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The Lasso is a method for high-dimensional regression, which is now
commonly used when the number of covariates p is of the same order or
larger than the number of observations n. Classical asymptotic normality
theory does not apply to this model due to two fundamental reasons: (1)
The regularized risk is non-smooth; (2) The distance between the estimator
θ̂ and the true parameters vector θ∗ cannot be neglected. As a consequence,
standard perturbative arguments that are the traditional basis for asymptotic
normality fail.

On the other hand, the Lasso estimator can be precisely characterized in
the regime in which both n and p are large and n/p is of order one. This char-
acterization was first obtained in the case of standard Gaussian designs, and
subsequently generalized to other high-dimensional estimation procedures.
Here we extend the same characterization to Gaussian correlated designs with
non-singular covariance structure. This characterization is expressed in terms
of a simpler “fixed-design” model. We establish non-asymptotic bounds on
the distance between the distribution of various quantities in the two models,
which hold uniformly over signals θ∗ in a suitable sparsity class and values
of the regularization parameter.

As an application, we study the distribution of the debiased Lasso and
show that a degrees-of-freedom correction is necessary for computing valid
confidence intervals.

1. Introduction. Statistical inference questions are often addressed by characterizing
the distribution of the estimator of interest under a variety of assumptions on the data dis-
tribution. A central role is played by normal theory which guarantees that broad classes of
estimators are asymptotically normal with prescribed covariance structure [22, 31].

It is by now well understood that asymptotic normality breaks down in high dimension,
even when considering low-dimensional projections of the underlying covariates [6, 27, 54].
As a consequence, the statistician has a limited toolbox to address inferential questions. This
challenge is compounded by the fact that resampling methods also fail in this context [21].

The Lasso is arguably the prototypical method in high-dimensional statistics [50]. Given
data {(yi,xi)}i≤n, with yi ∈R, xi ∈Rp, it performs linear regression of the yi’s on the xi’s
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by solving the optimization problem

θ̂ : = argmin
θ∈Rp

R(θ) := argmin
θ∈Rp

{
1

2n
‖y−Xθ‖22 +

λ

n
‖θ‖1

}
.(1)

Here y ∈ Rn is the vector with i-th entry equal to yi, and X ∈ Rn×p is the matrix with i-
th row given by x>i . Throughout the paper we will assume the model to be well-specified.
Namely, there exist θ∗ ∈Rp such that

y =Xθ∗ + σz ,(2)

where z ∼N(0, In) is a Gaussian noise vector. We denote jth column of X by x̆j ∈Rn.
Classical normal theory does not apply to the estimator θ̂ for two reasons that are instruc-

tive to revisit. First, the Lasso objective (1) is non-smooth: its gradient is discontinuous on
the hyperplanes θi = 0. As a consequence, θ̂i = 0 with positive probability (indeed, as we
will see, with probability bounded away from 0 for large n, p). Second, the estimation er-
ror ‖θ̂ − θ∗‖2 is not negligible in practical settings. As a consequence we cannot rely on
perturbative arguments that focus on a small neighborhood of θ∗.

A substantial body of theoretical work studied the Lasso with fixed (non-random) designs
X in the regime s log p/n=O(1) [11, 14, 38, 7]. These approaches require that λ be chosen
so that λ is larger than σ‖X>z‖∞ or, more recently, the sth-largest element of {σ|x̆>j z|}j≤n
with high probability; they rely on restricted eigenvalue or similar compatibility conditions
on the design matrix X ; and they control the Lasso estimation error up to constants. Unfor-
tunately, these results provide limited insight on the distribution of the estimator θ̂.

A more recent line of research attempts to address these limitations by characterizing the
distribution of θ̂ for design matricesX with i.i.d. Gaussian entries [6, 49, 35]. These analyses
assume n,p and the number of non-zero coefficients ‖θ∗‖0 to be large and of the same order,
and apply to any λ of the order of the typical size of σ|x̆>j z|. This covers the typical values
of the regularization selected by standard procedures such as cross-validation [17, 35]. Under
these assumptions, [6] first proved an exact characterization of the distribution of θ̂, which
is simple enough to be described in words. Imagine, instead of observing y according to the
linear model (2), we are given yf = θ∗ + τg where g ∼ N(0, Ip), and τ > σ is the original
noise level inflated by the effect of undersampling. Then θ̂ is approximately distributed as
η(yf ; ζ) where η(x; ζ) := (|x| − λ/ζ)+sign(x) is the soft thresholding function (applied to
vectors entrywise) and ζ controls the threshold value. The values of τ, ζ are determined by a
system of two nonlinear equations (see below).

Both numerical simulations and universality arguments suggest that the results of [6, 49,
35] apply to independent but possibly non-Gaussian covariates (see [5, 39, 36] for rigorous
universality results). However, these predictions are expected not to be asymptotically exact
when covariates are correlated.

The present paper substantially generalizes this line of work by extending it to the case
of correlated Gaussian designs with well-conditioned covariance. Namely we assume the
covariates (xi)i≤n to be i.i.d. with xi ∼ N(0,Σ/n). Our results hold uniformly over co-
variances with eigenvalues in [κmin, κmax] for some 0 < κmin < κmax <∞; regularization
parameters λ ∈ [λmin, λmax] for some 0 < λmin < λmax <∞; and signals θ∗ satisfying a
suitable sparsity condition. The sparsity condition involves a modified Gaussian width of a
certain convex cone in Rp. We expect this condition to be often tight (in particular, it is for
Σ = I). Assumptions on Gaussian widths have been used in the past to characterize noiseless
and stable sparse recovery in the compressed sensing literature [16, 51]. Here we show that
they also imply uniform approximation of the distribution of θ̂.

We next provide a succinct overview of our results.
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Lasso estimator. We characterize the distribution of the Lasso estimator θ̂. As in the case
Σ = Ip, this characterization involves observations yf from a related statistical model:

(3) yf = Σ1/2θ∗ + τg ,

where g ∼ N(0, Ip) and τ ≥ 0. We call this the fixed-design model (hence the superscript f )
and call model (2) the random-design model. The Lasso estimator in the fixed-design model
can be written as

η(yf , ζ) : = argmin
θ∈Rp

{
ζ

2
‖yf −Σ1/2θ‖22 + λ‖θ‖1

}
.(4)

We show that, for any Lipschitz function φ : Rp × Rp→ R, the value of φ(θ̂/
√
p,θ∗/

√
p)

concentrates uniformly over λ, and with probability close to 1 uniformly over a suitable
sparsity class. The value of it concentrates on is the expected value of the corresponding
quantity under the fixed design model; that is, E[φ(θ̂f/

√
p,θ∗/

√
p)]. The effective noise and

threshold parameters τ∗, ζ∗ are given as the unique solution of a pair of nonlinear equations
introduced below.

In the case of uncorrelated covariates, the fixed design problem is particularly simple be-
cause the optimization problem (4) is separable, and η(yf , ζ) reduces to soft thresholding
applied component-wise. For specific correlation structures Σ, problem (4) can also be sim-
plified, but we defer this to future work. More generally, it is simpler than the original prob-
lem since the objective in Eq. (4) is strongly convex, and hence more directly amenable to
deriving explicit bounds.

Residuals and sparsity. In low-dimensional theory, the residuals vector y−Xθ̂ is roughly
N(0, σ2In), a remark that provides the basis for classical F tests and for bootstrapping the
residuals. We prove that in the high-dimensional setting the residuals are instead approxi-
mately N(0, (τ∗ζ∗)2In), suggesting that these methods should be revised in high-dimension.

We also estimate the sparsity of the lasso estimator, showing that it concentrates so that
‖θ∗‖0 ≈ n(1− ζ∗). Notice that, together with the previous result, this implies that the param-
eters τ∗, ζ∗ can be entirely estimated from the data. Since τ∗ controls the noise in the fixed
design model, its estimation is of particular interest. A simple method is to use the following
degrees-of-freedom adjusted residuals

τ̂(λ)2 :=
‖y−Xθ̂‖22

n(1− ‖θ̂‖0/n)2
.(5)

It was already observed in [35] that minimizing τ̂(λ) over λ provides a good selection proce-
dure for the regularization parameter. Our results provide theoretical support for this approach
under general Gaussian designs.

Debiased Lasso. The debiased Lasso is a recently popularized approach for performing
hypothesis testing and computing confidence regions for low-dimensional projections of θ∗.
Most constructions take the form:

θ̂d = θ̂+MX>(y−Xθ̂) ,

for an appropriate and possibly data-dependent choice of the matrix M . Under appropriate
choices of M , low-dimensional projections of θ̂d are approximately normal with mean θ∗.

The first constructions for the debiased Lasso took M to be suitable estimators of the
precision matrix Σ−1 and proved approximate normality when ‖θ∗‖0 =: s0 = o(

√
n/ log p)

[54, 52, 27, 26, 28]. Later work considered the case of Gaussian covariates with known
covariance, and setM = Σ−1. In this idealized setting, the sparsity condition was relaxed to
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Fig 1. The debiased Lasso with and without degrees-of-freedom (DOF) adjustment. Here
p= 100, n= 25, s0 = 20, Σij = ρ|i−j| = 0.5|i−j|, λ= 4, σ = 1. The coefficients vector θ∗

contains 10 entries θ∗i = +25, and 10 entries θ∗i =−25. Quantiles and densities are compared
with the ones of the standard normal distribution.

s0 = o(n/(log p)2) for inference on a single coordinate [28] and s0 = o(n2/3/ log(p/s0)1/3)
for a general linear functional of θ∗ [9].

The latter conditions turn out to be tight for the standard choice M = Σ−1. As shown
in [27, 35] for uncorrelated designs and in [9, 10] for correlated designs with n > p, it is
necessary to adjust the previous construction for the degrees of freedom by setting M =

Σ−1/(1− ‖θ̂‖0/n):

(6) θ̂d = θ̂+
1

1− ‖θ̂‖0/n
Σ−1X>(y−Xθ̂) .

Here we establish approximate normality and unbiasedness of this construction for arbitrary
aspect ratios n/p and arbitrary covariances. As a consequence, we construct confidence in-
tervals with coverage guarantees on average across coordinates in the proportional regime.
Figure 1 illustrates the difference between the debiased estimator with and without degrees-
of-freedom correction. It is clear that debiasing without degrees-of-freedom correction can
lead to invalid inference. In contrast, debiasing with degrees of freedom adjustment is suc-
cessful already for problem dimensions on the order of 10s or 100s. (See Section 4.1 for
details. Similar simulations at different model parameters is shown in Section D)

Inference on a single coordinate. Our results on θ̂d are not sharp enough to show that a
fixed single coordinate θ̂d

j is asymptotically Gaussian, and hence we do not establish a per
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coordinate coverage guarantee of confidence intervals based on θ̂d. While it might be possible
to leverage our results to get per-coordinate control following the strategy of [47], we adopt
a simpler approach here. We use a leave-one-out method to construct confidence intervals
for which we can prove asymptotic validity via a direct argument. Further, we prove that the
length of these intervals is close to optimal.

We observe empirically that the confidence intervals produced by the leave-one-out
method are very similar to the ones obtained using the debiased Lasso. We leave a rigor-
ous study of this phenomenon to future work. An advantage of the leave-one out method is
that it produces p-values for single coordinates that are exact (not just asymptotically valid
for large n, p).

Notation. We generally use lowercase for scalars (e.g. x, y, z, . . . ), boldface lowercase for
vectors (e.g. u,v,w, . . . ) and boldface uppercase for matrices (e.g.A,B,C, . . . ). We denote
the support of vector x as supp(x) := {i | xi 6= 0}. In addition, the `q norm of a vector
x ∈ Rn is ‖x‖qq ≡

∑n
i=1 |xi|q . For r ≥ 0 and q ∈ (0,∞), we use Bq(v; r) to represent the

corresponding `q-ball of radius rn1/q and center v, namely,

Bq(v; r) :=

{
x ∈Rp

∣∣ 1

p
‖x− v‖qq ≤ rq

}
for q > 0, and B0(ν) :=

{
θ ∈Rp

∣∣ ‖θ‖0
p
≤ ν
}
.

If the center is omitted, it should be understood that the ball is centered at 0. A function
φ : Rp × Rp → R is L-Lipschitz if for every x,y ∈ Rp × Rp, it satisfies |φ(x) − φ(y)| ≤
L‖x−y‖2. The notation Sn≥0 is used to denote the set of n×n positive semidefinite matrices.

2. Preliminaries. As mentioned above, our main result establishes an asymptotic equiv-
alence between the undersampled linear model of Eq. (2) and the linear model with fixed
design1 Σ1/2 of Eq. (3). We define the prediction vector in the fixed-design model by
ŷ(yf , ζ) : = Σ1/2η(yf , ζ).

Setting the stage, let the in-sample prediction risk and degrees-of-freedom of the Lasso
estimator in the fixed-design model be

R(τ2, ζ) : =
1

n
E
[
‖ŷ(Σ1/2θ∗ + τg, ζ)−Σ1/2θ∗‖22

]
,

df(τ2, ζ) : =
1

nτ
E
[
〈ŷ(Σ1/2θ∗ + τg, ζ), g〉

]
=

1

n
E
[
‖η(Σ1/2θ∗ + τg, ζ)‖0

]
,

where the expectation is taken over g ∼ N(0, Ip). Here, for notational simplicity, we leave
the dependence of R(τ2, ζ) and df(τ2, ζ) on θ∗, Σ, n, p and λ implicit. The terminology
“degrees-of-freedom” for the quantity df originated with [55], and its equivalence to the
expected sparsity of the Lasso estimate holds, for example, by [55, Theorem 1].

Fixed point equations. Let τ∗, ζ∗ be solutions to the system of equations

τ2 = σ2 + R(τ2, ζ) ,(8a)

ζ = 1− df(τ2, ζ) .(8b)

We refer to these equations as the fixed point equations. As it turns out, these solutions play an
essential role in characterizing the distribution of the Lasso estimator. We start by showing

1We may take any square-root of the matrix Σ. For simplicity, we will always assume we take a symmetric
square-root.
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the solutions τ∗, ζ∗ are well-defined, as stated formally in the next theorem, whose proof
postponed to Appendix A.3.

THEOREM 1. If Σ is invertible and σ2 > 0, then Eqs. (8a) and (8b) have a unique solu-
tion.

Let us denote the Lasso estimator in the fixed-design model with noise variance τ∗2 and
regularization ζ∗ by

θ̂f : = η(Σ1/2θ∗ + τ∗g, ζ∗) ,(9)

where g ∼ N(0, Ip). Our main results establish that the estimator θ̂ performs approximately
like θ̂f and can therefore be understood via the behavior of θ̂f . The quality of this approxi-
mation and bounds on the behavior of θ̂f depend, in part, on the complexity of the unknown
parameter θ∗. The relevant measure of complexity, which we call (s,G∗,M)-approximate
sparsity, involves an interplay between a sparse approximation of θ∗, the `1-penalty, and the
population covariance Σ, which is made precise in the following.

Approximate sparsity. A vector θ∗ is referred to as (x,M)-approximately sparse for x ∈
{−1,0,1}p and M > 0 if there exists θ̄∗ ∈ Rp with 1

p‖θ̄
∗ − θ∗‖1 ≤M and x = sign(θ̄∗)

(here the sign is taken in an entry-wise manner, with sign(0) = 0). Thus, (x,M)-approximate
sparsity implies that θ∗ is well-approximated in an `1 sense by an ‖x‖0-sparse or even sparser
vector.

Consider the probability space (Rp,B, γp) with B being the Borel σ-algebra and γp the
standard Gaussian measure in p dimensions. We denote by L2 := L2(Rp;Rp) the space
of functions f : Rp → Rp that are square integrable in (Rp,B, γp). Naturally, this space is
equipped with the scalar product

〈f1,f2〉L2 = E[〈f1(g),f2(g)〉] =

∫
〈f1(g),f2(g)〉γp(dg) ,

and the corresponding norm ‖f‖L2 . For x ∈ {+1,0,−1}p, and Σ ∈Rp×p, define F ( · ;x,Σ) :
Rp→R via

F (v;x,Σ) := 〈x,Σ−1/2v〉+
∥∥(Σ−1/2v)Sc

∥∥
1

for S : = supp(x).

We also denote by K(x,Σ) :=
{
v ∈ Rp : F (v;x,Σ) ≤ 0

}
the associated closed convex

cone. We define the functional Gaussian width of K(x,Σ) by

G(x,Σ) := sup
v∈L2

{1

p
〈v,g〉L2 : ‖v‖L2 ≤√p , E[F (v;x,Σ)]≤ 0

}
,(10)

where g denotes the identity function on L2. Let us emphasize that the supremum is taken
over functions v : Rp→Rp, g 7→ v(g).

DEFINITION 1. We say θ∗ is (s,G∗,M)-approximately sparse for G∗ > 0 and s ∈ Z>0

if there exists x ∈ {−1,0,1}p such that θ∗ is (x,M)-approximately sparse and ‖x‖0 = s,
G(x,Σ)≤ G∗.

We remark that the Gaussian width defined in (10) differs from the standard notion of
Gaussian width which appears elsewhere in the literature (see, e.g., [23, 16, 51]). The latter
can be defined as

Gstd(x,Σ) := sup
v∈L2

{1

p
〈v,g〉L2 : ‖v‖L2 ≤√p , P

(
F (v;x,Σ)≤ 0

)
= 1
}
.(11)
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Equivalently, recalling that K(x,Σ) is the cone of vectors v such that F (v;x,Σ) ≤ 0, one
can instead write

Gstd(x,Σ) =
1

p
E
[

max
v∈K(x,Σ)
‖v‖22/p≤1

〈v,g〉
]
.(12)

The definitions (10) and (11) immediately imply Gstd(x,Σ)≤ G(x,Σ).
On the other hand, we expect Gstd(x,Σ)≥ (1− op(1))G(x,Σ) in many cases of interest.

This is indeed the case for Σ = Ip. More generally, if there exists a Lipschitz continuous
v(g) nearly achieving the supremum in Eq. (10), then we expect the distance of v(g) from
the cone K(x,Σ) to concentrate around 0. In this case, projecting v(g) onto K(x,Σ) will
yield a lower bound on Gstd(x,Σ) which is close to G(x,Σ).

The distribution of the random design X , response vector y, and Lasso estimate θ̂ is
determined by the tuple (θ∗,Σ, σ,λ). Our results stated below hold uniformly over choices
of (θ∗,Σ, σ,λ) that satisfy the following conditions:

A1 There exist 0 < λmin ≤ λmax <∞, 0 < κmin ≤ κmax <∞, and 0 < σmin ≤ σmax <∞
such that
(a) The Lasso regularization parameter λ is bounded λmin ≤ λ≤ λmax.
(b) The singular values κj(Σ) of the population covariance Σ are bounded κmin ≤
κj(Σ)≤ κmax for all j. We define κcond := κmax/κmin.

(c) The noise variance σ2 is bounded σ2
min ≤ σ2 ≤ σ2

max.
A2 There exist 0< τmin ≤ τmax <∞ and 0< ζmin ≤ ζmax <∞ such that the unique solu-

tion τ∗, ζ∗ to the fixed point equations (8a) and (8b) are bounded τmin ≤ τ∗ ≤ τmax and
ζmin ≤ ζ∗ ≤ ζmax.

We denote the collections of constants appearing in assumptions A1 and A2 by

Pmodel : = (λmin, λmax, κmin, κmax, σmin, σmax) , PfixPt : = (τmin, τmax, ζmin, ζmax) .

In other words, any choice of the constants Pmodel, PfixPt determines a uniformity class of
parameters (θ∗,Σ, σ,λ) within which the results stated below apply.

Uniqueness and boundedness guarantees. Checking assumption A2 requires solving (8a)
and (8b), which can be a difficult task. However, it turns out that assumption A1 is sufficient
to imply assumption A2 provided θ∗ is approximately sparse. We formulate this result in the
theorem below and prove it in Section A.4.

THEOREM 2. Under assumption A1 and if θ∗ is (s,
√
δ(1−∆min),M)-approximately

sparse for some s/p ≥ νmin > 0 and 1 ≥∆min > 0, then there exist 0 < τmin ≤ τmax <∞
and 0< ζmin ≤ ζmax <∞ depending only on Pmodel, δ, νmin, and ∆min such that the unique
solution τ∗, ζ∗ to Eqs. (8a) and (8b) satisfy τmin ≤ τ∗ ≤ τmax and ζmin ≤ ζ∗ ≤ ζmax.

Let us make a few remarks on this result. First, explicit expressions for τmin, τmax, ζmin, ζmax

can be found in the proof of Theorem 2. Secondly, while Theorem 2 establishes a sufficient
condition for assumption A2 to hold, the latter can hold even if θ∗ is not approximately
sparse. For instance, this is the case if θ∗ has a fixed empirical distribution (with finite sec-
ond moment) and Σ = Ip.

