), f (x2), . . . f (xn)) ∈ R

n,

where we omit the subscript f when it is clear from the
context. As mentioned in the main text, updates on the function
value vectors θ t ∈ Rn correspond uniquely to updates of the
functions f t ∈ Hn . Therefore updates on f t which is written
as

f t+1 = f t − α∇Ln( f t ), with f 0 = 0, (40a)

can be written as updates on the function value

θ t+1 = θ t − nαK∇L̃n(θ t ), with θ0 = 0, (40b)
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where

Ln( f ) = L̃n(θ
t ) = 1

n

n�
i=1

φ(Yi , θi ).

Denote K † as the pseudoinverse of K , in our proof, we also
use the linear transformation

z : = n−1/2(K †)1/2θ ⇐⇒ θ = √
nK 1/2z.

as well as the new function Jn(z) : = L̃n(
√

n
√

K z) and its
population equivalent J (z) : = EJn(z). Ordinary gradient
descent on Jn with stepsize α takes the form

zt+1 = zt − α∇Jn(zt ) (40c)

= zt − α
√

n
√

K∇L̃n(
√

n
√

K zt ),

with z0 = 0. If we transform this update on z back to an
equivalent one on θ by multiplying both sides by

√
n
√

K , we
see that ordinary gradient descent on Jn is equivalent to the
kernel boosting update θ t+1 = θ t − αnK∇L̃n(θ t ).

Therefore in our context, these three forms (40a)-(40c) are
equivalent to each other, and we interchange between them
from time to time for convenience of the proof. Also note that
we abuse notation and write Ln for both Ln and L̃n as it is
clear from the argument which loss we refer to.

B. Proof of Lemma 2

Recalling that K † denotes the pseudoinverse of K (see
Section A), our proof is based on the linear transformation

z : = n−1/2(K †)1/2θ ⇐⇒ θ = √
nK 1/2z.

and iterates (40c) where

zt+1 = zt − α∇Jn(zt )

zt − α
√

n
√

K∇Ln(
√

n
√

K zt ).

Our goal is to analyze the behavior of the update (40c) in
terms of the population cost J (zt ). Thus, our problem is one of
analyzing a noisy form of gradient descent on the function J ,
where the noise is induced by the difference between the
empirical gradient operator ∇Jn and the population gradient
operator ∇J .

We show in the first part of the proof of Lemma 4 (without
having to use the statement of this Lemma 2), that for all
t ≤ m

8Mδ2
n

we have ��t�H ≤ 2CH . Therefore we can readily
assume that the L is M-smooth. Since the kernel matrix K
has been normalized to have largest eigenvalue at most one,
the function J is also M-smooth, whence

J (zt+1) ≤ J (zt ) + �∇J (zt ), dt 
 + M

2
�dt�2

2,

where dt : = zt+1 − zt = −α∇Jn(zt ).

Morever, since the function J is convex, we have J (z∗) ≥
J (zt ) + �∇J (zt ), z∗ − zt 
, whence

J (zt+1) − J (z∗) ≤ �∇J (zt ), dt + zt − z∗
 + M

2
�dt�2

2

= �∇J (zt ), zt+1 − z∗
 + M

2
�dt�2

2. (41)

Now define the difference of the squared errors

V t : = 1

2

�
�zt − z∗�2

2 − �zt+1 − z∗�2
2

�
.

By some simple algebra, we have

V t = 1

2

�
�zt − z∗�2

2 − �dt + zt − z∗�2
2

�
= − �dt , zt − z∗
 − 1

2
�dt�2

2

= − �dt , −dt + zt+1 − z∗
 − 1

2
�dt�2

2

= − �dt , zt+1 − z∗
 + 1

2
�dt�2

2.