It is useful to compare the notion of (s,G∗,M)-approximate sparsity introduced above to
sparsity with respect to `q-norms. It follows from the definition that, for Σ = Ip, the Gaussian
width depends on x only via ε := ‖x‖0/p. We define

ω∗(ε) := G(x, Ip) for any x with ‖x‖0/p= ε.(13)
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Indeed ω∗(ε) can be computed explicitly, and is given in parametric form by

ω∗(ε)2 = ε+ 2(1− ε)Φ(−α) ,

where α satisfies ε=
2[ϕ(α)− αΦ(−α)]

α+ 2[ϕ(α)− αΦ(−α)]
.

Here ϕ(x) = e−x
2/2/
√

2π is the standard Gaussian density, and Φ(x) =
∫ x
−∞ϕ(t)dt is the

Gaussian cumulative distribution function. It is easy to check that ε 7→ ω∗(ε) is increasing
and continuous in ε and goes to 0 and 1 as ε→ 0 and 1, respectively.

The following result formally clarifies the connections between the approximate sparsity
(Definition 1) and the `q-norm for any q > 0.

PROPOSITION 3. Suppose the covariance matrix Σ has singular values 0 < κmin ≤
κj(Σ) ≤ κmax <∞ for all j, and let κcond = κmax/κmin. For ω∗(ε) defined in Eq. (13),
define

ε∗(κcond, δ) := sup{ε | ω∗(ε)≤
√
δ/κcond}.

Then the following hold true:

(a) If θ∗ ∈ Bq(ν) for q, ν > 0, then for any δ > 0,

θ∗ is
(
bpε∗(κcond, δ/2)c,

√
δ/2, ν

(
1− ε∗(κcond, δ/2)

))
-approximately sparse.

(b) If θ∗ ∈ B0(ε∗(κcond, α)) for some α< δ, then

θ∗ is
(
bpε∗(κcond, α)c,

√
α, 0

)
-approximately sparse.

The proof of this result is given in Appendix C.1.
In particular, Proposition 3(a) implies that when θ∗ ∈ Bq(ν) for q > 0, the conditions of

Theorem 2 are satisfied with νmax = ε∗(κcond, δ/2), any νmin < ε∗(κcond, δ/2)− 1/p, G∗ =√
δ/2, and M = ν. Proposition 3(b) implies that when θ∗ ∈ B0(ε∗(κcond, α)), the conditions

of Theorem 2 are satisfied with νmax = ε∗(κcond, δ/2), any νmin < ε∗(κcond, δ/2) − 1/p,
G∗ =

√
α, and M = 0. Then, in both cases assumption A2 is satisfied. Therefore, our results

below apply also to θ∗ in `q-balls for q > 0 or to sufficiently sparse θ∗.

3. Main results. We now turn to the statement of our main results and a discussion of
some of their consequences. The proof details are deferred to the appendix.

3.1. Control of the Lasso estimate. Our first result controls the behavior of the Lasso
estimate θ̂ in the random design model uniformly over (θ∗,Σ, σ,λ) satisfying assumptions
A1 and A2.

THEOREM 4. If assumptions A1 and A2 hold, then there exist constants C,c, c′, γ > 0
depending only on Pmodel, PfixPt δ, such that for any 1-Lipschitz function φ : Rp×Rp→R,
we have for all ε < c′

P

(
∃θ ∈Rp,

∣∣∣φ( θ√
p
,
θ∗
√
p

)
−E

[
φ
( θ̂f
√
p
,
θ∗
√
p

)]∣∣∣> ε and R(θ)≤ min
θ∈Rp

R(θ) + γε2

)
≤ C

ε2
e−cnε

4

.
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We provide the proof of Theorem 4 in Section B.1.
In words, Theorem 4 shows that—with high probability—any Lipschitz function of any

approximate minimizer of the regularized risk R(θ) concentrates around a deterministic
value. This deterministic value is the expectation of the same Lipschitz function of the Lasso
estimator in the associated fixed design model. The noise level and regularization in the latter
are obtained from the fixed point equations (8a), (8b).

As may have been noticed, because the Lasso estimate θ̂ is the minimizer of the loss
functionR(θ), it satisfiesR(θ̂)≤minθ∈RpR(θ) + γε2 for all ε≥ 0. Thus one can conclude
the following corollary immediately.

COROLLARY 5. Under assumptions A1 and A2, there exist constantsC,c, c′ > 0 depend-
ing only on Pmodel, PfixPt, and δ such that for any 1-Lipschitz function φ : Rp×Rp→R, we
have for all ε < c′

P

(∣∣∣φ( θ̂√
p
,
θ∗
√
p

)
−E

[
φ
( θ̂f
√
p
,
θ∗
√
p

)]∣∣∣> ε

)
≤ C

ε2
e−cnε

4

.

Corollary 5 establishes the connection between the Lasso estimator in the random-design
model θ̂ and the Lasso estimator in a fixed-design setting θ̂f . Considering a uniform measure
over the coordinates of these vectors, it also reveals that the joint empirical distribution of the
coordinates of the Lasso estimator and the true parameters vector p−1

∑p
i=1 δθ∗i ,θ̂i

is close to
the one in the fixed design model p−1

∑p
i=1 δθ∗i ,θ̂

f
i

with uniformly high probability.

Simultaneous control over λ. As a matter of fact, one can further generalize the above result
to achieve simultaneous control over the penalization parameter λ in the interval [λmin, λmax].
Simultaneous control over λ is particularly useful for hyper-parameter tuning.

THEOREM 6. Assume assumption A1 holds and θ∗ is (s,
√
δ(1−∆min),M)-approximately

sparse for some s/p ≥ νmin > 0 and 1 ≥∆min > 0. Then there exist constants C,c, c′ > 0
depending only on Pmodel, νmin, ∆min, M , and δ such that the following holds: if n ≥√

2/∆min, then for any 1-Lipschitz function φ : Rp ×Rp→R we have for all ε < c′

P

(
∃λ ∈ [λmin, λmax],

∣∣∣φ( θ̂√
p
,
θ∗
√
p

)
−E

[
φ
( θ̂f
√
p
,
θ∗
√
p

)]∣∣∣> ε

)
≤ C

ε4
e−cnε

4

.

The proof of this result is presented in Section B.7.
Theorem 6 provides a sharp characterization of the Lasso estimator which holds simul-

taneously over all λ in a bounded interval [λmin, λmax]. In particular, it implies that with
high probability the minimum estimation error over choices of λ ∈ [λmin, λmax], is nearly-
achieved at a deterministic value λ∗. Namely, writing θ̂λ and θ̂fλ for the Lasso estimator and
fixed-design estimator at regularization λ, we have

P
(∣∣∣ 1
√
p
‖θ̂λ∗ − θ∗‖2 − min

λ∈[λmin,λmax]

1
√
p
‖θ̂λ − θ∗‖2

∣∣∣> ε

)
≤ C

ε4
e−cnε

4

,

for λ∗ := arg min
λ∈[λmin,λmax]

1
√
p
E[‖θ̂fλ − θ

∗‖2] .

Recall that it is standard to choose λ on the order of the typical size of the sth largest realized
value of σ|x̆>j z| over j, where s is the sparsity of θ∗ (see, e.g., [7]). In our model, this
suggests the choice λstd := σ|x̆>j z| is of order

√
σ2 trace(Σ) log(p/s)/n. Since p/s, σ, and
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trace(Σ)/n are of order one, λstd = Θ(1) as well. As shown in [35], the choice λ= λstd is
in general suboptimal by a large factor. The above result controls the optimal error when λ
varies in an interval [c1λstd, c2λstd] for any universal constants c1, c2.

Control of the empirical distribution. Previous work on iid covariates has mainly focused
on establishing the convergence of the joint empirical distribution of the coordinates of the
Lasso estimator and the true parameter vector: p−1

∑p
i=1 δθ∗i ,θ̂i

to a limiting distribution in a
certain sense (either weakly or in Wasserstein sense [6, 35], for example). When covariates
are iid, the behavior of p−1

∑p
i=1 δθ∗i ,θ̂i

captures all non-trivial behavior of the distribution of

θ̂: indeed, the exchangeability of the model implies that conditional on p−1
∑p

i=1 δθ∗i ,θ̂i
, the

distribution of θ̂ is uniform over permutations of the coordinates which map each coordinate
of θ∗ to a coordinate with the same value. However, in the case of correlated covariates,
p−1

∑p
i=1 δθ∗i ,θ̂i

no longer captures all non-trivial information about the distribution of θ̂.
Thus, Theorem 4, Corollary 5, and Theorem 6 involve general test functions which can probe
this additional structure.

Nevertheless, the empirical distribution p−1
∑p

i=1 δθ∗i ,θ̂i
may be of interest, in part because

it is easily interpretable. Thus, we also provide a result detailing the concentration behavior
of this important object. The idea is that since the fixed-design model is well-conditioned,
we can show that the empirical distribution p−1

∑p
i=1 δθ∗i ,θ̂

f
i

concentrates. We then leverage
Theorem 4 to establish the concentration of empirical distribution p−1

∑p
i=1 δθ∗i ,θ̂i

also in the
random-design model. Precisely, our results are established in terms of a particular metriza-
tion of the weak-topology on the space of probability measures on R2, namely

dw∗(µ,ν) =

∞∑
k=1

2−k|EA∼µ[φk(A)]−EB∼ν [φk(B)]|.

Here {φk} denotes a countable dense subset of the 1-Lipschitz functions R2 7→R. The metric

dw∗ metrizes weak convergence in the sense that µi
d→ µ if and only if dw∗(µi, µ)→ 0.

COROLLARY 7. There exists µ∗—a probability distribution on R2, and constants
C,C ′, c > 0 depending only on Pmodel and PfixPt such that

P

(
∃λ ∈ [λmin, λmax], dw∗

(
1

p

p∑
i=1

δ
θ∗i ,θ̂i

, µ∗

)
≥ C ′
√
p

+ ε

)
≤ C

ε4
e−cnε

4

,

and

P

(
∃λ ∈ [λmin, λmax], dw∗

(
1

p

p∑
i=1

δ
θ∗i ,θ̂

f
i
, µ∗

)
≥ C ′
√
p

+ ε

)
≤ 2e−cnε

2

.

Corollary 7 states that in both the random-design model and the fixed-design model, the
joint empirical distribution of the estimate and the true parameter concentrates with respect
to weak-∗ distance, and that moreover, they concentrate on the same value. Using Theorem
6, one can also control properties of µ∗ such as its second moments in terms of Pmodel and
PfixPt. We prove Corollary 7 in Appendix B.8.

3.2. Control of the Lasso residual. Thus far, we have characterized the distribution of
the Lasso estimator in the random design model with general covariance structures. In this
section, we aim to establish a control for the residual of the Lasso estimator. Informally, the
Lasso residual behaves like a random vector which follows from a normal distribution with
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zero mean and covariance (τ∗ζ∗)2In. Similar to the results aforementioned, the quality of the
approximation is controlled uniformly over the models and estimators satisfying assumptions
A1 and A2.

Let us formally state our result.

THEOREM 8. Under assumptions A1 and A2, there exist constants C,c, c′ > 0 depending
only on Pmodel, PfixPt, and δ such that for any 1-Lipschitz function φ : Rp→R, we have for
all ε < c′

P

(∣∣∣φ(y−Xθ̂√
n

)
−E

[
φ
(τ∗ζ∗h√

n

)]∣∣∣> ε

)
≤ C

ε2
e−cnε

4

,

where h∼N(0, In). Consequently,

P

(∣∣∣‖y−Xθ̂‖2√
n

− τ∗ζ∗
∣∣∣> ε

)
≤ C

ε2
e−cnε

4

.

The proof of Theorem 8 is provided in Section B.2.

3.3. Control of the Lasso sparsity. This section characterizes the sparsity of the Lasso
estimator. In particular, we show that the number of selected parameters per observation
‖θ̂‖0/n concentrates around (1− ζ∗) (given in Eq. (8a) and (8b)), which is made precise in
the following result.

THEOREM 9. Under assumptions A1 and A2, there exist constants C,c, c′ > 0 depending
only on Pmodel, PfixPt, and δ such that for all ε < c′,

P

(∣∣∣‖θ̂‖0
n
− (1− ζ∗)

∣∣∣> ε

)
≤ C

ε3
e−cnε

6

.

The proof of this result is presented in Section B.4. Recall that, by Theorem 2 and Proposition
3, assumption A1 is sufficient for this result to hold when θ∗ falls in `q-balls for q > 0 or for
θ∗ sufficiently sparse.

We make a note that recently Bellec and Zhang [8, Section 3.4] establish that ‖θ̂‖0/n
concentrates around its expectation with deviations of orderO(n−1/2) using the second-order
Stein’s formula. We complement these results by showing that ‖θ̂‖0/n has large-deviation
probabilities which decay exponentially. Moreover, our result also implies that the value on
which ‖θ̂‖0/n concentrates is uniformly bounded away from 1 for given Pmodel, PfixPt, and
δ.

Control of the subgradient. The proof of Theorem 9 is built upon controlling the vector

t̂=
1

λ
X>(y−Xθ̂) ,(14)

which is a subgradient of the `1-norm at θ̂. Since controlling this subgradient may be of
independent interest, we state our result formally below. Similarly, we prove that t̂ behaves
approximately like the corresponding subgradient in the fixed-design model

t̂f :=
ζ∗

λ
Σ1/2(yf −Σ1/2θ̂f ) ,(15)
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where yf = Σ1/2θ∗ + τ∗g, θ̂f = η(yf , ζ∗), and g ∼ N(0, Ip). The quality of the approx-
imation is controlled uniformly over models and estimators satisfying assumptions A1 and
A2.

For any measurable set D ⊂ Rp, define its ε-enlargement Dε := {x ∈ Rp | infx′∈D ‖x−
x′‖2/

√
p≥ ε}. The following result makes the connection between t̂ and t̂f precise.

LEMMA 10. Under assumptions A1 and A2, there exist constants C,c, c′ > 0 depending
only on Pmodel, PfixPt, and δ such that for any measurable set D ⊂Rp and for all ε < c′

(16) P
(
t̂ ∈Dε

)
≤ 2P

(
t̂f 6∈D

)
+
C

ε2
e−cnε

4

.

Consequently, there exist (possibly new) constants C,c, c′ > 0 depending only on Pmodel,
PfixPt, and δ such that for any 1-Lipschitz function φ : Rp→R and for ε < c′

P

(∣∣∣φ( t̂
√
p

)
−E

[
φ
( t̂f
√
p

)]∣∣∣≥ ε)≤ C

ε2
e−cnε

4

.(17)

We prove Lemma 10 in Section B.3.

3.4. Control of the debiased Lasso. Recall that the debiased Lasso with degrees-of-
freedom adjustment is defined according to expression (6)

θ̂d : = θ̂+
Σ−1X>(y−Xθ̂)

1− ‖θ̂‖0/n
.

In this section, we aim to show that the debiased Lasso approximately follows a Gaussian
distribution with mean θ∗ and covariance τ∗2Σ−1. The next theorem makes this statement
precise.

THEOREM 11. Under assumptions A1 and A2, there exist constants C,c, c′ > 0 depend-
ing only on Pmodel, PfixPt, and δ such that for any 1-Lipschitz φ : Rp×Rp→R, we have for
all ε < c′

P

(∣∣φ( θ̂d

√
p
,
θ∗
√
p

)
−E

[
φ
(θ∗ + τ∗Σ−1/2g

√
p

,
θ∗
√
p

)]∣∣> ε

)
≤ C

ε3
e−cnε

6

,

where g ∼N(0, Ip).

We prove Theorem 11 in Section B.5.
Using a strategy like that in the proof of Corollary 7, one can show that the joint empirical

distributions p−1
∑p

i=1 δθ∗i ,θ̂di
and p−1

∑p
i=1 δθ∗i ,θ∗i+τ∗(Σ−1/2g)i both concentrate on the same

distribution in the sense that they are close in weak-∗ distance to the same distribution µ∗
with high-probability.

Using Theorem 11, one may construct confidence intervals for any individual coordinate
of θ∗ with guaranteed coverage-on-average. Because τ∗ is unknown, we use the estimator
τ̂(λ) given by Eq. (5). We refer the resulting intervals as the debiased confidence intervals.

COROLLARY 12. Fix q ∈ (0,1). For each j ∈ [p], define the interval

CIdj :=
[
θ̂d
j −Σ

−1/2
j|−j τ̂(λ)z1−q/2, θ̂

d
j + Σ

−1/2
j|−j τ̂(λ)z1−q/2

]
,(18)



LASSO WITH GENERAL GAUSSIAN DESIGNS 13

where z1−q/2 is the (1− q/2)-quantile of the standard normal distribution, τ̂(λ) is given by
Eq. (5), and

Σj|−j = Σj,j −Σj,−j(Σ−j,−j)
−1Σ−j,j .

Define the false-coverage proportion

FCP :=
1

p

p∑
j=1

1θ∗j 6∈CIdj .

Under assumptions A1 and A2, there exist constants C,c, c′ > 0 depending only on Pmodel,
PfixPt, and δ such that for all ε < c′

P (|FCP− q|> ε)≤ C

ε6
e−cnε

12

.

We prove Corollary 12 in Section B.5.
It is worth emphasizing that the debiasing construction of Eq. (6) assumes that the pop-

ulation covariance Σ is known. In practice, Σ needs to be estimated from data. Accurate
estimates can be produced under two scenarios: (i) When sufficiently strong information is
known about the structure of Σ (for instance Σ or Σ−1 are band diagonal or very sparse);
(ii) When additional ‘unlabeled’ data (x′i)i≥1 is available.

REMARK 3.1. It is instructive to compare the degrees-of-freedom adjusted debiased
Lasso of Eq. (6) with the more standard construction without adjustment [54, 52, 27, 26, 28]:

θ̂d
0 = θ̂+ Σ−1X>(y−Xθ̂) .(19)

When ‖θ̂‖0/n= o(1), the two constructions are comparable, namely θ̂d
0 ≈ θ̂d. In this regime,

the errors in estimating the nuisance θ∗−j negligibly degrade the precision of inference on θ∗j .
In contrast, in the proportional asymptotic regime, it turns out that the errors in estimating

θ∗−j do affect the precision of inference on θ∗j . The denominator 1 − ‖θ̂‖0/n in Eq. (6)
becomes crucial for correcting the bias induced by these errors.

3.5. Confidence interval for a single coordinate. While Theorem 11 and Corollary 12
establish coverage of the debiased confidence intervals CIdj on average across coordinates,
they do not provide sufficient control to establish the coverage of CIdj for a fixed j. To
illustrate the problem, we quantify the control Theorem 11 provides for a single coordi-
nate of θ̂d. Theorem 11 implies that for any 1-Lipschitz φ : Rp × Rp → R, the difference
φ
(
θ̂d
√
p ,
θ∗√
p

)
− E

[
φ
(
θ̂d
√
p ,
θ∗√
p

)]
lies with high-probability in an interval of length Õ(p−1/6),

where Õ hides factors which only depend on Pmodel, PfixPt, and δ, or are poly-logarithmic in
p. Applied to φ

(
θ̂d
√
p ,
θ∗√
p

)
= (θ̂d

j − θ∗j )/
√
p, this implies that the difference θ̂d

j − θ∗j lies with

high-probability in an interval of length Õ(p2/3). Theorem 11 and Corollary 12 suggest that
the typical fluctuations of θ̂d

j − θ∗j are of order O(1). Thus, the control of a single coordinate
provided by Theorem 11 is at a larger scale than the scale of its typical fluctuations. A recent
paper [10] controls a single coordinate at the relevant scale for δ > 1, but leaves open the the
case δ ≤ 1. Addressing this case remains an open problem.

Instead, we provide a construction of confidence intervals for a single coordinate using a
leave-one-out technique. We call these confidence intervals, defined below, the leave-one-out
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confidence intervals, denoted by CIloo
j . We can write the observation vector y as

y =
(
· · · x̆j · · ·

)
...
θ∗j
...

+ σz = θ∗j x̆j +X−jθ
∗
−j + σz ,(20)

whereX−j ∈Rn×(p−1) denotes the original design matrix excluding the j-th column and x̆j
denotes the j-th column. Define x̆⊥j : = x̆j −X−jΣ−1

−j,−jΣ−j,j ∈Rn so that x̆⊥j is indepen-
dent of X−j (see Section C.2). According to decomposition (20),

y =X−j (θ∗−j + θ∗jΣ
−1
−j,−jΣ−j,j)︸ ︷︷ ︸

=:θ∗loo

+x̆⊥j θ
∗
j + σz ,(21)

and

x̆⊥j θ
∗
j + σz ∼N(0, σ2

looIn) with σ2
loo : = σ2 +

Σj|−jθ
∗
j

2

n
,

where Σj|−j = Σj,j−Σj,−jΣ−j,−jΣ−j,j . Expression (21) can be viewed as defining a linear-
model with p− 1 covariates, with true parameter θ∗loo, and noise variance σ2

loo. We call this
the leave-one-out model. Let τ∗loo, ζ∗loo be the solution to the fixed point equations (8a) and
(8b) in the leave-one-out model.