Substituting back into equation (41) yields

J (zt+1) − J (z∗) ≤ 1

α
V t + �∇J (zt ) + dt

α
, zt+1 − z∗


= 1

α
V t + �∇J (zt ) − ∇Jn(zt ), zt+1 − z∗
,

where we have used the fact that 1
α ≥ M by our choice of

stepsize α.
Finally, we transform back to the original variables

θ = √
n
√

K z, using the relation ∇J (z) = √
n
√

K∇L(θ), so
as to obtain the bound

L(θ t+1) − L(θ∗) ≤ 1

2α

�
��t�2

H − ��t+1�2
H

�
+ �∇L(θ t ) − ∇Ln(θ t ), θ t+1 − θ∗
.

Note that the optimality of θ∗ implies that ∇L(θ∗) = 0.
Combined with m-strong convexity, we are guaranteed that
m
2 ��t+1�2

n ≤ L(θ t+1) − L(θ∗), and hence

m

2
��t+1�2

n ≤ 1

2α

�
��t�2

H − ��t+1�2
H

�
+ �∇L(θ∗ + �t ) − ∇Ln(θ∗ + �t ), �t+1
,

as claimed.

C. Proof of Lemma 3

We split our proof into two cases, depending on
whether we are dealing with the least-squares loss
φ(y, θ) = 1

2 (y − θ)2, or a classification loss with uniformly
bounded gradient (�φ��∞ ≤ 1).

1) Least-Squares Case: The least-squares loss is m-strongly
convex with m = M = 1. Moreover, the difference between
the population and empirical gradients can be written as
∇L(θ∗ + !�) − ∇Ln(θ∗ + !�) = σ

n (w1, . . . , wn), where the
random variables {wi }n

i=1 are i.i.d. and sub-Gaussian with
parameter 1. Consequently, we have

|�∇L(θ∗ + !�) − ∇Ln(θ∗ + !�), �
| =
����σn

n�
i=1

wi�(xi)

����.
Under these conditions, one can show (see [39] Lemma 13.4.)
that �����σn

n�
i=1

wi�(xi)

����� ≤ 2δn���n

+2δ2
n���H + 1

16
���2

n, (42)

which implies that Lemma 3 holds with c3 = 16.
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2) Gradient-Bounded φ-Functions: We now turn to the
proof of Lemma 3 for gradient bounded φ-functions. First,
we claim that it suffices to prove the bound (27) for functions
g ∈ ∂H and �g�H = 1 where ∂H : = { f − g | f, g ∈ H }.
Indeed, suppose that it holds for all such functions, and that
we are given a function � with ���H > 1. By assumption,
we can apply the inequality (27) to the new function g : =
�/���H , which belongs to ∂H by nature of the subspace
H = �span{K(·, xi )}n

i=1.
Applying the bound (27) to g and then multiplying both

sides by ���H , we obtain

�∇L(θ∗ + !�) − ∇Ln(θ
∗ + !�), �


≤2δn���n + 2δ2
n���H + m

c3

���2
n

���H

≤2δn���n + 2δ2
n���H + m

c3
���2

n,

where the second inequality uses the fact that ���H > 1 by
assumption.

In order to establish the bound (27) for functions with
�g�H = 1, we first prove it uniformly over the set {g |
�g�H = 1, �g�n ≤ t}, where t > 1 is a fixed radius (of
course, we restrict our attention to those radii t for which this
set is non-empty.) We then extend the argument to one that is
also uniform over the choice of t by a “peeling” argument.

Define the random variable

Zn(t) : = sup
�,!�∈E(t,1)

�∇L(θ∗ + !�) − ∇Ln(θ∗ + !�), �
.
(43)

The following two lemmas, respectively, bound the mean of
this random variable, and its deviations above the mean:

Lemma 6. For any t > 0, the mean is upper bounded as

EZn(t) ≤ σGn(E(t, 1)), (44)

where σ : = 2M + 4CH .

Lemma 7. There are universal constants (c1, c2) such that

P

�
Zn(t) ≥ EZn(t) + α

�
≤ c1 exp

�
− c2nα2

t2

�
. (45)

See Appendices C.3 and C.4 for the proofs of these two claims.
Equipped with Lemmas 6 and 7, we now prove inequal-

ity (27). We divide our argument into two cases:
a) Case t = δn: We first prove inequality (27) for t = δn .

From Lemma 6, we have

EZn(δn) ≤ σGn(E(δn, 1))
(i)≤ δ2

n, (46)

where inequality (i) follows from the definition of δn in
inequality (14). Setting α = δ2

n in expression (45) yields

P

�
Zn(δn) ≥ 2δ2

n

�
≤ c1 exp

�
−c2nδ2

n

�
, (47)

which establishes the claim for t = δn .

b) Case t > δn: On the other hand, for any t > δn ,
we have

EZn(t)
(i)≤ σGn(E(t, 1))

(ii)≤ tσ
Gn(E(t, 1))

t
≤ tδn,

where step (i) follows from Lemma 6, and step (ii) follows
because the function u �→ Gn(E(u,1))

u is non-increasing on the
positive real line. (This non-increasing property is a direct
consequence of the star-shaped nature of ∂H .) Finally, using
this upper bound on expression EZn(δn) and setting α =
t2m/(4c3) in the tail bound (45) yields

P

�
Zn(t) ≥ tδn + t2m

4c3

�
≤ c1 exp

�
−c2nm2t2

�
. (48)

Note that the precise values of the universal constants c2 may
change from line to line throughout this section.

c) Peeling argument: Equipped with the tail bounds (47)
and (48), we are now ready to complete the peeling argument.
Let A denote the event that the bound (27) is violated for some
function g ∈ ∂H with �g�H = 1. For real numbers 0 ≤ a <
b, let A(a, b) denote the event that it is violated for some
function such that �g�n ∈ [a, b], and �g�H = 1. For k =
0, 1, 2, . . ., define tk = 2kδn . We then have the decomposition
E = (0, t0) ∪ (

%∞
k=0 A(tk, tk+1)) and hence by union bound,

P[E] ≤ P[A(0, δn)] +
∞�

k=1

P[A(tk, tk+1)]. (49)

From the bound (47), we have P[A(0, δn)] ≤
c1 exp

�−c2 nδ2
n

�
. On the other hand, suppose that A(tk, tk+1)

holds, meaning that there exists some function g with
�g�H = 1 and �g�n ∈ [tk, tk+1] such that

�∇L(θ∗ + !�) − ∇Ln(θ∗ + !�), g

> 2δn�g�n + 2δ2

n + m

c3
�g�2

n

(i)≥ 2δntk + 2δ2
n + m

c3
t2
k

(ii)≥ δntk+1 + 2δ2
n + m

4c3
t2
k+1,

where step (i) uses the �g�n ≥ tk and step (ii) uses the fact
that tk+1 = 2tk . This lower bound implies that Zn(tk+1) >

tk+1δn + t2
k+1m
4c3

and applying the tail bound (48) yields

P(A(tk, tk+1)) ≤ P(Zn(tk+1) > tk+1δn + t2
k+1m

4 c3
)

≤ exp
�
−c2nm222k+2δ2

n

�
.

Substituting this inequality and our earlier bound (47) into
equation (49) yields

P(E) ≤ c1 exp(−c2nm2δ2
n),

where the reader should recall that the precise values of uni-
versal constants may change from line-to-line. This concludes
the proof of Lemma 3.
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3) Proof of Lemma 6: Recalling the definitions (1) and (3)
of L and Ln , we can write

Zn(t) = sup
�,!�∈E(t,1)

1

n

n�
i=1

(φ�(yi , θ
∗
i + !�i )

− Eφ�(yi , θ
∗
i + !�i ))�i

Note that the vectors � and !� contain function values of
the form f (xi ) − f ∗(xi ) for functions f ∈ BH ( f ∗, 2CH ).
Recall that the kernel function is bounded uniformly by one.
Consequently, for any function f ∈ BH ( f ∗, 2CH ), we have

| f (x) − f ∗(x)| = |� f − f ∗, K(·, x)
H |
≤ � f − f ∗�H �K(·, x)�H ≤ 2CH .