The leave-one-out confidence interval is then constructed based on the variable importance
statistic

ξj : =
(x̆⊥j )>(y−X−j θ̂loo)

Σj|−j(1− ‖θ̂loo‖0/n)
.(22)

Note the statistic ξj is a renormalized empirical correlation between residuals from two re-
gressions: the population regression of feature j on the other features (i.e., x̆⊥j ), and a sample
regression of the outcome y on the other features (i.e., y −X−j θ̂loo). When θ∗j = 0, these
residuals will be independent. Indeed, x̆⊥j is independent of (y,X−j), and because θ̂loo is a
function of (y,X−j), x̆⊥j is also independent of y −X−j θ̂loo. The theory from the preced-
ing sections allows us to quantify the distribution of the variable importance statistic ξj even
when θ∗j 6= 0 and so permits the construction of confidence intervals.

Similarly to τ̂(λ) defined in Eq. (5), we estimate the effective noise level in the leave-one-
out-model by

τ̂ jloo :=
‖y−X−j θ̂loo‖2√
n(1− ‖θ̂loo‖0/n)

.

The leave-one-out confidence interval is then defined as

CIloo
j :=

[
ξj −Σ

−1/2
j|−j τ̂

j
loo z1−α/2, ξj + Σ

−1/2
j|−j τ̂

j
loo z1−α/2

]
.(23)

We demonstrate below that this confidence interval CIloo
j achieves approximate coverage for

every fixed j, whose proof is provided in Section B.6.2.

THEOREM 13. Assume p ≥ 2. Let δloo = n/(p − 1). Assume λ, Σ, and σ satisfy as-
sumption A1, and that θ∗−j is (s,

√
δloo(1−∆min),M)-approximately sparse with respect to

covariance Σ−j,−j for some s/(p− 1) ≥ νmin > 0 and 1 ≥∆min > 0. Let M ′ > 0 be such
that |θ∗j | ≤M ′(p− 1)1/4.
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(a) (Coverage and power of the leave-one-out confidence interval) There exist constants
C,c, c′ > 0 depending only on Pmodel, νmin, ∆min, M , M ′, and δloo such that for all
ε < c′,
(24)∣∣∣Pθ∗j (θ 6∈ CIloo

j

)
−Pθ∗j

(
|θ∗j + τ∗looG− θ|> τ∗looz1−α/2

) ∣∣∣≤C((1 + |θ∗j |)ε+
1

ε3
e−cnε

6

+
1

nε2

)
,

whereG∼N(0,1). (See discussion following theorem for an interpretation of this bound).
(b) (Length of the leave-one-out confidence interval). There exist constants C,c, c′ > 0 de-

pending only on Pmodel, νmin, ∆min, M , M ′, and δloo such that for all ε < c′,

(25) Pθ∗j

(∣∣∣∣∣ τ̂ jloo

τ∗loo

− 1

∣∣∣∣∣> ε

)
≤ C

ε3
e−cnε

6

.

Note that P
(
|θ∗j + τ∗looG− θ|> τ∗looz1−α/2

)
is the power of the standard two-sided confi-

dence interval under Gaussian observations θ∗j + τ∗looG against alternative θ. The left-hand
side of (24) does not depend on ε, so that the optimal bound is found by choosing ε < c′

which minimizes the right-hand side. When |θ∗j |= o(n1/6/ logn), the right-hand side can be
made small by for example, taking n−1/6 logn� ε�min{c′,1/|θ∗j |}.

Relation to the conditional randomization test. It is worth remarking that exact tests and
confidence intervals for θ∗j may be constructed in our setting. Towards this, it is useful to
briefly recall this construction and discuss the relative merits of our approach.

In general, when the feature distribution is known, one can perform an exact test of

(26) y ⊥⊥ x̆j |X−j ,

even without Gaussianity or any assumption on the conditional distribution of the outcome y
given the featuresX (see, e.g., [15, 30, 33]). The test which achieves this is called the condi-
tional randomization test and is feasible to use for any arbitrary variable importance statistic
T (y,X). The key observation leading to the construction of the conditional randomization
test is that under the null, the distribution of T (y,X) |X−j is equal to the distribution of
T (y,x′j ,X−j) where x′j is drawn by the statistician from the distribution xj |X−j without
using y. Under the null, this distribution can be computed to arbitrary precision by Monte
Carlo sampling. We refer the reader to [15, 30, 33] for more details about how these obser-
vations lead to the construction of an exact test.

When the linear model is well-specified, the null (26) corresponds to θ∗j = 0, and our leave-
one-out procedure implements the conditional randomization test under this null, as we now
explain. The statistic ξj , defined in Eq. (22) and used in the construction of the leave-one-out
interval, can also be used as the variable importance statistic in the conditional randomization
test. We make a few remarks. The Gaussian design assumption and the choice of statistic ξj
permit an explicit description of the null conditional distribution ξj |y,X−j . Indeed, because
x̆⊥j is independent of (y,X−j , θ̂loo) under the null θ∗j = 0, one has

ξj |y,X−j ∼N
(

0,Σ−1
j|−j(τ̂

j
loo)2

)
.

In our setting, we can access the null conditional distribution through its analytic form rather
than through Monte Carlo sampling. The test which rejects when 0 6∈ CIloo

j is exactly the con-
ditional randomization test for the null (26) based on the variable importance statistic |ξj |.2

2This holds provided that the statistician computes ξj | y,X−j exactly by taking an arbitrarily large Monte
Carlo sample.
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As a consequence, the leave-one-out confidence intervals have exact finite sample coverage
under the null θ∗j = 0.

Moreover, Theorem 13 provides more than what existing theory on the conditional ran-
domization test can provide: it gives confidence intervals which are valid under proportional
asymptotics and a power analysis for the corresponding tests.

The linearity assumption in our setting allows us to push this rationale further. For any
ω, when θ∗j = ω, the jth residualized covariate x̆⊥j is independent of the “pseudo-outcome”
y−ωx̆⊥j andX−j . By computing a Lasso estimate using this pseudo-outcome in place of y,
the statistician may perform an exact test of the null θ∗j = ω. The inversion of this collection
of tests, indexed by ω, produces an exact confidence interval. Details of this construction are
provided in Appendix B.6.

We prefer the approximate interval CIloo
j to the exact interval outlined in the preceding

paragraph for computational reasons. The construction of these exact confidence intervals
requires recomputing the leave-one-out Lasso estimate using pseudo-outcome y − ωx̆⊥j for
each value of ω. In contrast, the leave-one-out confidence interval we provide requires only
computing a single leave-one-out Lasso estimate. It achieves only approximate coverage, but
our simulations in Section 4.2 show that coverage is good already for n,p, s on the order of
10s or 100s. An additional benefit of Theorem 13 is its quantification of the length of the
leave-one-out confidence intervals and the power of the corresponding tests, which are not
in general accessible for the conditional randomization test or confidence intervals based on
it. In fact, because the test 0 6∈ CIloo

j is exactly the conditional randomization test, Theorem
13(a) applied under θ∗j provides an estimate of the power of the conditional randomization
test under alternative θ∗j = ω.

We conjecture that the exact confidence intervals outlined above, the leave-one-out confi-
dence intervals, and the debiased confidence intervals asymptotically agree up to negligible
terms. Our simulations in Section 4.2 support this conjecture in the case of the equivalence
of the leave-one-out confidence and the debiased confidence intervals.

4. Numerical simulations. This section contains numerical experiments which (i) sug-
gest that the large s, n, p behavior established in this paper is a good description of the
debiased Lasso even for s, n, p on the order of 10s or 100s, (ii) demonstrate the importance
of the degrees-of-freedom adjustment, (iii) provide evidence for the necessity of the approx-
imate sparsity constraint in Claim 2 for the results of Theorems 4 and 8, and (iv) present
numerical evidence that our results may hold for a broader spectrum of feature distributions
going beyond Gaussian designs. We present here some representative simulations.

In our simulations, we adopt the normalization xi
iid∼ N(0,Σ/p) rather than xi

iid∼
N(0,Σ/n) as is adopted in the theoretical development of this paper. This amounts to a
simple change of variables. We prefer the normalization Σ/p to make the dependence of
performance metrics on n more interpretable: indeed, under this normalization increasing n
for p fixed does not affect the normalization of each row of X and thus better models the
collection of additional samples or measurements.

4.1. Debiasing with degrees-of-freedom adjustment. We compare the degrees-of-freedom
adjusted debiased Lasso of Eq. (6) with the standard unadjusted estimator of Eq. (19).

Figure 1 reports results on the distribution of the two estimators. We set p= 100, n= 25,
and s= 20, and fix θ∗ ∈Rp with s/2 coordinates equal to 25 and the rest equal to−25 chosen
uniformly at random. We repeat the following Nsim = 1000 times. First, we generate data
from the linear model (2) where xi ∼N(0,Σ/n), σ = 1 and Σ comes from the autoregressive
model AR(0.5):

Σij = 0.5|i−j| .
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In each simulation, we use the same θ∗ vector but independent draws of X,z. We com-

pute for each j ≤ n the values
Σ

1/2

j|−j(1−‖θ̂‖0/n)(θ̂dj−θ∗j )

‖y−Xθ̂‖2/
√
n

and
Σ

1/2

j|−j(θ̂
d
0j−θ∗j )

‖y−Xθ̂‖2/
√
n

corresponding to the
debiased Lasso with and without degrees-of-freedom adjustment respectively. Aggregating
over coordinates and simulations (giving p ·Nsim = 105 observations of single coordinates),
we plot histograms and quantile plots for all coordinates corresponding to θj = −25, 0, 25
separately. In the quantile plots, the empirical quantiles are compared with the theoretical
quantiles of the standard normal distribution N(0,1).

Without the degrees-of-freedom adjustment, visible deviations from normality occur. For
active coordinates, we observe bias and skew; for inactive coordinates, we observe tails which
are too fat. The fattening of the tails occurs around and beyond the quantiles corresponding
to two-sided confidence intervals constructed at the 0.05 level. Thus, failure to implement
degrees-of-freedom adjustments will lead to under-coverage in standard statistical practice
even prior to corrections for multiple testing. In contrast, with degrees-of-freedom adjust-
ment, no obvious deviations from normality occur for either the inactive or active coordi-
nates. Normality is retained well into the normal tail. Since we take s = 20, n = 25 and
p = 100, our simulations suggest approximate normality already for s,n, p on the order of
10s and 100s. Our simulations are well outside the condition s= õ(n2/3) required by [9] or
n > p required by [9, 10].

The simulations presented Figure 1 are representative of simulations conducted at various
parameter settings.

4.2. Confidence interval for a single coordinate. In this section we consider the behavior
of the debiased confidence interval CIdj (defined in Eq. (18)) and leave-one-out confidence
interval CIloo

j (defined in Eq. (23)).
In Figure 2, we examine the coverage of the confidence interval for both an active coor-

dinate and an inactive coordinate. As in Figure 1, we consider p= 100, n= 25, and s= 20,
and fix θ∗ ∈ Rp with s/2 coordinates equal to 25 and the rest equal to −25. The locations
of the active coordinates are chosen uniformly at random. We set the coordinate of inter-
est to be θ50. For each model specification, we perform the following Nsim = 1000 times.
First, we generate data from the linear model (2) with σ = 1 and Σ the AR(0.5) covariance
Σij = 0.5|i−j|. We construct for j = 50 the (1 − α)-confidence intervals CIdj and CIloo

j at
level α= 0.05. We also construct the following interval based on the debiased Lasso without
degrees-of-freedom adjustment given by Eq. (19):

CId,noDOF
j :=

θ̂d
0j −

Σ
−1/2
j|−j ‖y−Xθ̂‖2√

n
z1−α/2, θ̂

d
0j +

Σ
−1/2
j|−j ‖y−Xθ̂‖2√

n
z1−α/2

 .
The confidence intervals from the first 40 of the 1000 simulations are plotted in Figure

2 for the cases θ∗50 = 0 and θ∗50 = 25. Both the debiased Lasso and the leave-one-out con-
fidence intervals achieve coverage, and these two confidence intervals approximately agree.
In contrast, when θ50 = 25, the confidence interval without degrees-of-freedom adjustment
is uncentered and too narrow, leading to large under-coverage. When θ∗j = 0, the empirical
coverage (for 1000 simulations) is 95.4% for the debiased Lasso with degrees-of-freedom
adjustment, 95% for leave-one-out confidence interval, and 93.7% for the debiased Lasso
without degrees-of-freedom adjustment. When θ∗j = 25, these coverages are 93.7%, 93.8%,
and 78.3%, respectively.

These simulations provide evidence that the leave-one-out confidence intervals CIloo
j are

valid for fixed coordinate j, already for moderate values of n,p, and not only for large n,p
as guaranteed by Theorem 13. Further, the debiased confidence intervals CIdj also appear
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Fig 2. Confidence interval for a single coordinate. Here p= 100, n= n= 25, s= 20, Σij =

0.5|i−j|, λ= 4, σ = 1. In the top plots, the truth is θ∗j = 0, and in the bottom plots the truth is
θ∗j = 25.

to achieve coverage per-coordinate and not only on average even though our theory does
not establish this. Finally, these simulations support that CIdj and CIloo

j are asymptotically
equivalent.

4.3. Approximate sparsity and Gaussian width. Recall that our main results rely on as-
sumption A2 on the solution (τ∗, ζ∗) of Eqs (8a), (8b) being uniformly bounded above and
below. Theorem 2 establish that assumption A2 holds if θ∗ is (x,M)-approximately sparse
for some x ∈ {+1,0,−1}p and a constant M the corresponding Gaussian width satisfies
G(x,Σ)≤

√
δ(1−∆min) for some ∆min > 0 (plus some additional technical condition).

In Figure 3, we explore the role (and tightness) of this Gaussian width condition. Again,
we let Σ be the AR(0.5) covariance matrix: Σij = 0.5|i−j|. We set p = 1000 and construct
θ∗ as follows: we choose a support S ⊆ [p] uniformly at random with s0 := |S|= 200, and
set θ∗i = 0 for i ∈ [p] \ S and θ∗i ∼ Unif({+µ,−µ}) for i ∈ S. We view this as a (x,M)
approximately sparse vector with x= sign(θ∗), and M = 0.

We approximate the Gaussian width G(x,Σ) by Monte Carlo sampling. In order to do
that, we generate 500 realizations of the optimization problem (12) and obtain 500 estimates
{Ĝ∗}500

i=1. We plot a histogram of {pĜ∗
2
}500
i=1 in both plots in Figure 3 as well as the median
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of these values as a vertical dashed line.3 On the same plots, we plot the logarithm of the
`2-risk and of the sparsity ‖θ̂‖0/n as a function of n for four different magnitudes µ of the
active coordinates of θ∗. Each point on the curves is generated by taking the median over 50
simulations.

Fig 3. The Lasso risk and sparsity are uncontrolled when the θ∗ grows on a signed support
set whose Gaussian width squared exceeds the aspect ratio n/p. Histogram shows standard
Gaussian width Gstd(x,Σ) as computed numerically over 500 trials in simulation. p= 1000,
s= 200, Σij = .5|i−j|, λ= 4, σ = 1. The support set is chosen uniformly at random, and half
of the active coordinates are positive, chosen uniformly at random.

For n/p≤ Ĝ∗
2
, the risk grows very rapidly with µ, whereas for n/p≥ Ĝ∗

2
, the risk grows

only moderately with µ (if at all). There is a visually sharp transition in behavior at the
threshold n/p≈med(Ĝ∗)2. Similarly, when n/p≤med(Ĝ∗)2, the sparsity ‖θ̂‖0/n is equal
to or greater than 1, whereas for n/p≥med(Ĝ∗)2, this quantity is bounded away from 1 and
does not substantially grow with µ. By the stationarity conditions for the Lasso, we know that
/‖θ̂‖0/n≤ 1 always. The observed value ‖θ̂‖0/n > 1 indicate that the Lasso in this regime
is difficult to solve numerically4.

Note that med(Ĝ∗) is an estimator standard Gaussian width Gstd(x,Σ) (see Eq. (12))
instead of the functional Gaussian width (10) (see Eq. (10)) which enters our theory. However,
these simulations should be interpreted in light of the conjecture that G(x,Σ)≈ Gstd(x,Σ).

4.4. Non-Gaussian designs. The results described in this work are proven under corre-
lated Gaussian designs. When covariates are independent, numerical simulations and uni-
versality arguments in previous work suggest exact asymptotic characterizations still hold
for independent but possibly non-Gaussian covariates (see e.g. [5, 39, 36] for rigorous uni-
versality results). Moreover, such universality phenomena are also expected to hold beyond
the linear models: for instance, [47] (in Figure 9) present simulations for logistic regression
with independent but non-Gaussian covariates whose behavior agrees with the corresponding
asymptotic predictions for independent Gaussian covariates. Nevertheless, these predictions
are incorrect when covariates are correlated. This suggests that the most severe limitation of
the existing exact asymptotic theory is not the Gaussianity assumption but rather the inde-
pendence assumption. It is this assumption that the current paper weakens.

3We normalize the height of the histogram to fit on our plots.
4We use the glmnet package for all Lasso simulations.
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Here we provide some numerical evidence which suggests that our theory describes the
behavior of the Lasso under some realistic data generating distributions (when the Gaussian-
ity assumption breaks). Theoretical investigations of universality is left for future work. We
consider the design matrix with covariates generated according to a hidden Markov model.
Hidden Markov models are frequently used for modeling the covariates in genetics applica-
tions (see, e.g. [45]). The specification of the hidden Markov model used in our simulation
is described in details in Appendix D. The specification is such that covariates with indices
differing by approximately 10 or less have non-negligible correlation. The response is gen-
erated according to model (2), with n= 1280, p= 2000, s0 = 0.128p, and σ = 0.2, and all
active coordinates of θ∗ are set to 1. We run our debiasing procedure with degrees of freedom
adjustment for Nsim = 10 independent generations of the data, with the knowledge of the un-
derlying population covariance matrix for the covariates. We then aggregate the standardized
and centered debiased Lasso estimates across coordinates and across simulations, separately
for the inactive and active coordinates, and provide a qq-plot for each; the results are pre-
sented in Figure 4. It is worth noting that from the simulations, one can see the success of
the debiasing procedure with degrees of freedom adjustment carries even into the tails of the
distribution. This phenomenon cannot be justified using prior theory based on independent
Gaussian covariates.

Active Inactive

−4 −2 0 2 4 −4 −2 0 2 4

−4

−2
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2
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Theoretical quantiles
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Fig 4. The debiased Lasso with and without degrees-of-freedom (DOF) adjustment for hidden
Markov model features. Here n= 1280, p= 2000, s0 = .128 · p, and σ = .2, and all active co-
ordinates of θ∗ equal to 1. Quantiles and densities are compared with the ones of the standard
normal distribution.

5. Main proof ingredients. Our proofs are built upon a tight version of Gordon’s min-
max theorem for convex functions. Gordon’s original theorem [24, 25] is a Gaussian com-
parison inequality for the minimization-maximization of two related Gaussian processes, and
has several applications in random matrix theory and convex optimization [44, 41]. In a line
of work initiated by [46] and formalized by [49], the comparison inequality was shown to
be tight when the underlying Gaussian process is convex-concave. This observation has led
to several works establishing exact asymptotics for high-dimensional convex procedures, in-
cluding general penalized M-estimators in linear regression [49, 48] and binary classification
[18, 37, 32]. (We also refer to [6, 2, 19, 20, 42, 3] for alternative proof techniques to obtain
sharp results in high-dimensional regression models, in the proportional asymptotics.)

Earlier work has so far focused on the case of independent features or correlated features
with unpenalized or ridge-penalized procedures. Analyzing the Lasso estimator under gen-
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eral Gaussian designs, however, requires overcoming several technical challenges, as the `1-
penalty breaks the isometry underlying procedure. In this section, we summarize our proof
strategy, emphasizing the technical innovations that are required in the context of general
correlated designs. Our work builds on the approach of [35], which studied the Lasso and
debiased Lasso estimators in the case Σ = Ip.

Control of the Lasso estimate. We find it useful to first rewrite the Lasso optimization ob-
jective as

C(v) :=
1

2n
‖σz −XΣ−1/2v‖22 +

λ

n
‖θ∗ + Σ−1/2v‖1 .