Thus, we can restrict our attention to vectors �,!� with
���∞, �!��∞ ≤ 2CH from hereonwards.

Letting {εi }n
i=1 denote an i.i.d. sequence of Rademacher

variables, define the symmetrized variable

Z̃n(t) : = sup
�,!�∈E(t,1)

1

n

n�
i=1

εiφ
�(yi , θ

∗
i + !�i ) �i . (50)

By a standard symmetrization argument [35], we have
Ey[Zn(t)] ≤ 2Ey,�[Z̃n(t)]. Moreover, since

φ�(yi , θ
∗
i + !�i ) �i ≤ 1

2

�
φ�(yi , θ

∗
i + !�i )

�2 + 1

2
�2

i

we have

EZn(t) ≤ E sup!�∈E(t,1)

1

n

n�
i=1

εi
�
φ�(yi , θ

∗
i + !�i )

�2

+ E sup
�∈E(t,1)

1

n

n�
i=1

εi�
2
i

≤ 2 E sup!�∈E(t,1)

1

n

n�
i=1

εiφ
�(yi , θ

∗
i + !�i )& '( )

T1

+ 4CH E sup
�∈E(t,1)

1

n

n�
i=1

εi�i& '( )
T2

,

where the second inequality follows by applying the
Rademacher contraction inequality [23], using the fact that
�φ��∞ ≤ 1 for the first term, and ���∞ ≤ 2CH for
the second term.

Focusing first on the term T1, since E[εiφ
�(yi , θ

∗
i )] = 0,

we have

T1 = E sup!�∈E(t,1)

1

n

n�
i=1

εi

�
φ�(yi , θ

∗
i + !�i ) − φ�(yi ; θ∗

i )
�

& '( )
ϕi (!�i )

(i)≤ ME sup!�∈E(t,1)

1

n

n�
i=1

εi!�i

(ii)≤
�

π

2
MGn(E(t, 1)),

where step (i) follows since each function ϕi is M-Lipschitz by
assumption; and step (ii) follows since the Gaussian complex-
ity upper bounds the Rademacher complexity up to a factor

of
*

π
2 . Similarly, we have

T2 ≤
�

π

2
Gn(E(t, 1)),

and putting together the pieces yields the claim.
4) Proof of Lemma 7: Recall the definition (50) of the

symmetrized variable Z̃n . By a standard symmetrization argu-
ment [35], there are universal constants c1, c2 such that

P

�
Zn(t) ≥ EZn[t] + c1α

�
≤ c2P

�
Z̃n(t) ≥ EZ̃n[t] + α

�
.

Since {εi }n
i=1 are {yi }n

i=1 are independent, we can study Z̃n(t)
conditionally on {yi }n

i=1. Viewed as a function of {εi}n
i=1,

the function Z̃n(t) is convex and Lipschitz with respect to
the Euclidean norm with parameter

L2 : = sup
�,!�∈E(t,1)

1

n2

n�
i=1

�
φ�(yi , θ

∗
i + !�i ) �i

�2 ≤ t2

n
,

where we have used the facts that �φ��∞ ≤ 1 and ���n ≤ t .
By Ledoux’s concentration for convex and Lipschitz func-
tions [22], we have

P

�
Z̃n(t) ≥ EZ̃n[t] + α | {yi}n

i=1

�
≤ c3 exp

�
− c4

nα2

t2

�
.

Since the right-hand side does not involve {yi }n
i=1, the same

bound holds unconditionally over the randomness in both the
Rademacher variables and the sequence {yi }n

i=1. Consequently,
the claimed bound (45) follows, with suitable redefinitions of
the universal constants.

D. Proof of Lemma 4

We first require an auxiliary lemma, which we state and
prove in the following section. We then prove Lemma 4 in
Section D.2.

1) An Auxiliary Lemma: The following result relates the
Hilbert norm of the error to the difference between the
empirical and population gradients:

Lemma 8. For any convex and differentiable loss function
L, the kernel boosting error �t+1 : = θ t+1 − θ∗ satisfies the
bound

��t+1�2
H ≤ ��t�H ��t+1�H

+ α�∇L(θ∗ + �t ) − ∇Ln(θ∗ + �t ), �t+1
.
(51)

Proof: Recall that ��t�2
H = �θ t − θ∗�2

H = �zt − z∗�2
2

by definition of the Hilbert norm. Let us define the population
update operator G on the population function J and the
empirical update operator Gn on Jn as

G(zt ) : = zt − α∇J (
√

n
√

K zt ),

and zt+1 : = Gn(z
t ) = zt − α∇Jn(

√
n
√

K zt ). (52)



6700 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 10, OCTOBER 2019

Since J is convex and smooth, it follows from standard
arguments in convex optimization that G is a non-expansive
operator—viz.

�G(x) − G(y)�2 ≤ �x − y�2 for all x, y ∈ C. (53)

In addition, we note that the vector z∗ is a fixed point of
G—that is, G(z∗) = z∗. From these ingredients, we have

��t+1�2
H

= �zt+1 − z∗, Gn(zt ) − G(zt ) + G(zt ) − z∗

(i)≤ �zt+1 − z∗�2�G(zt ) − G(z∗)�2

+ α�√n
√

K [∇L(θ∗ + �t ) − ∇Ln(θ∗ + �t )], zt+1 − z∗

(ii)≤ ��t+1�H ��t�H

+ α�∇L(θ∗ + �t ) − ∇Ln(θ∗ + �t ), �t+1

where step (i) follows by applying the Cauchy-Schwarz to
control the inner product, and step (ii) follows since �t+1 =√

n
√

K (zt+1 − z∗), and the square root kernel matrix
√

K is
symmetric.

2) Proof of Lemma 4: We now prove Lemma 4. The
argument makes use of Lemmas 2 and 3 combined with
Lemma 8.

In order to prove inequality (28), we follow an inductive
argument. Instead of proving (28) directly, we prove a slightly
stronger relation which implies it, namely

max{1, ��t�2
H } ≤ max{1, ��0�2

H } + tδ2
n

4M!γ m
. (54)

Here !γ and c3 are constants linked by the relation

!γ : = 1

32
− 1

4c3
= 1/C2

H . (55)

We claim that it suffices to prove that the error iterates �t+1

satisfy the inequality (54). Indeed, if we take inequality (54)
as given, then we have

��t�2
H ≤ max{1, ��0�2

H } + 1

2!γ ≤ C2
H ,

where we used the definition C2
H = 2 max{�θ∗�2

H , 32}.
Thus, it suffices to focus our attention on proving inequal-
ity (54).

For t = 0, it is trivially true. Now let us assume inequal-
ity (54) holds for some t ≤ m

8Mδ2
n

, and then prove that it also
holds for step t + 1.

If ��t+1�H < 1, then inequality (54) follows directly.
Therefore, we can assume without loss of generality that
��t+1�H ≥ 1.

We break down the proof of this induction into two steps:
• First, we show that ��t+1�H ≤ 2CH so that Lemma 3

is applicable.
• Second, we show that the bound (54) holds and thus in

fact ��t+1�H ≤ CH .
Throughout the proof, we condition on the event E and

E0 := { 1√
n
�y − E[y | x]�2 ≤ √

2σ }. Lemma 3 guarantees that

P(Ec) ≤ c1 exp(−c2
m2nδ2

n
σ 2 ) whereas P(E0) ≥ 1 − e−n follows

from the fact that Y 2 is sub-exponential with parameter σ 2n

and applying Hoeffding’s inequality. Putting things together
yields an upper bound on the probability of the complementary
event, namely