Here we introduce the prediction error vector v := Σ1/2(θ − θ∗). The variable v is used to
whiten the design matrix and isolate the dependence of the objective on it. Indeed, XΣ−1/2

has entries distributed i.i.d. from N(0,1/n), and we have expanded y to reveal its dependence
on X . We denote by v̂ the minimizer of C(v), i.e., v̂ := Σ1/2(θ̂ − θ∗). By a standard argu-
ment, Gordon’s min-max theorem implies that the Lasso optimization behaves, in a certain
sense, like the optimization of the simpler objective

L(v) :=
1

2

(√
σ2 +

‖v‖22
n
− 〈g,v〉

n

)2

+

+
λ

n

(
‖θ∗ + Σ−1/2v‖1 − ‖θ∗‖1

)
,

which we call Gordon’s objective. The precise statement is as follows.

LEMMA 5.1 (Gordon’s lemma). The following hold.

(a) Let D ⊂Rp be a closed set. For all t ∈R,

P
(

min
v∈D
C(v)≤ t

)
≤ 2P

(
min
v∈D
L(v)≤ t

)
.

(b) Let D ⊂Rp be a closed, convex set. For all t ∈R,

P
(

min
v∈D
C(v)≥ t

)
≤ 2P

(
min
v∈D
L(v)≥ t

)
.

By studying Gordon’s objective, and comparing the value of minv∈DL(v) for suitable
choices of the set D, we can extract properties of v̂ and hence θ̂. In particular, in Theorem 6,
we compare the value taken for D = Rp and

D =

{
θ ∈Rp

∣∣∣ ∣∣∣φ(θ∗ + Σ−1/2v
√
p

,
θ∗
√
p

)
−E

[
φ
( θ̂f
√
p
,
θ∗
√
p

)]∣∣∣> ε

}
,

where θ̂f is defined by Eq. (9) with τ∗, ζ∗ the unique solution to Eqs. (8a) and (8b). The
argument is carried out in detail in Appendix B.1.

This discussion clarifies that we can control the behavior of the Lasso objective only in-
sofar as we can control the behavior of Gordon’s objective. The major technical challenge to
apply this approach to general correlated designs is in relating the minimizer of Gordon’s ob-
jective to the fixed design estimator θ̂f . In particular, this requires showing that the solution
(τ∗, ζ∗) of Eqs. (8a) and (8b) is unique and bounded in terms of simple model parameters
(see Theorems 1 and 2).
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Generalizing an idea introduced in [37], we control the solutions Eqs. (8a) and (8b) by
showing that these equations are the KKT conditions for a certain convex optimization prob-
lem on the infinite dimensional Hilbert space L2(Rp;Rp). To be more specific, the optimiza-
tion problem is

min
v∈L2

E (v) := min
v∈L2

{
1

2

(√‖v‖2L2

n
+ σ2 − 〈g,v〉L

2

n

)2

+
+
λ

n
E
[
‖θ∗ + Σ−1/2v(g)‖1 − ‖θ∗‖1

]}
.

The objectives L and E are closely related, but their arguments belong to different spaces.
The objective L takes vectorial arguments v ∈ Rp; the objective E takes functional argu-
ments v : Rp→ Rp. Both objectives are convex. In Appendix A.3, we show that v ∈ L2 is a
minimizer of E if and only if v(g) = η(Σ1/2θ∗ + τ∗g; ζ∗) for τ∗, ζ∗ a solution to the fixed
point equations. This follows from showing that Eqs. (8a) and (8b) correspond to KKT con-
ditions for the minimization of E . Further, we show that E diverges to infinity as ‖v‖L2→∞
and is strictly convex in a neighborhood of any minimizer, whence a minimizer exists, and it
is unique (Theorem 1). We are then able to conclude that the fixed point equations also have
a unique solution. We defer the details of this argument to Appendix A.3.

Controlling the size of the fixed point parameters (Theorem 2) relies on bounding the
norm of the minimizer of E . Again, our approach is geometric: rather than analyzing the
fixed point equations directly, we study the growth of the objective E as ‖v‖L2/

√
n diverges.

The functional Gaussian width (10) controls this growth. This explains the centrality of the
Gaussian width G(x,Σ) in our analysis. In fact, under only a sparsity constraint on θ∗, we
can control the growth E in ‖v‖L2/

√
n in an n-independent way only when G(x,Σ)<

√
δ

where x ∈ ∂‖θ∗‖1. Thus, we suspect our analysis based on the Gaussian width is in a certain
sense tight, though we do not attempt to make this claim precise. The detailed argument
bounding the fixed point parameters is in Appendix A.4.

The present approach is significantly more general both than the one of [35], which studies
the Lasso for Σ = Ip, and of [37] which studies binary classification under a ridge-type
regularization. When Σ = Ip, the Lasso estimator in the fixed-design model is separable, and
Eqs. (8a) and (8b) simplify because

R(τ2, ζ) =
1

δ
EΘ,G[(ηsoft(Θ

∗ + τG,λ/ζ)−Θ∗)2] ,

df(τ2, ζ) =
1

δ
P(ηsoft(Θ

∗ + τG,λ/ζ) 6= 0) ,

where Θ∗ ∼ 1
p

∑p
j=1 δθ∗j independent of G ∼ N(0,1), and ηsoft(y; ζ) := (|y| − ζ)+sign(y).

Hence—in that case—existence and uniqueness of the solution of Eqs. (8a) and (8b) can be
proved by analyzing the explicit form of these equations.

Also, our approach is more general than the one of [37], which constructs a Hilbert-space
optimization problem by taking the n,p→∞ limit of the Gordon’s problem. In the present
case, since we intend to establish a non-asymptotic control, for finite n,p there is no natural
sequence of covariances in which to embed Σ.

Furthermore, we generalize our result to achieve a uniform control over the penalization
parameter λ ∈ [λmin, λmax] (see Theorem 6). The argument is based on a careful analysis of
the sensitivity of the Lasso problem and its corresponding solution regarding the penalization
parameter λ. More details can be found in Appendix B.7.

Control of the Lasso sparsity. It is not feasible to directly control quantity ‖θ̂‖0/n using
Theorem 4 with φ(θ,θ∗) = ‖θ‖0/n, since this function is not Lipschitz or even continuous.
Instead, we establish lower and upper bounds on the sparsity separately.



LASSO WITH GENERAL GAUSSIAN DESIGNS 23

To explain the argument, define for any θ ∈Rp the ε-strongly active coordinates of θ to be
{j ∈ [p] | |θj |> ε}. Likewise, for any t ∈Rp define the ε-strongly inactive coordinates of t to
be {j ∈ [p] | |tj |< 1− ε} (this definition is motivated by the fact that if t is the sub-gradient
of the Lasso, if |tj | < 1 − ε then θj = 0 and tj would have to change by at least ε for θj
to become active). Our argument relies on the following two facts (here θ̂ is, as always, the
Lasso estimate, and t̂ is the subgradient of Eq. (14)):
(27)

if
‖θ̂‖0
n
≤ 1− ζ∗ − ε, then inf

θ

{
1
√
p
‖θ̂− θ‖2

∣∣∣ |{j | |θj |> ε}|
n

> 1− ζ∗ − ε

2

}
≥
√
δε3

2
,

and
(28)

if
‖θ̂‖0
n
≥ 1−ζ∗+ε , then inf

t

{
1
√
p
‖t̂− t‖2

∣∣∣ |{j | |tj |< 1− ε}|
n

> 1− ζ∗ − ε

2

}
≥
√
δε3

2
.

The first argument holds because the vectors θ and θ̂ differ by at least ε in nε/2 co-
ordinates; namely, in those coordinates in which θ is ε-strongly active and θ̂ is inactive.
The second argument holds similarly. In words, vectors which are very sparse are separated
in Euclidean distance from vectors with many ε-active coordinates; similarly, subgradients
with many active coordinates are separated in Euclidean distance from vectors with many
ε-inactive coordinates.

To proceed, we leverage the following fact: for any set D ⊂ Rp which contains the fixed-
design Lasso estimate θ̂f with high-probability, the random design Lasso estimate θ̂ is close
to D with high-probability. Similarly, for any set D ⊂ Rp which contains the fixed-design
subgradient t̂f with high-probability, the random-design subgradient t̂ is close to D with
high-probability. In the case of the subgradient, this is made precise in the statement of
Lemma 10. A similar statement holds for the Lasso estimate, and developed in the proof
of Theorem 4. Taking D to be the set over which the infimum in Eq. (27) (resp. Eq. (28))
is taken, we can conclude ‖θ̂‖0/n > 1 − ζ∗ − ε (resp. ‖θ̂‖0/n < 1 − ζ∗ + ε) with high-
probability as soon as we can show θ̂f ∈D (resp. t̂f ∈D) with high-probability. The details
of this argument are carried out in Appendix B.4.

Control of the debiased Lasso. We may write the debiased Lasso as a function of the Lasso
estimate θ̂, the subgradient t̂, and the Lasso sparsity ‖θ̂‖0/n:

θ̂d = θ̂+
λΣ−1t̂

1− ‖θ̂‖0/n
.

Because 1 − ‖θ̂‖0/n concentrates on ζ∗ by Theorem 9, the debiased Lasso is with high-
probability close to

θ̂+
λ

ζ∗
Σ−1t̂ .(29)

Our goal is to show that θ̂+ λ
ζ∗Σ

−1/2t̂−θ∗ is approximately Gaussian noise with zero mean
and covariance τ∗2Σ−1. Heuristically, if we replace the Lasso estimate and subgradient by
their fixed-design counterparts, we get

θ̂f +
λ

ζ∗
Σ−1t̂f − θ∗ = θ̂f − θ∗ + Σ−1Σ1/2(yf −Σ1/2θ̂f ) = τ∗Σ−1/2g ,
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where in the first inequality we have used that λ
ζ∗ t̂

f = Σ1/2(yf −Σ1/2θ̂) by the KKT condi-
tions for the optimization (4). Thus, we would like to justify the heuristic replacement of the
random design quantities with their fixed-design counterparts.

It turns out that it is not straightforward to justify this heuristic. Theorem 4 and Lemma
10 compare the distributions of θ̂ and t̂ to their fixed design counterparts individually but not
jointly. That is, Theorem 4 compares the distribution of θ̂ and θ̂f , and Lemma 10 compares
the distribution of t̂ and t̂f , but neither directly compares the joint distribution of (θ̂, t̂)

and (θ̂f , t̂f ). To conclude θ̂ + λ
ζ∗Σ

−1t̂ “behaves like” θ̂f + λ
ζ∗Σ

−1t̂f , we require such a
joint comparison. Unfortunately, the approach of [35], does not extend directly to general
covariance structures other than Ip. Indeed, the empirical distributions µ̂ = 1

p

∑p
j=1 δθ̂j and

µ̂′ := 1
p

∑p
j=1 δt̂j do not have a simple characterization for general Σ.

To conquer this issue, we resort to a smoothing argument. For penalized regression estima-
tors with differentiable penalties, the subgradient t̂ is a function of the estimate θ̂f . Indeed,
t̂ ∈ ∂‖θ̂‖1 does not identify t̂ from θ̂ only due to the non-differentiability of the `1-norm at
inactive coordinates. Thus, for smooth procedures, the expression corresponding to Eq. (29)
is a deterministic5 function only of the estimate. Thus, the replacement of the quantities in
(29) by their fixed-design counterparts can be justified via analysis of the distribution of the
estimate θ̂ individually. To leverage this simplification under smoothness, we introduce the
α-smoothed Lasso, in which we replace the `1-penalty by a smooth approximation in the
original Lasso objective (1). We prove a characterization of the α-smoothed Lasso analo-
gous to Theorem 4, and use this to establish the success of the debiasing procedure corre-
sponding to the smoothed estimator. Finally, we argue that the debiased Lasso estimate is
well-approximated by the debiased α-smoothed Lasso estimate for small enough smoothing
parameter, allowing us to conclude Theorem 11. The details of this argument are provided in
Appendix B.5.

SUPPLEMENTARY MATERIAL

Supplement A: Supplement to ‘The Lasso with general Gaussian designs with appli-
cations to hypothesis testing.’
(doi: COMPLETED BY THE TYPESETTER). The supplement contains proofs and techni-
cal details that were omitted from the main text.
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LASSO WITH GENERAL GAUSSIAN DESIGNS 1

Supplement to ‘The Lasso with general Gaussian designs with applications to
hypothesis testing.’

A. Preliminaries.

A.1. A Gaussian width tradeoff. It is convenient to define the descent cone

(30) L2 ⊃D(x,Σ) :=

Σ1/2w
∣∣∣ E[ ∑

j∈supp(x)

xjwj(g) + ‖wSc(g)‖1
]
≤ 0

 .

In this section, we consider relaxations of the constraint v ∈ D(x,Σ) appearing in Eq. (10).
In particular, we quantify a tradeoff between the expected correlation 〈v,g〉L2 appearing in
(10) and the expected growth of the `1 lower bound appearing in (30). Constraining this
trade-off is the central tool in establishing bounds on the solutions to Eqs. (8a) and (8b) (see
the proof of Theorem 4(a) in Section A.4).

LEMMA A.1. Fix Σ ∈ Sp≥0 with singular values bounded 0< κmin ≤ κj(Σ)≤ κmax <
∞ for all j. Define κcond := κmax/κmin. Let x ∈ {−1,0,1}p with ‖x‖0/p ≥ νmin > 0. Let
S = supp(x). Then, for any v ∈ L2 and any ε > 0, we have either

(31)
1

p
〈v,g〉L2 ≤ G(x,Σ) + ε

√
p

‖v‖L2 ,

or

(32)
1

p
E
[∑
j∈S

xjwj(g) + ‖w(g)Sc‖1
]
≥

ν
1/2
minε

√
pκ

1/2
max(2 + κcond)

‖v(g)‖L2 ,

where w = Σ−1/2v ∈ L2.

PROOF OF LEMMA A.1. We may alternatively write (10) as

G(x,Σ) = sup
w∈D(x,Ip)

‖Σ1/2w‖2
L2/p≤1

1

p
E
[
w(g)>g̃

]
,

where g̃ = Σ1/2g and g is interpreted as the identity function in L2. The Lagrangian for this
problem reads:

L(w;κ, ξ) :=
1

p
E
[
w>g̃

]
+
κ

2

(
1− 1

p
E
[
‖Σ1/2w‖22

])
− ξ

p
E
[∑
j∈S

xjwj + ‖wSc‖1
]
,

where the Langrange multipliers κ, ξ are restricted to be non-negative. First, we bound the
dual optimal Lagrange multipliers. We bound

κ

2
+

1

p
E

w>g̃− κκmin

2
‖w‖22 − ξ

(∑
j∈S

xjwj + ‖wSc‖1
)≥L(w;κ, ξ)

≥ κ

2
+

1

p
E

w>g̃− κκmax

2
‖w‖22 − ξ

(∑
j∈S

xjwj + ‖wSc‖1
) .(33)
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The expected value appearing in the upper bound is maximized by maximizing the integrand
for each value of g̃. Because the integrand is separable across coordinates, we may do this
explicitly. The maximal value of the integrand at fixed g̃ is

κ

2
+

1

2pκκmin

∑
j∈S

(g̃j − ξxj)2 +
1

pκκmin

∑
j∈Sc

(
g̃2
j

2
− ξMξ(g̃j)

)
,

where Mξ(g̃j) is the Moreau envelope of the `1-norm

Mξ(y) := inf
x∈R

{
1

2ξ
(y− x)2 + |x|

}
.

Because ξMξ(g̃j)≥ 0, we have E[g̃2
j /2− ξMξ(g̃j)]≤ E[g̃2

j /2]≤ E[(g̃j − ξx)2/2]≤ (κmax +

ξ2)/2 whenever x=±1. Thus,

κ

2
+

1

κ

κcond + ξ2/κmin

2
≥ sup
w∈L2

L(w;κ, ξ).

This further implies that

inf
κ,ξ≥0

sup
w∈L2

L(w;κ, ξ)≤ sup
w∈L2

L(w; 1, κ
1/2
min) = 1 +

κcond

2
.

Similarly, maximizing the right-hand side of Eq. (33) explicitly and using g̃2
j /2− ξMξ(g̃j)≥

0,

sup
w∈L2

L(w;κ, ξ)≥ κ

2
+

1

κ

|S|(1/κcond + ξ2/κmax)

2p
.

If either κ/2> 1+κcond/2 or ξ2/κmax > 4(1+κcond/2)2/(|S|/p), then supw∈L2 L(w;κ, ξ)>
1+κcond/2. Combining the previous two displays, we conclude that infκ,ξ≥0 supw∈L2 L(w;κ, ξ)
is achieved at some

(34) κ∗ ≤ 2 + κcond and ξ∗ ≤ κ
1/2
max(2 + κcond)

(|S|/p)1/2
.

Since the constraints on w are strictly feasible, strong duality holds:

sup
w∈L2

L(w;κ∗, ξ∗) = G(x,Σ) .

The dual optimal variable ξ∗ quantifies the tradeoff we seek to control, as we now show.
For any functionw : Rp→Rp, let w̄ : Rp→Rp be defined by w̄(g) =

√
pw(g)/E[‖w(g)‖2Σ]1/2,

where ‖w‖2Σ =w>Σw. Then

1

p
〈w̄, g̃〉L2 − ξ∗

p
E

∑
j∈S

xjw̄j(g) + ‖w̄Sc(g)‖1


=

1

p
E[w̄(g)>g̃] +

κ∗

2

(
1− 1

p
E[‖w̄‖2Σ]

)
− ξ∗

p
E

∑
j∈S

xjw̄j(g) + ‖w̄Sc(g)‖1


≤ sup
w∈L2

L(w;κ∗, ξ∗) = G(x,Σ) ,

where in the first equality we used that E[‖w̄(g)‖2Σ]/p= 1. We conclude that for any ε > 0,

either
1

p
〈w̄, g̃〉L2 ≤ G(x,Σ) + ε or

1

p
E

∑
j∈S

xjw̄j(g̃) + ‖w̄(g)Sc‖1

≥ ε

ξ∗
.
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Plugging in w = E[‖w(g)‖2Σ]1/2w̄/
√
p and the upper bound on ξ∗ in (34), the lemma fol-

lows.

A.2. The α-smoothed Lasso. Controlling the debiased Lasso (Theorem 11) will require
a smoothing argument in which we replace the `1-penalty by a differentiable approximation.
In anticipation of this, we study the smoothed and non-smoothed Lasso in a unified way.
Results about the Lasso estimate and residual will be instances of these general results.

For α> 0, define the Moreau envelope of the `1-norm

(35) Mα(θ) := inf
b∈Rp

{
1

2α
‖θ− b‖22 + ‖b‖1

}
,

and define M0(θ) = ‖θ‖1. Notice that this coincides with the Hüber loss. In particular, for
all θ ∈Rp,

(36) ‖θ‖1 −
pα

2
≤Mα(θ)≤ ‖θ‖1 .

For all α≥ 0, define the α-approximate Lasso in the random-design model

θ̂α := arg min
θ∈Rp

{
1

2n
‖y−Xθ‖22 +

λ

n
(Mα(θ)− ‖θ∗‖1)

}
(37)

=: arg min
θ∈Rp

Rα(θ) ,

where the term −‖θ∗‖1 is added to the definition of Rα(θ) for future convenience. Define
the α-approximate Lasso in the fixed-design model

ηα(yf , ζ) := arg min
θ∈Rp

{
ζ

2
‖yf −Σ1/2θ‖22 + λMα(θ)

}
,(38)

ŷα(yf , ζ) := Σ1/2ηα(yf , ζ) .

Denote the in-sample prediction risk and degrees-of-freedom of the α-smoothed Lasso in the
fixed-design model by

Rα(τ2, ζ) : =
1

n
E
[
‖ŷα(Σ1/2θ∗ + τg, ζ)−Σ1/2θ∗‖22

]
,

dfα(τ2, ζ) : =
1

nτ
E
[
〈ŷα(Σ1/2θ∗ + τg, ζ), g〉

]
(39)

=
1

n
E[div ŷα(Σ1/2θ∗ + τg)] ,

where the expectation is over g ∼N(0p, Ip). Let τ∗α, ζ
∗
α be solutions to the system of equations

τ2
α = σ2 + Rα(τ2

α, ζα) ,(40a)

ζα = 1− dfα(τ2
α, ζα) .(40b)

We refer to these equations as the α-smoothed fixed point equations. For α = 0, these def-
initions agree with the corresponding definitions for the Lasso. The solutions τ∗α, ζ∗α are
well-defined.

LEMMA A.2. For all α ≥ 0, if Σ is invertible and σ2 > 0, then Eqs. (40a) and (40b)
have a unique solution.

In the following sections, we prove Lemma A.2 and control the behavior of the α-smoothed
Lasso using the solutions τ∗α, ζ∗α to the α-smoothed fixed point equations.



4

A.3. The fixed point equations have a unique solution: proofs of Theorem 1 and Lemma
A.2. Theorem 1 is the α= 0 instance of Lemma A.2.

PROOF OF LEMMA A.2. Define functions T ,Z : L2(Rp;Rp)→R by

T (v)2 := σ2 +
1

n
‖v‖2L2 ,

Z(v) :=

(
1− 1

nT (v)
〈g,v〉L2

)
+

,

where g is interpreted as the identity function in L2. Define Eα : L2(Rp;Rp)→R by
(41)

Eα(v) :=
1

2

(√‖v‖2L2

n
+ σ2 − 〈g,v〉L

2

n

)2

+
+
λ

n
E
{(

Mα(θ∗ + Σ−1/2v(g))− ‖θ∗‖1
)}

=: F (v) +
λ

n
E
{(

Mα(θ∗ + Σ−1/2v(g))− ‖θ∗‖1
)}
.

Let us emphasize the argument of Eα is not a vector but a function v : Rp→Rp.
Each of the two terms in the definition of Eα are convex and continuous. Moreover, for all

g we have, by Eq. (36),

Mα(θ∗ + Σ−1/2v(g))≥ ‖θ∗ + Σ−1/2v(g)‖1 −
pα

2

≥ ‖Σ−1/2v(g)‖1 − ‖θ∗‖1 −
pα

2
≥ κ−1/2

max ‖v(g)‖2 − ‖θ∗‖1 −
pα

2
.

For any M > 0,

|〈v,g〉L2 |= |E[〈v(g),g1‖g‖2>M 〉] +E[〈v(g),g1‖g‖2≤M 〉]|

≤ ‖v‖L2E[‖g‖221‖g‖2>M ]1/2 +ME[‖v(g)‖2].

Take M large enough that E[‖g‖21‖g‖>M ]< n/2. Then

Eα(v)≥ 1

2

(
1

2

‖v‖L2

√
n
− M

n
E[‖v(g)‖2]

)2

+

+
λκ
−1/2
max

n
E[‖v(g)‖2]− 2λ

n
‖θ∗‖1 −

α

2δ

≥min

{
1

32n
‖v‖2L2 ,

λκ
−1/2
max

4Mn1/2
‖v‖L2

}
− 2λ

n
‖θ∗‖1 −

α

2δ
,

where the second inequality holds by considering the cases that ‖v‖L2/(4
√
n) is no smaller

and no larger than ME[‖v(g)‖2]/n, respectively. We see that Eα(v)→∞ as ‖v‖L2 →∞,
whence by [4, Theorem 11.9] Eα has a minimizer. Let v∗α be one such minimizer.

Consider the following convex function in L2 parameterized by τ, ζ ≥ 0:

Ẽα(v; ζ, τ) :=
ζ

2n

∥∥v− τg∥∥2

L2 +
λ

n
E
{(

Mα(θ∗ + Σ−1/2v(g))− ‖θ∗‖1
)}

= E
{
ζ

2n
‖v(g)− τg‖22 +

λ

n
(Mα(θ∗ + Σ−1/2v(g))− ‖θ∗‖1)

}
.

For fixed ζ, τ ≥ 0, the function v∗α minimizes Ẽα if and only if v∗α(g) minimizes the objective
inside the expectation for almost every g. That is, if and only if

(42) v∗α = Σ1/2(ηα(θ∗ + τΣ−1/2g; ζ)− θ∗) almost surely.
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For any v0,v1 ∈ L2 fixed, we have by differentiation of F with respect to ε ∈R that

Ẽα(v0 + εv1;Z(v0),T (v0))− Eα(v0 + εv1) =
Z(v0)

2n
‖v0 + εv1 −T (v0)g‖2L2 −F (v0 + εv1)

= Ẽα(v0;Z(v0);T (v0))− Eα(v0) +O(ε2) .

Thus, v1 is a descent direction of v 7→ Ẽα(v;Z(v0),T (v0)) at v0 if and only if it is also a
descent direction of v 7→ Eα(v) at v0. In particular, v0 minimizes Eα if and only if it mini-
mizes Ẽ (v; ζ, τ) for ζ =Z(v0) and τ = T (v0). By (42), we conclude that v∗α is a minimizer
of Eα if and only if

(43) v∗α(g) = Σ1/2(ηα(θ∗ + T (v∗α)Σ−1/2g;Z(v∗α))− θ∗) almost surely.

That is, if and only if τ∗α = T (v∗α), ζ∗α = Z(v∗α) is a solution to equations (40a) and (40b).
Because Eα has minimizers, solutions to equations (40a) and (40b) exist.

To complete the proof, we only need to show that the minimizer v∗α of Eα is unique. First,
we claim Z(v∗α) > 0 for all minimizers v∗α. Assume otherwise that Z(v∗α) = 0 for some
minimizer v∗α. Then, by property (43),

v∗α = Σ1/2(ηα(θ∗ + T (v∗α)Σ−1/2g; 0)− θ∗) =−Σ1/2θ∗.

Thus, we have Z(v∗α) =
(

1− 1
nT (v∗α)〈g,−Σ1/2θ∗〉L2

)
+

= 1, a contradiction. We conclude

Z(v∗α)> 0 for all minimizers v∗α of Eα.
The function Eα is strictly convex on Z(v)> 0. Indeed, for any v 6= v′, the function

t 7→
√
‖(1− t)v+ tv′‖2L2

n
+ σ2 =

√
‖v‖2L2 − 2t〈v,v− v′〉L2 + t2‖v′‖2L2

n
+ σ2

is strictly convex by univariate calculus. Because x 7→ x2
+ is convex and strictly increasing

on x > 0, strict convexity of Eα on Z(v) > 0 follows. Because all minimizers v∗α satisfy
Z(v∗α)> 0, strict convexity on v∗α > 0 implies the minimizer is unique.

A.4. Uniform bounds on fixed point solutions: proof of Theorem 2. In the context of
the α-smoothed Lasso, we replace assumption A2 with the following assumption A2α. As
before, our results below hold uniformly over families of instances (θ∗,Σ, σ,λ) that satisfy
such condition.

A2α There exist 0 < τmin ≤ τmax <∞ and 0 < ζmin ≤ ζmax <∞ such that the unique so-
lution τ∗α, ζ∗α to the fixed point equations (40a) and (40b) are bounded: τmin ≤ τ∗α ≤ τmax

and ζmin ≤ ζ∗α ≤ ζmax.

Theorem 2 is the αmax = 0 instance of the following lemma.

LEMMA A.3. Consider αmax ≥ 0. Under assumption A1 and if θ∗ is (s,
√
δ(1 −

∆min),M)-approximately sparse for some s/p ≥ νmin > 0 and 1 ≥ ∆min > 0 and if α ≤
αmax, then there exist 0 < τmin ≤ τmax <∞ and 0 < ζmin ≤ ζmax <∞ depending only on
Pmodel, δ, νmin, ∆min, and αmax such that the unique solution τ∗α, ζ∗α to Eqs. (40a) and (40b)
satisfies τmin ≤ τ∗α ≤ τmax and ζmin ≤ ζ∗α ≤ ζmax.

The proof of Lemma A.3 relies on controlling the degrees of freedom of the α-smoothed
Lasso in terms of its prediction risk in the fixed-design model. We establish this control in
the next lemma.
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LEMMA A.4. For any τ, ζ, δ > 0 and α≥ 0 and if the eigenvalues of Σ are bounded as
0< κmin ≤ κj(Σ)≤ κmax <∞, then

κ
1/2
max

δ1/2

(
τκ

1/2
cond +

√
τ2κcond + δRα(τ2, ζ)

)
≥ λ

ζ
dfα(τ2, ζ)− ακmax

δ
.

We prove Lemma A.4 at the end of this section.

PROOF OF LEMMA A.3. By general properties of proximal operators [4], the Jacobian
matrixDŷα(yf , ζ) of ŷα( · , ζ) is positive-semidefinite. Therefore dfα(τ∗α

2, ζ∗α)≥ 0 and ζ∗α ≤
1 is immediate from Eq. (40b). Further, τ∗α ≥ σmin is immediate from Eq. (40a). We may take

τmin = σmin and ζmax = 1 .

Establishing the bound τ2
max. Because θ∗ is (s,

√
δ(1−∆min),M)-approximately sparse,

there exists x ∈ {−1,0,1}p such that ‖x‖0 = s and G(x,Σ)≤
√
δ(1−∆min), and θ̄∗ ∈Rp

such that 1
p‖θ̄

∗ − θ∗‖1 ≤M and x ∈ ∂‖θ̄∗‖1. Denote S = supp(x)⊂ [p].
We may equivalently write the objective in (41) as a function of w(g̃) := Σ−1/2v(g)

where g̃ := Σ1/2g. Note that
(44)

1

n

(
Mα(θ∗ +w(g̃))− ‖θ∗‖1

)
≥ 1

n

(
‖θ̄∗ +w(g̃)‖1 − ‖θ̄∗‖1

)
− 2

n
‖θ̄∗ − θ∗‖1 −

αmax

2δ

≥ 1

δp

∑
j∈S

xjw(g)j + ‖w(g)Sc‖1

− 2M

δ
− αmax

2δ
,

where the first inequality uses the relation (36). Plugging in ε =
√
δ−G(x,Σ)

2 in Lemma A.1,
Eqs. (31) and (32), we have that either

1

p
E[〈w(g̃), g̃〉]≤

√
δ+ G(x,Σ)

2
√
p

E[‖w(g̃)‖2Σ]1/2 ,

or

1

p
E

∑
j∈S

xjwj(g̃) + ‖w(g̃)Sc‖1

≥ √δ−G(x,Σ)

2ξ∗
√
p

E[‖w(g̃)‖2Σ]1/2 ,

where ξ∗ = κ
1/2
max(2 + κcond)/ν

1/2
min. Then, Eq. (44) gives

Eα(v) =
1

2

(√
E[‖w(g̃)‖2Σ]

n
+ σ2 − E[〈g̃,w(g̃)〉]

δp

)2

+

+
λ

n
E{Mα(θ∗ +w(g̃))− ‖θ∗‖1}

≥min

1

2

(
1−G(x,Σ)/

√
δ

2

)2

+

E[‖w(g̃)‖2Σ]

n
,
λ(1−G(x,Σ)/

√
δ)E[‖w(g̃)‖2Σ]1/2

2ξ∗
√
n


− 2λM

δ
− αmaxλ

2δ
.

As in the proof of Lemma A.2 (see Eq. (42)), let v∗α be the minimizer of Eα. Because
Mα(θ∗) ≤ ‖θ∗‖1, we bound σ2/2 = E0(0) ≥ Eα(0) ≥ Eα(v∗α). Combining this bound with
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the previous display applied at v(g̃) = Σ−1/2v∗α, some algebra yields

‖v∗α‖2L2

n
=

E[‖w(g̃)‖2Σ]

n

≤max

{
8(σ2/2 + 2λmaxM/δ + αmaxλmax/(2δ))

(1−G(x,Σ)/
√
δ)2

,
(σ2/λmin + 4M/δ+ αmax/δ)

2ξ∗2

(1−G(x,Σ)/
√
δ)2

}

≤max

{
8(σ2

max/2 + 2λmaxM/δ + αmax/(2δ))

∆2
min

,
(σ2

max/λmin + 4M/δ + αmax/δ)
2κmax(2 + κcond)2

∆2
minνmin

}
.

Recalling the fixed point equation (40a), we may set τ2
max to be the sum of σ2 and the right-

hand side above.

Establishing the bound ζmin. If dfα(τ∗α
2, ζ∗α) ≤ 1/2, then by Eq. (39), ζ∗α ≥ 1/2. Alterna-

tively, if dfα(τ∗2α, ζ
∗
α)≥ 1/2, then by Lemma A.4, it is guaranteed that

κ
1/2
maxτmax

δ1/2

(
κ

1/2
cond +

√
κcond + δ

)
≥ λmin

2ζ∗α
− αmaxκmax

δ
,

where we have used that τ∗α ≤ τmax (as established above) and by (40b) that Rα(τ∗α, ζ
∗
α) ≤

τ∗α
2. Rearranging terms, we conclude

ζ∗α ≥
λminδ

2(κ
1/2
maxτmaxδ1/2(κ

1/2
cond +

√
κcond + δ) + αmaxκmax)

.

Thus, we may set

ζmin =
1

2
min

{
1,

λminδ

κ
1/2
maxτmaxδ1/2(κ

1/2
cond +

√
κcond + δ) + αmaxκmax

}
.

The proof is complete.

PROOF OF LEMMA A.4. The KKT conditions for the α-smoothed Lasso in the fixed-
design model (38) are

(45) ŷα(yf , ζ)−Σ1/2θ∗ = τg− λ

ζ
Σ−1/2∇Mα(ηα(yf , ζ)) .

where yf = Σ1/2θ∗ + τg. Therefore,

1

n
‖ŷα(yf , ζ)−Σ1/2θ∗‖22 ≥

λ2

ζ2κmax

‖∇Mα(ηα(yf , ζ)‖22
n

− 2λτ

ζκ
1/2
min

‖g‖2‖∇Mα(ηα(yf , ζ))‖2
n

.

Taking expectations and applying Cauchy-Schwartz yields

Rα(τ2, ζ)≥ λ2

ζ2κmax

E[‖∇Mα(ηα(yf , ζ)‖22]

n
− 2λτ

ζδ1/2κ
1/2
min

E[‖∇Mα(ηα(yf , ζ)‖22]1/2√
n

,

Solving the resulting quadratic equation for λE[‖∇Mα(ηα(yf ,ζ)‖22]1/2

ζ
√
n

, we conclude

(46)
λ

ζ

E[‖∇Mα(ηα(yf , ζ)‖22]1/2√
n

≤ κ
1/2
max

δ1/2

(
τκ

1/2
cond +

√
τ2κcond + δRα(τ2, ζ)

)
.
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We compute

∇Mα(θ) = (θ− ηsoft(θ, α))/α , ∇2Mα(θ) = diag((1|θj |≤α)j)/α .

Because θ− ηsoft(θ,α))/α= 1 for |θ| ≥ α, we bound

‖∇Mα(θ)‖22 ≥ |{j ∈ [p] | |θj | ≥ α}| .

The KKT condition (45) gives

ζΣ1/2(yf − ŷα(yf , ζ)) = λ∇Mα(ηα(yf , ζ)) .

Differentiating with respect to yf ,

ζΣ1/2 − ζΣ1/2∇ŷα(yf ; ζ) = λ∇2Mα(ηα(yf , ζ))Σ−1/2∇ŷα(yf ; ζ) .

(More precisely, ŷα(yf , ζ) and ηα(yf , ζ) are continuous and piecewise linear in yf , and the
above identity holds in the interior of each linear region.) We therefore get

∇ŷα(yf , ζ) =

(
Ip +

λ

ζ
Σ−1/2∇2Mα(ηα(yf , ζ))Σ−1/2

)−1

=

(
Ip +

λ

αζ
(Σ−1/2)·,Sc(Σ

−1/2)Sc,·

)−1

= Ip −
λ

αζ
(Σ−1/2)·,Sc

(
I|Sc| +

λ

αζ
(Σ−1/2)Sc,·(Σ

−1/2)·,Sc
)−1

(Σ−1/2)Sc,· ,

where S = {j ∈ [p] | |ηα(yf , ζ)| ≥ α}. Thus,

div ŷα(yf , ζ) = trace(∇ŷα(yf , ζ))≤ p− |Sc|
1 + αζκmax/λ

≤ p− p− ‖∇Mα(ηα(yf , ζ))‖22
1 + αζκmax/λ

.

Rearranging and taking expectations,

E[‖∇Mα(ηα(yf , ζ))‖22]

n
≥
(

1 +
αζκmax

λ

)
dfα(τ2, ζ)− αζκmax

λδ
.

Combining with Eq. (46),

κ
1/2
max

δ1/2

(
τκ

1/2
cond +

√
τ2κcond + δRα(τ2, ζ)

)
≥
(
λ

ζ
+ ακmax

)
dfα(τ2, ζ)− ακmax

δ
.

We may ignore the non-negative term ακmax in parentheses. The proof is complete.

As a consequence, one arrives at the following result.

COROLLARY 14. Under assumptions Lemma A.3, dfα(τ∗α
2, ζ∗α) is uniformly bounded

away from one. Namely

dfα(τ∗α
2, ζ∗α) = 1− ζ∗ ≤ 1− ζmin .

with ζmin depending uniquely on the constants Pmodel, δ, νmin, ∆min, and αmax.

A.5. Continuity of fixed point solutions in smoothing parameter.

LEMMA A.5. If assumptions A1 and A2 hold, then there exist constants αmax, Lτ , and
Lζ depending only on Pmodel, PfixPt, and δ such that for α≤ αmax,

|τ∗0 − τ∗α| ≤ Lτ
√
α , |ζ∗0 − ζ∗α| ≤ Lζ

√
α .
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We emphasize that the assumptions in Lemma A.3 are made about the Lasso fixed point
parameters rather than the α-smoothed Lasso fixed point parameters.

PROOF OF LEMMA A.5. The function

f : L2→R , v 7→
√
‖v‖2L2

n
+ σ2 − 〈g,v〉L

2

n
,

is (1/
√
n+ 1/

√
δn)-Lipschitz. Evaluated at the minimizer v∗0 of E0 defined in (41), f(v∗0)

is equal to τ∗0 ζ
∗
0 ≥ τminζmin by the proof of Lemma A.2 in Section A.3. Thus, for ‖v −

v∗0‖L2/
√
n≤ τminζmin/(2(1 + δ−1/2)), it is guaranteed that

f(v)≥ τminζmin

2
.

Let r := min
{

τminζmin

2(1+δ−1/2) ,
τmin

2

}
. By differentiation along affine paths, the function

1

2
f(v)2

+ is
σ2

min infv∈B f(v)+

n(supv∈B ‖v‖2L2/n+ σ2
min)3/2

strongly convex on v ∈B for any B ⊂ L2.

Thus, E0 is σ2τminζmin/2
n(R2+σ2)3/2 -strongly convex on ‖v − v∗0‖L2/

√
n≤ r, where R= τmax + r. De-

note this strong convexity parameter by a/n.
By Eq. (36), for any v ∈ L2 and α ≥ 0, E[M0(θ∗ + Σ−1/2v(g))] ≥ E[Mα(θ∗ +

Σ−1/2v(g))] ≥ E[M0(θ∗ + Σ−1/2v(g))] − pα/2. Thus, Eα(v∗0) ≤ E0(v∗0) and for ‖v −
v∗0‖L2/

√
n ≤ r, Eα(v) ≥ E0(v) − λα/(2δ) ≥ E0(v∗0) + a‖v − v∗0‖2L2/(2n) − λα/(2δ).

Thus, for
√

λmaxα
aδ ≤ r, we have ‖v

∗
α−v∗0‖L2√

n
≤
√

λmaxα
aδ . Since, by the proof of Lemma A.2,

τ∗α =
√
σ2 + ‖v∗α‖2L2/n and ζ∗α = (1− 〈g,v∗α〉L2/n), we conclude

|τ∗0 − τ∗α| ≤
√
λmaxα

aδ
, |ζ∗0 − ζ∗α| ≤

1

δ1/2

√
λmaxα

aδ
for α≤ r2aδ

λmax
.

The proof is complete.

A.6. The fixed point solutions as a saddle point. A crucial role in our analysis is played
by the max-min problem

max
β>0

min
τ≥σ

ψα(τ, β) ,(47)

ψα(τ,β) : =−1

2
β2 − 1− δ

2δ
τβ +

σ2β

2τ
+

1

n
E min
θ∈Rp

{
β

2τ
‖θ− θ∗ − τΣ−1/2g‖2Σ + λ(Mα(θ)− ‖θ∗‖1)

}
,

where the expectation is taken over g ∼ N (0, Ip). We establish that Eqs. (40a) and (40b)
are first-order conditions for the solution to this max-min problem, and in the non-smoothed
(α = 0) case, Eqs. (8a) and (8b) are first-order conditions for the solution to this max-min
problem.

LEMMA A.6. Let τ∗α, ζ∗α be the unique solution to Eqs. (40a) and (40b), and let β∗α =
τ∗αζ
∗
α. Then (τ∗α, β

∗
α) is a saddle point for the max-min value in Eq. (47). Namely, for all β > 0,

τ ≥ σ,

ψα(τ∗α, β)≤ ψα(τ∗α, β
∗
α)≤ ψα(τ,β∗α) ,(48)

ψα(τ∗α, β
∗
α) = max

β>0
min
τ≥σ

ψα(τ,β) = min
τ≥σ

max
β>0

ψα(τ, β) .(49)
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PROOF OF LEMMA A.6. Let us define function

Ξα(τ,β) :=−1

2
β2− 1− δ

2δ
τβ+

σ2β

2τ
+

1

n
min
θ∈Rp

{
β

2τ
‖θ− θ∗ − τΣ−1/2g‖2Σ + λ(Mα(θ)− ‖θ∗‖1)

}
,

so that ψα(τ,β) = EgΞα(τ, β). It is easily seen that Ξα is convex-concave in (τ,β) for τ,β >
0 because prior to the minimization over θ it is jointly convex in (τ,θ) and concave in β. By
the envelope theorem [34, Theorem 1],

∂Ξα
∂β

=−β − 1− δ
2δ

τ +
σ2

2τ
+

1

2τn
‖ηα(Σ1/2θ∗ + τg, β/τ)− θ∗ − τΣ−1/2g‖2Σ ,

∂Ξα
∂τ

=−1− δ
2δ

β − σ2β

2τ2
− β

2τ2n
‖ηα(Σ1/2θ∗ + τg, β/τ)− θ∗‖2Σ +

β‖g‖22
2n

.