P(Ec ∪ Ec
0 ) ≤ 2c1 exp(−C2nδ2

n)

with C2 = max{m2

σ 2 , 1}.
a) Showing that ��t+1�H ≤ 2CH : In this step,

we assume that inequality (54) holds at step t , and show that
��t+1�H ≤ 2CH . Recalling that z : = (K †)1/2√

n
θ , our update

can be written as

zt+1 − z∗ = zt − α
√

n
√

K∇L(θ t ) − z∗

+ α
√

n
√

K (∇Ln(θ t ) − ∇L(θ t )).

Applying the triangle inequality yields the bound

�zt+1 − z∗�2 ≤ � zt − α
√

n
√

K∇L(θ t )& '( )
G(zt )

−z∗�2

+ �α√
n
√

K (∇Ln(θ t ) − ∇L(θ t ))�2

where the population update operator G was previously
defined (52), and observed to be non-expansive (53). From
this non-expansiveness, we find that

�zt+1 − z∗�2 ≤ �zt − z∗�2

+ �α√
n
√

K (∇Ln(θ t ) − ∇L(θ t ))�2,

Note that the �2 norm of z corresponds to the Hilbert norm
of θ . This implies

��t+1�H ≤ ��t�H +
�α√

n
√

K (∇Ln(θ
t ) − ∇L(θ t ))�2& '( )

: =T

Observe that because of uniform boundedness of the kernel
by one, the quantity T can be bounded as

T ≤ α
√

n�∇Ln(θ t ) − ∇L(θ t ))�2 = α
√

n
1

n
�v − Ev�2,

where we have defined the vector v ∈ Rn with coordinates
vi : = φ�(yi , θ

t
i ). For functions φ satisfying the gradient

boundedness and m − M condition, since θ t ∈ BH (θ∗, CH ),
each coordinate of the vectors v and Ev is bounded by 1 in
absolute value. We consequently have

T ≤ α ≤ CH ,

where we have used the fact that α ≤ m/M < 1 ≤ CH
2 . For

least-squares φ we instead have

T ≤ α

√
n

n
�y − E[y | x]�2 =: α√

n
Y ≤ √

2σ ≤ CH

conditioned on the event E0 := { 1√
n
�y − E[y | x]�2 ≤ √

2σ }.
Since Y 2 is sub-exponential with parameter σ 2n it follows by
Hoeffding’s inequality that P(E0) ≥ 1 − e−n . Putting together
the pieces yields that ��t+1�H ≤ 2CH , as claimed.
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b) Completing the induction step: We are now ready
to complete the induction step for proving inequality (54)
using Lemma 2 and Lemma 3 since ��t+1�H ≥ 1. We
split the argument into two cases separately depending on
whether or not ��t+1�H δn ≥ ��t+1�n . In general we can
assume that ��t+1�H > ��t�H , otherwise the induction
inequality (54) is satisfied trivially.

c) Case 1: When ��t+1�H δn ≥ ��t+1�n , inequal-
ity (27) implies that

�∇L(θ∗ + !�) − ∇Ln(θ∗ + !�), �t+1
 (56)

≤ 4δ2
n��t+1�H + m

c3
��t+1�2

n,

Combining Lemma 8 and inequality (56), we obtain

��t+1�2
H ≤ ��t�H ��t+1�H + 4αδ2

n��t+1�H

+α
m

c3
��t+1�2

n

�⇒ ��t+1�H ≤ 1

1 − αδ2
n

m
c3

���t�H + 4αδ2
n

�
, (57)

where the last inequality uses the fact that ��t+1�n ≤
δn��t+1�H .

d) Case 2: When ��t+1�H δn < ��t+1�n , we use our
assumption ��t+1�H ≥ ��t�H together with Lemma 8 and
inequality (27). Collectively, they guarantee that

��t+1�2
H ≤ ��t�2

H

+ 2α�∇L(θ∗ + �t ) − ∇Ln(θ∗ + �t ), �t+1

≤ ��t�2

H + 8αδn��t+1�n + 2α
m

c3
��t+1�2

n .