Taking expectations with respect to g, exchanging expectations and derivatives by dominated
convergence, and expanding the square in the first line, we conclude

∂ψα(τ,β)

∂β
=−β +

τ

2
+
σ2

2τ
+

1

2τ
Rα(τ2, β/τ)− τ dfα(τ2, β/τ)

= τ

(
−β
τ

+ 1− dfα(τ2, β/τ)

)
+

1

2τ

(
−τ2 + σ2 + Rα(τ2, β/τ)

)
,

∂ψα(τ,β)

∂τ
=
β

2
− σ2β

2τ2
− β

2τ2
Rα(τ2, β/τ) =

β

2τ2
(τ2 − σ2 − Rα(τ2, β/τ)) .

Thus, if (τ∗α, ζ
∗
α) = (τ∗α, β

∗
α/τ

∗
α) solves Eqs. (40a) and (40b), the derivatives in the preceding

display are 0. Because ψα(τ,β) is convex-concave in (τ,β), we conclude that, for any τ,β >
0, Eq. (48) holds. Thus, (τ∗α, β

∗
α) is a saddle-point of ψα (see, e.g., [43, pg. 380]). By [43,

Lemma 36.2], the max-min value of (47) is achieved at (τ∗α, β
∗
α), and the maximization and

minimization may be exchanged as in Eq. (49).

B. Proofs of main results.

B.1. Control of α-smoothed Lasso estimate and proof of Theorem 4. The following the-
orem controls the behavior of the α-smoothed lasso.

THEOREM B.1. If assumptions A1 and A2α hold, then there exist constantsC,c, c′, γ > 0
depending only on Pmodel, PfixPt, and δ such that for any 1-Lipschitz function φ : Rp→ R,
we have for all ε < c′

P

(
∃θ ∈Rp,

∣∣∣φ( θ√
p

)
−E

[
φ
( θ̂fα√

p

)]∣∣∣> ε andRα(θ)≤ min
θ∈Rp

Rα(θ) + γε2

)
≤ C

ε2
e−cnε

4

.

Theorem 4 is an immediate corollary of Theorem B.1.

PROOF OF THEOREM 4. Because θ∗ is deterministic, θ/
√
p 7→ φ(θ/

√
p,θ∗/

√
p) is a 1-

Lipschitz function. Apply Theorem B.1 with α= 0.

Define the error vectors of the α-smoothed Lasso in the random-design model,

(50) ŵα : = θ̂α − θ∗ , v̂α : = Σ1/2(θ̂α − θ∗) ,
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where θ̂α is defined by (37). The error vector v̂α is the minimizer of the reparameterized
objective

Cα(v) :=
1

2n
‖XΣ−1/2v− σz‖22 +

λ

n
(Mα(θ∗ + Σ−1/2v)− ‖θ∗‖1)

= max
u∈Rn

{
1

n
u>(XΣ−1/2v− σz)− 1

2n
‖u‖22 +

λ

n
(Mα(θ∗ + Σ−1/2v)− ‖θ∗‖1)

}
=: max

u∈Rn
Cα(v,u) .

(51)

We also define the error vector of the α-smoothed Lasso in the fixed-design model

(52) v̂fα := Σ1/2(ηα(Σ1/2θ∗ + τ∗αg, ζ
∗
α)− θ∗) .

We control the behavior of α-smoothed Lasso error v̂α in the random-design model using
Gordon’s minimax theorem [49, 35]. Define Gordon’s objective by
(53)

Lα(v) :=
1

2

(√
‖v‖22
n

+ σ2
‖h‖2√
n
− g

>v

n

)2

+

+
λ

n
(Mα(θ∗ + Σ−1/2v)− ‖θ∗‖1)

= max
u∈Rn

{
− 1

n3/2
‖u‖2g>v+

1

n

√
‖v‖22
n

+ σ2h>u− 1

2n
‖u‖22 +

λ

n
(Mα(θ∗ + Σ−1/2v)− ‖θ∗‖1)

}
=: max

u∈Rn
Lα(v,u) ,

where g ∼ N(0p, Ip), h ∼ N(0n, In) and ξ ∼ N(0,1) are all independent. Gordon’s lemma
compares the (possibly constrained) minimization of Cα(v) with the corresponding mini-
mization of Lα(v).

LEMMA B.2 (Gordon’s lemma). The following hold.

(a) Let D ⊂Rp be a closed set. For all t ∈R,

P
(

min
v∈D
Cα(v)≤ t

)
≤ 2P

(
min
v∈D
Lα(v)≤ t

)
.

(b) Let D ⊂Rp be a closed, convex set. For all t ∈R,

P
(

min
v∈D
Cα(v)≥ t

)
≤ 2P

(
min
v∈D
Lα(v)≥ t

)
.

We prove Lemma B.2 later in this section.

PROOF OF THEOREM B.1. For any setD, defineDε := {x ∈Rp | infx′∈D ‖x−x′‖2/
√
p≥

ε}. Denote L∗α : = ψα(τ∗α, β
∗
α) where τ∗α, β

∗
α are as in Lemma A.6. To control v̂α using Gor-

don’s lemma, we show that with high probability the minimal value of Lα is close to L∗α, and
that if D contains v̂fα with high probability, the objective Lα is uniformly sub-optimal on Dε

with high probability. We need the following lemma.

LEMMA B.3. There exist constants C,c, c′, γ > 0, depending only on Pmodel, PfixPt, and
δ, such that for ε ∈ (0, c′), we have

(54) min
v∈Bc2(v̂fα;ε/2)

Lα(v)>L∗α + 2γε2 , |min
v∈Rp

Lα(v)−L∗α| ≤ γε2 ,

with probability at least 1− C
ε2 exp(−cnε4).
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We prove Lemma B.3 at the end of this section.
With C,c, c′, γ > 0 as in Lemma B.3, we have for ε < c′

P
(

min
v∈Dε/2

Cα(v)≤ min
v∈Rp

Cα(v) + γε2
)

≤ P
(

min
v∈Dε/2

Cα(v)≤ min
v∈Rp

Cα(v) + γε2 and min
v∈Rp

Cα(v)≤ L∗α + γε2
)

+ P
(

min
v∈Rp

Cα(v)>L∗α + γε2
)

≤ P
(

min
v∈Dε/2

Cα(v)≤ L∗α + 2γε2
)

+ P
(

min
v∈Rp

Cα(v)>L∗α + γε2
)

≤ 2P
(

min
v∈Dε/2

Lα(v)≤ L∗α + 2γε2
)

+ 2P
(

min
v∈Rp

Lα(v)>L∗α + γε2
)

≤ 2P
(
v̂fα 6∈D

)
+ 2P

(
min

v∈Bc2(v̂fα;ε/2)
Lα(v)≤ L∗α + 2γε2

)
+ 2P

(
min
v∈Rp

Lα(v)>L∗α + γε2
)

≤ 2P
(
v̂fα 6∈D

)
+

4C

ε2
e−cnε

4

,

(55)

where the third-to-last inequality holds by Gordon’s Lemma (Lemma B.2); the second to last
inequality holds because either v̂fα 6∈D or Dε/2 ⊂ Bc2(v̂fα; ε/2); and the last inequality holds
by Lemma B.3.

Define φ̃
(
v√
p

)
:= κ

1/2
minφ

(
θ∗+Σ−1/2v√

p

)
(recall that θ∗ is deterministic), with φ as in the

statement of Theorem B.1. Define the set

D : =

{
v ∈Rp

∣∣∣ ∣∣∣φ̃( v√
p

)
−E

[
φ̃
( v̂fα√

p

)]∣∣∣≤ ε

2

}
.

By Eq. (52) and recalling that β∗α = ζ∗ατ
∗
α, we have

(56) v̂fα = arg min
v∈Rp

{
β∗α
2τ∗α
‖v− τ∗αg‖22 + λ‖θ∗ + Σ−1/2v‖1

}
.

Thus, v̂fα as a function of τ∗αg is a proximal operator, whence v̂fα is a τ∗α-Lipschitz function of
g [40, pg. 131]. Gaussian concentration of Lipschitz functions [13, Theorem 5.6] guarantees
that

P
(
v̂fα 6∈D

)
≤ 2 exp

(
− pε2

8τ∗α
2

)
= 2 exp

(
− nε2

8τ∗α
2δ

)
≤ 2 exp

(
− nε2

8τ2
maxδ

)
.

Combined with Eq. (55) and appropriately adjusting constants, for ε < c′

P
(

min
v∈Dε/2

Cα(v)≤ min
v∈Rp

Cα(v) + γε2
)
≤ C

ε2
e−cnε

4

.

Because Cα is a reparameterization of the α-smoothed Lasso objective, the preceding display
is equivalent to

P

(
∃θ ∈Rp,

∣∣∣φ( θ√
p

)
−E

[
φ
( θ̂fα√

p

)]∣∣∣> κ
−1/2
min ε andRα(θ)≤ min

θ∈Rp
Rα(θ) + γε2

)
≤ 4C

ε2
e−cnε

4

.

Theorem B.1 follows by a change of variables.



LASSO WITH GENERAL GAUSSIAN DESIGNS 13

PROOF OF LEMMA B.2. Because Mα(θ∗ + Σ−1/2v)→∞ as ‖v‖2→∞,

min
v∈D
Cα(v) = lim

R→∞
min
v∈D
‖v‖2≤R

Cα(v) .

Note that arg maxu∈Rn Cα(v,u) =XΣ−1/2v−σz has `2-norm no larger than ‖XΣ−1/2‖op‖v‖2 +
σ‖z‖2. In particular, for any realization of X,z, we have for R sufficiently large that
‖v‖2 ≤R implies ‖arg maxu∈Rn Cα(v,u)‖2 ≤R2. In particular, for any realization ofX,z

min
v∈D
‖v‖2≤R

Cα(v) = min
v∈D
‖v‖2≤R

max
‖u‖2≤R2

Cα(v,u) for R sufficiently large,

where “sufficiently large” can depend on X,z. Thus, almost surely

min
v∈D
Cα(v) = lim

R→∞
min
v∈D
‖v‖2≤R

max
‖u‖2≤R2

Cα(v,u) .

An equivalent argument shows that almost surely

min
v∈D
Lα(v) = lim

R→∞
min
v∈D
‖v‖2≤R

max
‖u‖2≤R2

Lα(v,u) .

Because
√
nXΣ−1/2 has iid standard Gaussian entries, by Gordon’s min-max lemma (see,

e.g., [35, Corollary G.1]), for any finite R and closed D

P

 min
v∈D
‖v‖2≤R

max
‖u‖2≤R2

Cα(v,u)< t

≤ 2P

 min
v∈D
‖v‖2≤R

max
‖u‖2≤R2

Lα(v,u)< t

 ,

and if D is also convex

P

 min
v∈D
‖v‖2≤R

max
‖u‖2≤R2

Cα(v,u)> t

≤ 2P

 min
v∈D
‖v‖2≤R

max
‖u‖2≤R2

Lα(v,u)> t

 .

Although [35, Corollary G.1]) states Gordon’s lemma with weak inequalities inside the prob-
abilities, strict inequalities follow by applying [35, Corollary G.1]) with t′ ↑ tand t′ ↓ t in the
previous two displays respectively. Taking R→∞, we conclude that the previous two dis-
plays hold without norm bounds on for R sufficiently largev and u. The strict inequalities
can be made weak by applying the result with t′ ↓ t and t′ ↑ t respectively.

PROOF OF LEMMA B.3. Recall by Lemma A.6 that the max-min value of (47) is achieved
at τ∗α, β∗α. We have βmin ≤ β∗α ≤ βmax, where βmin := τminζmin and βmax := τmaxζmax. Let
t= min(βmin/16, σmin). Define events

A1 : =

{
‖g‖2 ≤ 2

√
p,

(
1− βmin

8τmax

)
≤ ‖h‖2√

n
≤ 2

}
,

A2 : =

{∣∣∣∣∣‖v̂fα‖22n
−E

[
‖v̂fα‖22
n

]∣∣∣∣∣≤ t2, g>v̂fαn ≤ E

[
g>v̂fα
n

]
+ t

}
.

There exist r, a > 0, depending only on βmin, βmax, τmin, τmax such that on the eventA1∩A2

the objective Lα is a/n-strongly convex on B2(v̂fα; r). This follows verbatim from the proof
of Theorem B.1 in [35] up to the first display on pg. 28.
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Let R= τmax + r, γ = a/(96δ), c′ =
√
ar2/(24γ), and ε ∈ (0, c′). Define events

A3 : =

{
min

‖v‖2/
√
n≤R
Lα(v)≥ L∗α − γε2

}
,

A4 : =
{
Lα(v̂fα)≤ L∗α + γε2

}
.

On event A3 ∩A4,

Lα(v̂fα)≤ min
‖v‖2/

√
n≤R
Lα(v) + 2γε2 < min

‖v‖2/
√
n≤R
Lα(v) + 3γε2 .

Because 3γε2 < ar2/8, the previous display corresponds to (49) of [35]. Thus, the last
paragraph verbatim of the proof of Theorem B.1 in [35] implies that on

⋂4
i=1Ai,

min
v∈Bc2(v̂fα;ε/2)

Lα(v) = min
v∈Bc2(v̂fα;

√
8δ·3γε2/a)

Lα(v)≥ min
v∈Rp

Lα(v) + 3γε2 .

Moreover, the last line of the proof of Theorem B.1 in [35] shows that the preceding display
follows from Lemma B.1 in [35], whose statement additionally implies

min
v∈Rp

Lα(v) = min
‖v‖2/

√
n≤R
Lα(v) .

We conclude that on
⋂4
i=1Ai,

min
v∈Bc2(v̂fα;ε/2)

Lα(v)≥ min
v∈Rp

Lα(v) + 3γε2 = min
‖v‖2/

√
n≤R
Lα(v) + 3γε2 ≥ L∗α + 2γε2 ,

and

L∗α + γε2 ≥Lα(v̂fα)≥ min
v∈Rp

Lα(v) = min
‖v‖2≤

√
nR
Lα(v)≥ L∗α − γε2 .

Lemma B.3 follows as soon as we show there exists C,c, c′ > 0 depending only on Pmodel,
PfixPt, and δ such that for ε < c′ we have P(∩4

i=1Ai)≥ 1− C
ε2 exp(cε4).

Now to complete the proof of Lemma B.3, it is only left for us to control the probability
of each Ai respectively.

Event A1 occurs with high probability depending on βmin, τmax, δ. Because g 7→ ‖g‖2
and h 7→ ‖h‖2 are Lipschitz functions of standard Gaussian random vectors, there exist C,c
depending only on βmin, τmax, δ such that

P(A1)≥ 1−C exp(−cn) .

Event A2 occurs with high probability depending on σmin, βmin, τmax.. The function
g 7→ n−1/2‖v̂fα‖2 is n−1/2τmax-Lipschitz because v̂fα is a proximal operator applied to τ∗αg
by Eq. (56) [40, pg. 131]. By Gaussian concentration of Lipschitz functions, n−1/2‖v̂fα‖2
is τ2

max/n-sub-Gaussian. By the fixed point equations (40a), we bound its expectation
E[n−1/2‖v̂fα‖2] ≤ n−1/2E[‖v̂fα‖2]1/2 ≤ τmax. Combining its sub-Gaussianity and bounded
expectation, we conclude by Proposition G.5 of [35] that

‖v̂fα‖22/n is (C/n,C/n)-sub-Gamma for some C depending only on τmax.

Write

τmaxg
>v̂fα/n= (‖v̂fα − τmaxg‖22 − ‖v̂fα‖22 − τ2

max‖g‖22)/(2n) .
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Because g 7→ v̂fα − τmaxg is 2τmax-Lipschitz, the first term is (C/n,C/n)-sub-Gamma for
some C depending only on τmax. We conclude6

τmaxg
>v̂fα/n is (C/n,C/n)-sub-Gamma for some C depending only on τmax.

By standard bounds on the tails of sub-Gamma random variables, we deduce that there exist
C,c > 0 depending only on τmax, such that

(57)

P

(∣∣∣‖v̂fα‖22
n
−E

[
‖v̂fα‖22
n

] ∣∣∣> ε

)
≤C exp

(
− cn(ε2 ∨ ε)

)
,

P

(∣∣∣g>v̂fα
n
−E

[
g>v̂fα
n

] ∣∣∣> ε

)
≤C exp

(
− cn(ε2 ∨ ε)

)
.

Because t depends only on σmin, βmin, there existsC,c > 0 depending only on σmin, βmin, τmax

such that

P(A2)≥ 1−C exp(−cn) .

Event A3 occurs with high probability depending on σmax, δ, βmin, βmax, τmin, τmax.
Our control on the probability of A3 closely follows the proof of Proposition B.2 in [35].
Consider for any ε > 0 the event

(58) A(1)
3 :=

{∣∣∣∣‖h‖2√
n
− 1

∣∣∣∣≤ ε} .

By Gaussian concentration of Lipschitz functions, P(A(1)
3 )≥Ce−cnε2 for all ε≥ 0.

By maximizing over over u for which ‖u‖/
√
n= β in Eq. (53), we compute

Lα(v) = max
β≥0

(√
‖v‖22
n

+ σ2
‖h‖2√
n
− g

>v

n

)
β − 1

2
β2 +

λ

n
(Mα(θ∗ + Σ−1/2v)− ‖θ∗‖1)

=: max
β≥0

`α(v, β) .

Consider the slightly modified objective

`0α(v, β) :=

(√
‖v‖22
n

+ σ2 − g
>v

n

)
β − 1

2
β2 +

λ

n
(Mα(θ∗ + Σ−1/2v)− ‖θ∗‖1) .

On the event (58), for every ‖v‖2/
√
n≤R and β ∈ [0, βmax],

|`α(v, β)− `0α(v, β)| ≤ βmax(R2 + σ2)1/2ε .

Thus, on the event (58),

min
‖v‖2/

√
n≤R
Lα(v) = min

‖v‖2/
√
n≤R

max
β≥0

`α(v, β)≥ min
‖v‖2/

√
n≤R

`α(v, β∗α)

≥ min
‖v‖2/

√
n≤R

`0α(v, β∗α)− βmax(R2 + σ2)1/2ε .(59)

6We remark taht the argument establishing that ‖v̂fα‖2
2/n is sub-Gamma is exactly as it occurs in the proof of

Lemma F.1 of [35]. The argument establishing ‖v̂fα‖2
2/n requires a slightly modified argument to that appearing

in the proof of Lemma F.1 in [35] due to the presense of the matrix Σ.
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For ‖v‖2/
√
n≤R,√

‖v‖22
n

+ σ2 = min
τ∈[σ,

√
σ2+R2]

{
‖v‖22/n+ σ2

2τ
+
τ

2

}
.

Thus, we obtain that

`0α(v, β∗α) = min
τ∈[σ,

√
σ2+R2]

{(
‖v‖22/n+ σ2

2τ
+
τ

2

)
β∗α −

g>v

n
β∗α −

1

2
β∗α

2 +
λ

n
(Mα(θ∗ + Σ−1/2v)− ‖θ∗‖1)

}
,

which further implies that

min
‖v‖2/

√
n≤R

`0α(v, β∗α)

= min
τ∈[σ,

√
σ2+R2]

{
β∗α
2

(
σ2

τ
+ τ

)
− 1

2
β∗α

2 +
1

n
min

‖v‖2/
√
n≤R

{
β∗α
2τ
‖v‖22 − β∗αg>v+ λ(Mα(θ∗ + Σ−1/2v)− ‖θ∗‖1)

}}
=: min

τ∈[σ,
√
σ2+R2]

F (τ,g) .

We claim that F (τ,g) concentrates around its expectation. In order to see this, first note that
for every τ ∈ [σ,

√
σ2 +R2], the function

g 7→ 1

n
min

‖v‖2/
√
n≤R

{
β∗α
2τ
‖v‖22 − β∗αg>v+ λ(Mα(θ∗ + Σ−1/2v)− ‖θ∗‖1)

}
is βmaxR/

√
n-Lipschitz, whence g 7→ F (τ,g) is as well. By Gaussian concentration of Lip-

schitz functions [13, Theorem 5.6],

P(|F (τ,g)−E[F (τ,g)]|> ε)≤ 2e−cnε
2

,

for c= 1/(2βmax
2R2). Because τ ≥ τmin > 0, for all g the function τ 7→ F (τ,g) is (βmax +

βmaxR
2/(2τ2

min))-Lipschitz on [σ,
√
σ2 +R2], so that by an ε-net argument, we conclude

that for C,c depending only on R,βmax, τmin that

P
(
A(2)

3

)
:= P

(
sup

τ∈[σ,
√
σ2+R2]

|F (τ,g)−E[F (τ,g)]| ≤ ε

)
≥ 1− C

ε
e−cnε

2

.

On A(2)
3 ,

min
‖v‖2/

√
n≤R

`0α(v, βmax) = min
τ∈[σ,

√
σ2+R2]

F (τ,g)≥ min
τ∈[σ,

√
σ2+R2]

E[F (τ,g)]− ε .(60)

We compute

F (τ,g) =
β∗α
2

(
σ2

τ
+ τ

)
− 1

2
β∗α

2 +
1

n
min

‖v‖2/
√
n≤R

{
β∗α
2τ
‖v‖22 − β∗αg>v+ λ(Mα(θ∗ + Σ−1/2v)− ‖θ∗‖1)

}
=
β∗α
2

(
σ2

τ
+ τ

)
− 1

2
β∗α

2 − β∗ατ‖g‖22
2n

+
1

n
min

‖v‖2/
√
n≤R

{
β∗α
2τ
‖v− τg‖22 + λ(Mα(θ∗ + Σ−1/2v)− ‖θ∗‖1)

}

≥ β∗α
2

(
σ2

τ
+ τ

)
− 1

2
β∗α

2 − β∗ατ‖g‖22
2n

+
1

n
min
v∈Rp

{
β∗α
2τ
‖v− τg‖22 + λ(Mα(θ∗ + Σ−1/2v)− ‖θ∗‖1)

}
.

Taking expectations, we have for any τ ≥ 0

E[F (τ,g)] = ψα(τ,β∗α) ,(61)
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where ψα is defined in (47).
Combining Eqs. (59), (60), and (61), we conclude that on A(1)

3 ∩A
(2)
3

min
‖v‖2/

√
n≤R
Lα(v)≥ ψα(τ∗α, β

∗
α)−Kε ,

with K = βmax

√
R2 + σ2 + 1. By a change of variables and applying the probability bounds

on A(1)
3 and A(2)

3 establishes

P(A3)≥ P(A(1)
3 ∩A

(2)
3 )≥ 1− C

ε2
exp

(
−cnε4

)
,

for some C,c depending only on R, σmax, βmax, τmin, and γ. Because R = τmax + r and
r depends only on βmin, βmax, τmin, τmax, and γ = a/(96δ) and a depeneds only on βmin,
βmax, τmin, τmax, the constants C,c depend only on σmax, δ, βmin, βmax, τmin, τmax.

EventA4 occurs with high probability depending on γ,σmin, κmin, δ, βmin, βmax, τmin, τmax.
There exist C,c > 0 depending only on κmin, δ, τmax such that for ε > 0,

P

(
Mα(θ∗ + Σ−1/2v̂fα)

n
−E

[
Mα(θ∗ + Σ−1/2v̂fα)

n

]
> ε

)
≤C exp(−cnε2) ,

because g 7→Mα(θ∗+ Σ−1/2v̂fα)/n is κ−1/2
min δ−1/2τmax/

√
n-Lipschitz. For any x0 ≥ 0, note

that x 7→ x2
+ is locally Lipschitz in any ball around x0 with Lipschitz constant and ball radius

depending only on an upper bound on |x0|. Thus, considering x0 = β∗α, there exists L, c′ > 0

depending only on βmax such that for ε < c′, if A2 and A(1)
3 occur, then∣∣∣∣∣∣

(√
‖v‖22
n

+ σ2
‖h‖2√
n
− g

>v

n

)2

+

− β∗α
2

∣∣∣∣∣∣≤ Lε .
Using the probability bounds on A2 and A(1)

3 and absorbing L into constants, we may find
C,c, c′ > 0 depending only on γ,σmin, κmin, δ, βmin, τmax such that for ε < c′.

P(A4)≥ 1−C exp(−cnε4) .

Because γ depends only on δ and a, and a depends only on βmin, βmax, τmin, τmax, the
constants C,c, c′ > 0 depend only on γ,σmin, κmin, δ, βmin, βmax, τmin, τmax.

Lemma B.3 is established now follows by combining the probability bounds on Ai for
1≤ i≤ 4.

B.2. Control of Lasso residual: proof of Theorem 8. Same as the proof of Theorem 4,
the proof of Theorem 8 uses Gordon’s lemma. Specifically, denote

û : =Xŵ− σz =Xθ̂− y,

where ŵ := ŵ0 = θ̂− θ∗ as defined in Eq. (50). Then û is the unique maximizer of

u 7→ min
w∈Rp

{
1

n
〈Xw− σz, u〉 − 1

2n
‖u‖22 +

λ

n
(‖w+ θ∗‖1 − ‖θ∗‖1)

}
,

where the function on the right hand side (before minimizing over w) is defined as
C0(v,u) =: C(v,u) in expression (51) with re-parametrization v : = Σ1/2w. Compared
with the analysis in Theorem 4 which focuses on the behavior of v̂, the focus of this sec-
tion is the behavior of û.
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Study of the corresponding Gordon’s problem. Recall Gordon’s optimization problem de-
fined in expression (53) with α= 0 and Mα(θ) = ‖θ‖1. For every (v,u), we have (defining
L(v,u) = L0(v,u), cf. Eq (53)):

L(v,u) : =− 1

n3/2
‖u‖2g>v+

1

n

√
‖v‖22
n

+ σ2 ·h>u− 1

2n
‖u‖22 +

λ

n
(‖Σ−1/2v+ θ∗‖1 − ‖θ∗‖1).

Denote U(u) = minv∈Rp L(v,u) and Ũ(u) = L(v̂f ,u) where v̂f is defined in expres-
sion (52) with α= 0, namely

v̂f : = Σ1/2

[
η

(
θ∗ + τ∗Σ−1/2g,

β∗

τ∗

)
− θ∗

]
.

By definition, U(u)≤ Ũ(u). From direct calculations, the maximizer of Ũ(u) is

u=

(√
‖v̂f‖22
n

+ σ2‖h‖2 −
g>v̂f√
n

)
+

h

‖h‖2
.

Let us define quantity ũ : = τ∗ζ∗h. By the concentration of v̂f (given by inequality (57)) and
the definition of the (τ∗, ζ∗) in (8a) and (8b), ũ is ε-close to the maximizer of Ũ(u) (in the
sense that ‖ũ−u∗‖2/

√
n≤ ε). In particular, Lemma D.1 [35] holds verbatim here.

Define the set

Dε : =

{
u ∈Rp |

∣∣∣φ( u√
n

)
−E

[
φ
(τ∗ζ∗h√

n

)]∣∣∣> ε

}
.

The probability P(û ∈Dε) can be controlled as

P(û ∈Dε) = P(max
u∈Dε

min
w

C(v,u)≥max
u

min
w

C(v,u))

≤ P(max
u∈Dε

min
v
C(v,u)≥ L∗ − ε2) + P(max

u
min
v
C(v,u)≤ L∗ − ε)

≤ 2P(max
u∈Dε

min
v
L(v,u)≥ L∗ − ε2) + 2P(max

u
min
v
L(v,u)≤ L∗ − ε2),

where the last inequality follows by Gordon’s lemma (Lemma B.2). The second term in
the last expression is upper bounded C

ε2 e
−cnε4 using same argument as in Theorem 4, more

concretely, in Lemma B.3. The first term is upper bounded as

2P(max
u∈Dε

min
v
L(v,u)≥ L∗ − ε2) = 2P(max

u∈Dε
U(u)≥ L∗ − ε2)≤ 2P(max

u∈Dε
Ũ(u)≥ L∗ − ε2).

We control the right-hand side following verbatim from the proof of Theorem D.1 and
Lemma D.1 of [35]. Putting the details above together yields P(û ∈Dε)≤ C

ε2 exp(−cnε4).

B.3. Control of the subgradient: proof of Lemma 10. The proof relies on concentration
results established in Lemma B.3. To begin with, define for ‖t‖∞ ≤ 1

V(t) := min
w∈Rp

{
1

2n
‖Xw− σz‖22 +

λ

n
t>(θ∗ +w)− λ

n
‖θ∗‖1

}
=: min

w∈Rp
V (w, t) .

Define, for g ∼N(0, Ip), h∼N(0, In),

T (t) := min
v∈Rp

1

2

(√
‖v‖22
n

+ σ2
‖h‖2√
n
− g

>v

n

)2

+

+
λ

n
t>(θ∗ + Σ−1/2v)− λ

n
‖θ∗‖1


=: min

v∈Rp
T (v, t) .

We may compare the maximization of V(t) with the maximization of T (t) using Gordon’s
lemma.
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LEMMA B.4. Let D ⊂ {t ∈Rp | ‖t‖∞ ≤ 1} be a closed set.

(a) For all t ∈R,

(62) P
(

max
t∈D
V(t)≥ t

)
≤ 2P

(
max
t∈D
T (t)≥ t

)
.

(b) If D is also convex, then for any t ∈R,

(63) P
(

max
t∈D
V(t)≤ t

)
≤ 2P

(
max
t∈D
T (t)≤ t

)
.

We prove Lemma B.4 at the end of this section. The maximization of T (t) can be con-
trolled because T (t) is strongly-concave with high probability. We first establish this strong-
concavity.

LEMMA B.5. Under assumption A1, the objective T (t) is c0λ2
min

nκmax
-strongly concave on

the event {
‖h‖22
n
≤ 2,

‖g‖22
n
≤ 2

δ

}
,

where c0 > 0 is a constant depending only on δ.

We prove Lemma B.5 at the end of this section. We are ready to prove Lemma 10.
Consider α= 0, and let v∗ ∈Rp be a minimizer of L(v) := Lα=0(v) defined in (53). Let

t∗ :=−n
λ

Σ1/2∇

v 7→ 1

2

(√
‖v‖22
n

+ σ2
‖h‖2√
n
− g

>v

n

)2

+

∣∣∣∣∣
v=v∗

=− 1

λ
Σ1/2

(√
‖v∗‖22
n

+ σ2
‖h‖2√
n
− g

>v∗

n

)
+

(
‖h‖2/

√
n√

‖v∗‖22/n+ σ2
v∗ − g

)
.

By the KKT conditions, λnΣ−1/2t∗ ∈ λ
n∂(v 7→ ‖θ∗+ Σ−1/2v‖1) at v = v∗. With this defini-

tion, 0p is in the subdifferential with respect to v of T (v, t) at (v∗, t∗). Moreover, t∗j = 1

whenever (θ∗ + Σ−1/2v∗)j > 0 and t∗j = −1 whenever (θ∗ + Σ−1/2v∗)j < 0, whence
t∗ ∈ argmax‖t‖∞≤1 T (v∗, t). Because T is convex-concave, we have

T (v∗, t)≤ T (v∗, t∗)≤ T (v, t∗) ,

for all v ∈Rp, ‖t‖∞ ≤ 1. Thus, (v∗, t∗) is a saddle-point and by [43, pg. 380]

max
‖t‖∞≤1

min
v∈Rp

T (v, t) = min
v∈Rp

max
‖t‖∞≤1

T (v, t) ,

and

t∗ ∈ arg max
‖t‖∞≤1

T (t) .

Fix ε > 0. Define the events

A1 :=
{
t̂f ∈D

}
, A2 :=

{
‖t∗ − t̂f‖2√

p
≤ ε

2

}
,

A3 :=

{
‖h‖22
n
≤ 2,

‖g‖22
n
≤ 2

δ

}
, A4 :=

{
|T (t∗)−L∗| ≤ c0λ

2
min

16δκmax
ε2
}
.
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We claim that on the event
⋂4
a=1Aa,

(64) max
t∈Dε
T (t)≤ L∗ − c0λ

2
min

16δκmax
ε2 .

Indeed, because A1 occurs, t ∈Dε implies ‖t−t̂
f‖2√
p ≥ ε. Because A2 occurs, also ‖t−t

∗‖2√
p ≥

ε
2 . Because A3 occurs, T (t) is c0λ2

min

nκmax
-strongly concave by Lemma B.5, whence because t∗

maximizes T

T (t)≤ T (t∗)− 1

2

c0λ
2
min

nκmax

ε2

4
.

Because A4 occurs, we conclude Eq. (64).
By Gordon’s lemma for the subgradient (Lemma B.4) and because Dε is closed,

(65) P
(

max
t∈Dε
V(t)≥ L∗ − c0λ

2
min

16δκmax
ε2
)
≤ 2

(
1− P

(
4⋂

a=1

Aa

))
≤ 2

4∑
a=1

P(Aca) .

We control the probabilities in the sum one at a time.

Event A2 occurs with high probability depending on Pmodel, PfixPt, and δ. By Lemma
B.3, there exists C,c, c′ > 0 depending only on Pmodel, PfixPt, and δ such that for ε ∈ (0, c′)
we have

P
(
‖v∗ − v̂f‖2√

p
>
ε

2

)
≤ C

ε2
e−cnε

4

.

Indeed, the event in the preceding display occurs when the two conditions in Eq. (54) are
met. Also, ‖v̂f‖22/n+ σ2, g>v̂f/n, and ‖h‖2/

√
n concentrate on τ∗2, τ∗(1− ζ∗), and 1 at

sub-Gamma or sub-Gaussian rates depending only on τmax (see, e.g., Eq. (57) in the proof of
Lemma B.3). Combining this with the previous display and updating constants appropriately,
we conclude there exists C,c, c′ > 0 depending only on Pmodel, PfixPt, and δ such that for
ε ∈ (0, c′) we have

P
(

1
√
p

∥∥∥∥t∗ − 1

λ
Σ1/2 (τ∗ − τ∗(1− ζ∗))

(
v̂f

τ∗
− g
)∥∥∥∥

2

>
ε

2

)
≤ C

ε2
e−cnε

4

.

By the definition of t̂f (Eq. (15)) and of v̂ (Eq. (50)), the preceding display is equivalent to

P (Ac2)≤ C

ε2
e−cnε

4

.

Event A3 occurs with high probability depending on δ. By Gaussian concentration of
Lipschitz functions, P(A3)≤Ce−cn for some C,c depending only on δ.

Event A4 occurs with high probability depending on δ. Observe that T (t∗) = L(v∗).
Then, by Lemma B.3 there exist constants C,c, c′ > 0, depending only on Pmodel, PfixPt,
and δ, such that for ε ∈ (0, c′),

(66) P(Ac4) = P (|T (t∗)−L∗|> ε) = P
(∣∣∣∣ max
‖t‖∞≤1

T (t)−L∗
∣∣∣∣> ε

)
≤ C

ε2
e−cnε

4

.

Combining the established probability bounds on Ai, i= 2,3,4, Eq. (65) implies that for
all ε < c′,

P
(

max
t∈Dε
V(t)≥ L∗ − 3

2
γε

)
≤ 2P

(
t̂f 6∈D

)
+
C

ε2
e−cnε

4

and P
(

max
‖t‖∞≤1

V(t)<L∗ − γε
)
≤ C

ε2
e−cnε

4

,
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where the second probability bound holds by Eq. (66). Thus, P
(
t̂ ∈Dε

)
≤ 2P

(
t̂f 6∈D

)
+

C
ε2 e
−cnε4 . Using the definition of Dε and a change of variables (which absorbs certain con-

stants into c), we conclude that Eq. (16) holds.
To complete the proof of Lemma 10, we prove Eq. (17). Define

D =

{
t ∈Rp

∣∣∣ ∣∣∣φ( t
√
p

)
−E

[
φ
( t̂f
√
p

)]∣∣∣≤ ε} .

By Eq. (15), t̂f is τmaxζmaxκ1/2
max

λmin
-Lipschitz in g, whence

P
(
t̂f 6∈D

)
≤ 2 exp

(
− 3γn

c0τmaxζmax
ε2
)
≤ C

ε2
e−cnε

4

,

where the last inequality holds for ε < c′ with C,c, c′ > 0 depending only on Pmodel, PfixPt,
and δ. Eq. (17) is then a special case of Eq. (16). The proof of Lemma 10 is complete. �

PROOF OF LEMMA B.4. Fix R > 0. The function t 7→ min‖w‖2≤R V (w, t) is concave
and continuous and is defined on a compact set D. Moreover, min‖w‖2≤R V (w, t) is non-
increasing in R. Because the maximum of a non-increasing limit of continuous functions
defined on a compact set is equal to the limit of the maxima of these functions,

max
t∈D
V(t) = max

t∈D
lim
R→∞

min
‖w‖2≤R

V (w, t) = lim
R→∞

max
t∈D

min
‖w‖2≤R

V (w, t) .

We may write

V (w, t) := max
‖u‖2≤R′

V̆ (w, t,u) ,

for any R′ > ‖X‖op‖w‖2 + σ‖z‖2, where

V̆ (w, t,u) =
1

n
u>(Xw− σz)− 1

2n
‖u‖22 +

λ

n
t>(θ∗ +w)− λ

n
‖θ∗‖1 .

Because almost surely R2 > ‖X‖opR+ σ‖z‖2 for sufficiently large R, we conclude

max
t∈D
V(t) = lim

R→∞
max
t∈D

min
‖w‖2≤R

max
‖u‖2≤R2

V̆ (w, t,u)

= lim
R→∞

max
t∈D

max
‖u‖2≤R2

min
‖w‖2≤R

V̆ (w, t,u) ,(67)

almost surely, where we may exchange minimization and maximization because they are
taken over compact sets and V̆ is convex-concave and continuous.

Similarly,

max
t∈D
T (t) = lim

R→∞
max
t∈D

min
‖v‖2≤R

T (v, t) .

We may write

T (v, t) = max
‖u‖2≤R′

T̆ (v, t,u) ,

for any R′ >
√
n

(√
‖v‖22
n + σ2 ‖h‖2√

n
+ ‖g‖2‖v‖2

n

)
, where

T̆ (v, t,u) :=− 1

n3/2
‖u‖2g>v+

1

n

√
‖v‖22
n

+ σ2 ·h>u− 1

2n
‖u‖22 +

λ

n
t>(θ∗+Σ−1/2v)− λ

n
‖θ∗‖1 .
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Because almost surely R2 >
√
n

(√
R2

n + σ2 ‖h‖2√
n

+ ‖g‖R
n

)
for sufficiently large R, we con-

clude

max
t∈D
T (t) = lim

R→∞
max
t∈D

min
‖v‖2≤R

max
‖u‖2≤R2

T̆ (v, t,u)

= lim
R→∞

max
t∈D

max
‖u‖2≤R2

min
‖v‖2≤R

T̆ (v, t,u) ,(68)

where the second equality holds by the following argument.7 For fixed t,u, the function
T̆ (v, t,u) depends on v only through g>v, t>Σ−1/2v, and ‖v‖2. Moreover, T̆ (v, t,u)
is convex in the triple (g>v, t>Σ−1/2v,‖v‖2) and {(g>v, t>Σ−1/2v,‖v‖2) | ‖v‖2 ≤ R}
is a compact, convex set. Similarly, for fixed t,v, the function T̆ (v, t,u) depends on u
only through h>u, ‖u‖2. Moreover, T̆ (v, t,u) is convex in the pair (h>u,‖u‖2) and
{(h>u,‖u‖2) | ‖u‖2 ≤ R2} is a compact, convex set. Thus, the exchange of minimization
and maximization in the preceding display is justified.

By Gordon’s Lemma (see [49, Theorem 3]), for any finite R> 0 and any t ∈R

P
(

max
t∈D

max
‖u‖2≤R2

min
‖w‖2≤R

V̆ (w, t,u)> t

)
≤ 2P

(
max
t∈D

max
‖u‖2≤R2

min
‖w‖2≤R

T̆ (w, t,u)> t

)
.

Taking R→∞ and using Eqs. (67) and (68), we conclude

P
(

max
t∈D
V(t)> t

)
≤ 2P

(
max
t∈D
T (t)> t

)
.

The strict inequalities become weak by considering t′ > t in place of t and taking t′→ t. We
conclude Eq. (62). Eq. (63) follows similarly.

PROOF OF LEMMA B.5. Define

f(v) :=

√
‖v‖22
n

+ σ2
‖h‖2√
n
− g

>v

n
.

The gradient and Hessian of f(v) are

∇f(v) =
1

n

(
‖v‖22
n

+ σ2

)−1/2 ‖h‖2√
n
v− g

n
,

∇2f(v) =
1

n

(
‖v‖22
n

+ σ2

)−1/2
(

Ip −
(
‖v‖22
n

+ σ2

)−1
vv>

n

)
‖h‖2√
n
� 1

n

(
‖v‖22
n

+ σ2

)−1/2 ‖h‖2√
n

Ip .

We bound

‖∇f(v)‖22 ≤
2‖h‖22
n2

+
2‖g‖22
n2

,

|f(v)| ‖∇2f(v)‖op ≤
‖h‖2
n3/2

(
‖h‖2√
n

+
‖g‖2‖v‖2

n

(
‖v‖22
n

+ σ2

)−1/2
)

≤ ‖h‖
2
2 + ‖h‖2‖g‖2

n2
.