Using the elementary inequality 2ab ≤ a2 + b2, we find that

��t+1�2
H ≤ ��t�2

H + 8α

�
m!γ ��t+1�2

n + 1

4!γ m
δ2

n



+2α

m

c3
��t+1�2

n

≤ ��t�2
H + α

m

4
��t+1�2

n + 2αδ2
n!γ m
, (58)

where in the final step, we plug in the constants !γ , c3 which
satisfy equation (55).

Now Lemma 2 implies that
m

2
��t+1�2

n ≤ Dt + 4��t+1�nδn + m

c3
��t+1�2

n

(i)≤ Dt + 4

�!γ m��t+1�2
n + 1

4!γ m
δ2

n



+ m

c3
��t+1�2

n,

where step (i) again uses 2ab ≤ a2 + b2. Thus, we have
m
4 ��t+1�2

n ≤ Dt + 1!γ m δ2
n . Together with expression (58),

we find that

��t+1�2
H ≤ ��t�2

H + 1

2
(��t�2

H − ��t+1�2
H )

+ 4α!γ m
δ2

n

�⇒ ��t+1�2
H ≤ ��t�2

H + 4α!γ m
δ2

n .

e) Combining the pieces: By combining the two previous
cases, we arrive at the bound

max
�

1, ��t+1�2
H

�
≤ max

�
1, κ2(��t�H + 4αδ2

n)2, ��t�2
H + 4M!γ m

δ2
n

�
, (59)

where κ : = 1
(1−αδ2

n
m
c3

)
and we used the inequality

α ≤ min{ 1
M , M}.

Now it is only left for us to show that with the constant c3
chosen such that !γ = 1

32 − 1
4c3

= 1/C2
H , we have

κ2(��t�H + 4αδ2
n)2 ≤ ��t�2

H + 4M!γ m
δ2

n .

Define the function f : (0, CH ] → R via

f (ξ) : = κ2(ξ + 4αδ2
n)2 − ξ2 − 4M!γ m

δ2
n .

Since κ ≥ 1, in order to conclude that f (ξ) < 0 for all
ξ ∈ (0, CH ], it suffices to show that argminx∈R f (x) < 0
and f (CH ) < 0.

The former is obtained by basic algebra and follows directly
from κ ≥ 1. For the latter, since !γ = 1

32 − 1
4c3

= 1/C2
H ,

α < 1
M and δ2

n ≤ M2

m2 it thus suffices to show

1

(1 − M
8m )2

≤ 4M

m
+ 1

Since (4x + 1)(1 − x
8 )2 ≥ 1 for all x ≤ 1 and m

M ≤ 1, we
conclude that f (CH ) < 0.

Now that we have established max{1, ��t+1�2
H } ≤

max{1, ��t�2
H } + 4M!γ m δ2

n , the induction step (54) follows,
which completes the proof of Lemma 4.

E. Proof of Lemma 1

Recall that the eigenfunctions {φk}∞k=1 associated with a
kernel operator form an orthonormal basis of L2(X , PX )
with the inner product � f, g
 : = 


X f (x)g(x)dPX (x). Every
function f ∈ H induced by the kernel can then be written as

f (x) =
∞�
j=1

β jφ j (x)

with β ∈ �2(N) (i.e.
�∞

j=1 β2
j < ∞) and

�∞
j=1

β2
j

μ j
< ∞.

It can be shown (see e.g. [39]) that the corresponding inner
product of the function space H reads

� f, g
H =
∞�
j=1

� f, φ j 
�g, φ j 

μ j

and thus for f as defined in Equation (E) we have � f �2
H =�∞

j=1
β2

j
μ j

as well as � f �2
2 = �∞

j=1 β2
j . The localized popula-

tion Gaussian complexity is defined as

�Gn(�E(δ, 1)) = EX Ew sup
� f �2≤δ,� f �H ≤1

��1

n

n�
i=1

wi f (xi )
��.
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Rewriting the objective and defining w̃ j = �n
i=1 wiφ j (xi),

the inner constrained maximization can be upper bounded as
follows

sup�∞
j=1 β2

j ≤δ2

�∞
j=1

β2
j

μ j
≤1

∞�
j=1

w̃ jβ j ≤ sup�∞
j=1 η j β

2
j ≤2

∞�
j=1

w̃ jβ j

= sup�∞
j=1 γ 2

j ≤1

∞�
j=1

+
2

η j
w̃ jγ j ,

where η j = max{δ−2, μ−1
j }. Now using Hölders inequality we

obtain

sup�∞
j=1 β2

j ≤δ2,
�∞

j=1

β2
j

μ j
≤1

∞�
j=1

w̃ jβ j ≤
���� ∞�

j=1

2w̃2
j

η j
.

Furthermore, using Jensen’s inequality we have

1

n
EX Ew

���� ∞�
j=1

2w̃2
j

η j
≤
�

2

n

���� ∞�
j=1

EX,ww̃2
j

η j

≤
�

2

n

���� ∞�
j=1

1

η j
,

which concludes the proof.

F. Proof of Lemma 5

Recall that the LogitBoost algorithm is based on logistic
loss φ(y, θ) = ln(1 + e−yθ ), whereas the AdaBoost algorithm
is based on the exponential loss φ(y, θ) = exp(−yθ). We now
verify the m-M-condition for these two losses with the corre-
sponding parameters specified in Lemma 5.

1) m-M-condition for Logistic Loss: The first and second
derivatives are given by

∂φ(y, θ)

∂θ
= −ye−yθ

1 + e−yθ
, and

∂2φ(y, θ)

(∂θ)2 = y2

(e−yθ/2 + eyθ/2)2 .

It is easy to check that | ∂φ(y,θ)
∂θ | is uniformly bounded

by B = 1.
Turning to the second derivative, recalling that y ∈

{−1,+1}, it is straightforward to show that

max
y∈{−1,+1} sup

θ

y2

(e−yθ/2 + eyθ/2)2 ≤ 1

4
,

which implies that ∂φ(y,θ)
∂θ is a 1/4-Lipschitz function of θ ,

i.e. with M = 1/4.
Our final step is to compute a value for m by deriv-

ing a uniform lower bound on the Hessian. For this step,
we need to exploit the fact that θ = f (x) must arise from
a function f such that � f �H ≤ D : = CH + �θ∗�H . Since
supx K(x, x) ≤ 1 by assumption, the reproducing relation
for RKHS then implies that | f (x)| ≤ D. Combining this

inequality with the fact that y ∈ {−1, 1}, it suffices to lower
bound the quantity

min
y∈{−1,+1} min|θ |≤D

����∂2φ(y, θ)

(∂θ)2

����
= min|y|≤1

min|θ |≤D

y2

(e−yθ/2 + eyθ/2)2 ≥ 1

e−D + eD + 2& '( )
m

,

which completes the proof for the logistic loss.
2) m-M-condition for AdaBoost: The AdaBoost algorithm

is based on the cost function φ(y, θ) = e−yθ , which has first
and second derivatives (with respect to its second argument)
given by

∂φ(y, θ)

∂θ
= −ye−yθ , and

∂2φ(y, θ)

(∂θ)2 = e−yθ .

As in the preceding argument for logistic loss, we have the
bound |y| ≤ 1 and |θ | ≤ D. By inspection, the absolute value
of the first derivative is uniformly bounded B : = eD , whereas
the second derivative always lies in the interval [m, M] with
M : = eD and m : = e−D , as claimed.
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