7Note that T̆ is not convex-concave in (v, t,u), so that the exchange of the minimization and maximization
requires a different justification to that in Eq. (67).
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The Hessian of 1
2(f(x))2

+ is [∇f(x)∇f(x)> + f(x)∇2f(x)]1f(x)≥0, whence on the event
appearing in the statement of the lemma,

‖∇2 · (f(v)2
+/2)‖op ≤

2‖h‖22
n2

+
2‖g‖22
n2

+
‖h‖22 + ‖h‖2‖g‖2

n2
≤ 1

nc0
,

where c0 = (4 + 4/δ + 2(1 + δ−1/2))−1. That is, v 7→ 1
2f(v)2

+ is 1/(nc0)-strongly smooth.
Note that

T (t) =−f̃∗(−t)− λ

n
‖θ∗‖1 ,

where f̃(ṽ) := f(Σ1/2(nṽ/λ − θ∗))2/2, and f̃∗ is the Fenchel-Legendre conjugate of f̃ .
Because f(v)2

+/2 is 1/(nc0)-strongly smooth, f̃ is nκmax

c0λ2
min

-strongly smooth. By the duality of

strong smoothness and strong convexity [29, Theorem 6], we conclude that T (v) is c0λ2
min

nκmax
-

strongly concave.

B.4. Control of the Lasso sparsity: proof of Theorem 9. For notational convenience, let
us write

Σ̄ : =
1

κmin
Σ , τ̄∗ : =

√
1

κmin
τ∗ , λ̄ : =

1

κmin
λ ,

so that by Eqs. (4) and (9)
(69)

θ̂f = arg min
θ∈Rp

{
ζ∗

2
‖τ∗g+ Σ1/2(θ∗ − θ)‖22 + λ‖θ‖1

}
= arg min

θ∈Rp

{
ζ∗

2
‖τ̄∗g+ Σ̄1/2(θ∗ − θ)‖22 + λ̄‖θ‖1

}
.

The KKT conditions of this optimization problem are

Σ̄1/2
(
τ̄∗g+ Σ̄1/2(θ∗ − θ̂f )

)
∈ λ̄

ζ∗
∂‖θ̂f‖1 ,

whence

(70) θ̂f = ηsoft

(
θ̂f + Σ̄1/2

(
τ̄∗g+ Σ̄1/2(θ∗ − θ̂f )

)
;
λ̄

ζ∗

)
=: ηsoft

(
y̆f ;

λ̄

ζ∗

)
,

and by Eq. (15)

(71) t̂f =
ζ∗

λ̄

(
y̆f − ηsoft

(
y̆f ;

λ̄

ζ∗

))
,

where ηsoft(·, α) applies x 7→ sign(x)(|x|−α)+ coordinates-wise. This representation is use-
ful because the marginals of y̆f have bounded density, which will allow us to control the
expected number of coordinates of t̂f which are close to 1.

LEMMA B.6 (Anti-concentration of y̆f ). For each j, the coordinate y̆fj has marginal

density with respect to Lebesgue measure bounded above by κ
1/2
minκcond√
2πτmin

.

PROOF OF LEMMA B.6. We compute

(72) y̆f = θ∗ + Σ̄1/2
(
τ̄∗g+ (Ip − Σ̄−1)Σ̄1/2(θ∗ − θ̂f )

)
=: θ∗ + Σ̄1/2(τ̄∗g+ f(τ̄∗g)) .

By definition, all eigenvalues of Σ̄ are bounded below and above by 1 and κcond, respectively,
so that all eigenvalues of (Ip − Σ̄−1) are between 0 and 1 − κ−1

cond. Because Σ̄1/2θ̂f is 1-
Lipschitz in τ̄∗g (by Eq. (69), using [40, pg. 131]), the function f is (1− κ−1

cond)-Lipschitz.
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Let σ̄i be the ith row of Σ̄1/2. Let P⊥i be the projection operator onto the orthogonal
complement of the span of σ̄i. Then

y̆fi = θ∗i + τ̄∗σ̄>i g+ σ̄>i f
(
τ̄∗(σ̄>i g)σ̄i/‖σ̄i‖22 + τ̄∗P⊥i g

)
.

Consider the function

h(x) := τ̄∗x+ σ̄>i f
(
τ̄∗xσ̄i/‖σ̄i‖22 + τ̄∗P⊥i g

)
.

Since f is (1− κ−1
cond)-Lipschitz, for any x1 < x2, x1, x2 ∈R, we have

(73) h(x2)− h(x1)≥ τ̄∗κ−1
cond(x2 − x1) .

Because σ̄>i g ∼ N(0,‖σ̄i‖22), its density is upper bounded by (2π‖σ̄i‖22)−1/2. Further, it is
independent of P⊥i g. Thus, the lower bound (73) implies that y̆fi has density q(y) upper
bounded by

sup
y
q(y)≤ 1√

2π‖σ̄i‖2
· 1

infy h′(y)
≤
κ

1/2
minκcond√
2πτmin

,

where we have used that ‖σ̄i‖2 is no smaller than the minimal singular value of Σ̄1/2 which
is no smaller than 1 by construction, and that τ̄∗ = τ∗/κ

1/2
min ≥ τmin/κ

1/2
min.

We are now ready to complete the proof of Theorem 9. We prove high-probability up-
per and lower bounds on the sparsity separately. The arguments are almost identical, but
establishing the upper bound involves analyzing the subgradient t̂ and establishing the lower
bound involves analyzing θ̂.
Upper bound on sparsity via the subgradient: The lasso sparsity is upper bounded in terms
of the lasso subgradient:

(74)
‖θ̂‖0
n
≤ |{j ∈ [p] : |t̂j |= 1}|

n
.

We prove a high-probability upper bound on the right-hand side. Given any ∆≥−1, define
T (y̆,∆) := {j ⊂ [p] | |y̆j | ≥ λ̄(1 + ∆)/ζ∗}. We will control quantity T (y̆,−∆) for ∆≥ 1..
Consider the function

φub(y̆,∆) :=
1

n

p∑
j=1

φub1 (y̆j ,∆) where φub1 (y̆,∆) := min(1, ζ∗|y̆|/(λ̄∆)− 1/∆ + 2)+ .

The function φub1 is 0 on [−λ̄(1 − 2∆)/ζ∗, λ̄(1 − 2∆)/ζ∗], 1 on [−λ̄(1 − ∆)/ζ∗, λ̄(1 −
∆)/ζ∗]c, and linearly interpolates between the function values on these sets everywhere else.
Unlike y̆ 7→ T (y̆,−∆), the function φub(y̆,∆) is ζ∗

λ̄∆δ1/2
√
n

-Lipschitz in y̆. For all y̆, by
definition we have

|T (y̆,−∆)|
n

≤ φub(y̆,∆) .

(The preceding display justifies the superscript ub, which stands for “upper bound”.) More-
over, by Eq. (70)

φub(y̆f ,∆)≤ ‖θ̂
f‖0
n

+
|{j ∈ [p] | 1− ζ∗|y̆fj |/λ̄ ∈ [0,2∆]}|

n
,
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whence

E[φub(y̆f ,∆)]≤ 1− ζ∗ +
4λ̄∆

δζ∗
κ

1/2
minκcond√
2πτmin

≤ 1− ζ∗ +
4λmaxκcond∆

δτminζmin
√

2πκmin
,

where we have applied Lemma B.6. By the definition of y̆f in Eq. (72) and recalling
that Σ1/2θ̂f is τ∗-Lipschitz in g, we have that g 7→ y̆ is κ

1/2
condτ̄

∗ + κ
1/2
condτ

∗/κ
1/2
min =

2κ
1/2
condτmax/κ

1/2
min-Lipschitz in g. By Gaussian concentration of Lipschitz functions,

P
(
|T (y̆f ,−∆)|

n
≥ 1− ζ∗ +

4λmaxκcond∆

δτminζmin
√

2πκmin
+ ε

)
≤ P

(
φub(y̆f ,∆)≥ E[φub(y̆f ,∆)] + ε

)
≤ exp

(
−nδλ̄

2

2ζ∗2
∆2 · κmin

4κcondτ2
max

ε2
)

≤ exp

(
− nδλ2

min

8κminζ2
maxκcondτ2

max

∆2ε2
)
.

Plugging in ε= ∆ and absorbing constants appropriately, we conclude there exists c1, c2 > 0
depending only on Pmodel, PfixPt, and δ such that for ∆≥ 0

P
(
|T (y̆f ,−∆)|

n
≥ 1− ζ∗ + c1∆

)
≤ exp

(
−c2n∆4

)
.

By Eq. (71), if |T (y̆f ,−∆)|
n < 1− ζ∗ + c1∆, then for all t ∈Rp with |{j ∈ [p] | |tj | ≥ 1}|/n≥

1− ζ∗ + 2c1∆,

‖t̂f − t‖22
n

≥ c1∆3 ,

because there are at least c1∆n coordinates where t̂f and t differ by at least ∆. Absorbing
constants and taking D = {t ∈Rp | |{j ∈ [p] | 1− |tj | ≤∆}|/n≤ 1− ζ∗ + c1∆} in Lemma
10, there exists C,c, c′ > 0 depending only on Pmodel, PfixPt, and δ such that for ∆< c′

P

(
|{j ∈ [p] | |t̂j | ≥ 1}|

n
≥ 1− ζ∗ + 2∆

)
≤ 2 exp

(
− cn∆4

)
+

C

∆3
exp

(
−cn∆6

)
.

We may absorb the first term into the second at the cost of changing the constants C,c, c′ be-
cause the bound applies only to ∆< c′. By Eq. (74), P(‖θ̂‖0/n > 1− ζ∗+ ∆)≤ C

∆3 e−cn∆6

.
A high probability upper bound on the sparsity of the lasso solution has been established.
Lower bound on sparsity via the lasso estimate: Define

φlb(y̆,∆) :=
1

n

p∑
j=1

φlb1 (y̆j ,∆) where φlb1 (y̆,∆) := min(1, ζ∗|y̆|/(λ̄∆)− 1/∆− 1)+ .

The function φlb1 is 0 on [−λ̄(1 + ∆)/ζ∗, λ̄(1 + ∆)/ζ∗], 1 on [−λ̄(1 + 2∆)/ζ∗, λ̄(1 +
2∆)/ζ∗]c, and linearly interpolates between the function values on these sets everywhere
else. The function φlb is a ζ∗

λ̄∆δ1/2
√
n

-Lipschitz lower bound for |T (y̆,∆)|/n:

|T (y̆,∆)|
n

≥ φlb(y̆,∆) .

Moreover, by Eq. (70)

φlb(y̆f ,∆)≥ ‖θ̂
f‖0
n
−
|{j ∈ [p] | ζ∗|y̆fj |/λ̄− 1 ∈ [0,2∆]}|

n
,
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whence

E[φlb(y̆f ,∆)]≥ 1− ζ∗ − 4λ̄∆

δζ∗
κ

1/2
minκcond√
2πτmin

≤ 1− ζ∗ − 4λmaxκcond∆

δτminζmin
√

2πκmin
,

where we have applied Lemma B.6. Following the same argument used to establish the upper
bound, we conclude there exists c1, c2 > 0 depending only on Pmodel, PfixPt, and δ such that
for ∆≥ 0

(75) P
(
|T (y̆f ,∆)|

n
≤ 1− ζ∗ − c1∆

)
≤ exp

(
−c2n∆4

)
.

By Eq. (70), if |T (y̆f ,∆)|
n > 1− ζ∗ − c1∆, then |{j∈[p]||θ̂fj |≥∆}|

n > 1− ζ∗ − c1∆. Then for all
θ ∈Rp with ‖θ‖0/n≤ 1− ζ∗ − 2c1∆,

‖θ̂f − θ‖22
n

≥ c1∆3 ,

because there are at least c1∆n coordinates where θ̂f and θ differ by at least ∆. In particular,

taking D := {θ ∈ Rp | |{j∈[p]||θ̂fj |≥∆}|
n > 1− ζ∗ − c1∆} and Dε := {x ∈ Rp | infx′∈D ‖x−

x′‖2/
√
p≥ ε}, we have that {θ ∈Rp | ‖θ‖0/n≤ 1−ζ∗−2c1∆} ⊂Dε/2 for ε/2 =

√
c1δ∆3.

Eq. (75) says P(θ̂f 6∈D)≤ e−c2n∆4

. Thus, by the proof of Theorem B.1 in Appendix B.1 —
in particular, Eq. (55)— we conclude there exists C,c, c′ > 0 depending only on Pmodel,
PfixPt, and δ such that for ∆< c′

P

(
‖θ̂‖0
n
≤ 1− ζ∗ −∆

)
≤ exp

(
− cn∆4

)
+

C

∆3
exp

(
−cn∆6

)
.

We may absorb the first term into the second at the cost of changing the constants C,c, c′

because the bound applies only to ∆< c′. (In applying Eq. (55), recall v̂f = Σ1/2(θ̂f − θ),
with the definition of D modified according to this change of variables). A high probability
lower bound on the sparsity of the lasso solution has been established.

Theorem 9 follows by putting together the upper and lower bounds.

B.5. Control of the debiased Lasso: proofs of Theorem 11 and Corollary 12. We control
the debiased Lasso by approximating it with the debiased α-smoothed Lasso, which turns
out to be easier to study due to the Lipschitz differentiability of the Mα (cf. (35)). Define the
debiased α-smoothed Lasso

θ̂d
α := θ̂α +

Σ−1X>(y−Xθ̂α)

ζ∗α
.

This definition is analogous to (6) except that 1 − ‖θ̂‖0/n is replaced by the constant ζ∗α.
Because it is not feasible to calculate ζ∗α exactly without knowing θ∗, therefore θ̂d

α cannot be
computed either. Rather, θ̂d

α is a theoretical tool.
To establish Theorem 11, we first characterize the behavior of θ̂d

α and second show that
θ̂d is close to θ̂d

α with high-probability. The next lemma characterizes θ̂d
α.

LEMMA B.7 (Characterization of the debiased α-smoothed Lasso). Let α > 0. Under
assumptions A1 and A2α, there exist constants C,c, c′ > 0 depending only on Pmodel, PfixPt,
and δ such that for any 1-Lipschitz φ : Rp→R, we have for all ε < c′

P

(∣∣∣φ( θ̂d
α√
p

)
−E

[
φ
(θ∗ + τ∗αΣ−1/2g

√
p

)]∣∣∣> (1 +
λmax

κ
1/2
minζminα

)
ε

)
≤ C

ε2
e−cnε

4

,
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where g ∼N(0, Ip).

We leave the proof of Lemma B.7 at the end of this section.
The following lemma will allow us to show that θ̂d and θ̂d

α are close with high probability.

LEMMA B.8 (Closeness of the Lasso and α-smoothed Lasso). There existsC1,C, c,αmax >
0 depending only on Pmodel, PfixPt, and δ such that

P

(
‖θ̂α − θ̂‖2√

p
≤C1

√
α, for all α≤ αmax

)
≥ 1−Ce−cn .

We prove Lemma B.8 at the end of this section. Equipped with these two lemma, we are now
ready to prove Theorem 11.

B.5.1. Proof of Theorem 11: characterization of the debiased Lasso. For any α > 0,
direct calculations give (setting ζ∗ = ζ∗0 )
(76)
‖θ̂d − θ̂d

α‖2√
p

≤ 1
√
p

∥∥∥Σ−1X>(y−Xθ̂)
( 1

1− ‖θ̂‖0/n
− 1

ζ∗α

)∥∥∥
2

+
1
√
p

∥∥∥(Ip −Σ−1X>X/ζ∗α)(θ̂− θ̂α)
∥∥∥

2

≤ κ−1/2
min ‖Σ

−1/2X>‖op
‖y−Xθ̂‖2√

p

(∣∣∣∣∣ 1

1− ‖θ̂‖0/n
− 1

ζ∗

∣∣∣∣∣+
∣∣∣∣ 1

ζ∗
− 1

ζ∗α

∣∣∣∣
)

+

(
1 +

κ
−1/2
min ‖Σ−1/2X>‖op‖XΣ−1/2‖op‖Σ1/2‖op

ζ∗α

)
‖θ̂− θ̂α‖2√

p

=: T1 + T2.

Bounding T1. We start with bounding the T1 term in Eq. (76). By [53, Corollary 5.35] and
Theorem 8, there exist C1,C, c > 0 depending only on Pmodel, PfixPt, and δ such that with
probability at least 1−Ce−cn

κ
1/2
min‖Σ

−1/2X>‖op
‖y−Xθ̂‖2√

p
≤C1 .(77)

Let Lτ and Lζ be as in Lemma A.5, and let αmax be the minimum of the corresponding
quantities in Lemma A.5 and Lemma B.8. Let α′max = min{αmax, τ

2
min/(4L

2
τ ), ζ2

min/(4L
2
ζ)}.

By Lemma A.5, for all α< α′max, one has

τmin/2≤ τ∗α ≤ τmax + τmin/2 , ζmin/2≤ ζ∗α ≤ ζmax + ζmin/2 .

For α≤ α′max, by Lemma A.5

|1/ζ∗ − 1/ζ∗α| ≤ (4/ζ2
min)Lζ

√
α.(78)

By Theorem 9, there exists C,c, c′ > 0 depending only on Pmodel, PfixPt, and δ such that for
α< c′, with probability 1− C

α3/2 e
−cnα3

(79) |1/(1− ‖θ̂‖0/n)− 1/ζ∗| ≤ (4/ζ2
min)
√
α.

Combining the Eqs. (77), (78), and (79), we conclude there exists C1,C, c, c
′ > 0 depending

only on Pmodel, PfixPt, and δ such that for α < c′, with probability 1− C
α3/2 e

−cnα3

the first
term on the right-hand side of Eq. (76) is bounded by C1

√
α.
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Bounding T2. We now bound the T2 term of Eq. (76). Assumption A2α is satisfied with
P ′fixPt = (τmin/2, τmax + τmin/2, ζmin/2, ζmax + ζmin/2) in place of PfixPt for all α< α′max.
Because ζ∗α ≥ ζmin/2, by [53, Corollary 5.35] there exist C2,C, c > 0 depending only on
Pmodel, PfixPt, and δ such that with probability at least 1−Ce−cn(

1 +
κ
−1/2
min ‖Σ−1/2X>‖op‖XΣ−1/2‖op‖Σ1/2‖op

ζ∗α

)
≤C2 .

Combining this bound with Lemma B.8, absorbing parameters into constants, and absorbing
smaller terms into larger ones, we conclude there exists C1,C, c > 0 depending only on
Pmodel, PfixPt, and δ such that for α< α′max, with probability 1−Ce−cn the second term on
the right-hand side of Eq. (76) is bounded by C1

√
α.

Combining the high-probability upper bounds on the terms on the right-hand side of
Eq. (76), we conclude there exists C1,C, c,αmax > 0 depending only on Pmodel, PfixPt, and
δ such that for α< αmax,

(80) P

(
|φ(θ̂d)− φ(θ̂d

α)|
√
p

> C1

√
α

)
≤ P

(
‖θ̂d − θ̂d

α‖2√
p

> C1

√
α

)
≤ C

α3/2
e−cnα

3

.

Further, for α< αmax, by Lemma A.5,

(81)
∣∣∣E[φ(θ∗ + τ∗Σ−1/2g

√
p

)]
−E

[
φ
(θ∗ + τ∗αΣ−1/2g

√
p

)]∣∣∣≤C1

√
α .

Taking ε= α3 in Lemma B.7 (and assuming α3 < c′ for c′ in that lemma),

P

(∣∣∣φ( θ̂d
α√
p

)
−E

[
φ
(θ∗ + τ∗αΣ−1/2g

√
p

)]∣∣∣>C1α
2

)
≤ C

α6
e−cnα

12

.(82)

Combining Eqs. (80), (81), and (82) and appropriately adjusting constants, we conclude there
exists C,C ′, c, c′ > 0 depending only on Pmodel, PfixPt, and δ such that for ε < c′

P

(∣∣∣φ( θ̂d

√
p

)
−E

[
φ
(θ∗ + τ∗Σ−1/2g

√
p

)]∣∣∣>C1ε

)
≤ C

ε3
e−cnε

6

.

We complete the proof of Theorem 11.

B.5.2. Proof of Lemma B.7: characterization of the debiased α-smoothed Lasso. By the
KKT conditions for the optimization defining the α-smoothed Lasso (cf. (37)), θ̂d

α = θ̂α +
λΣ−1/2∇Mα(θ̂α)

ζ∗α
. Since θ 7→ ∇Mα(θ) is 1/α-Lipschitz, θ̂d

α is a
(

1 + λmax

κ
1/2
minζminα

)
-Lipschitz

function of θ̂α. The function

φ̃

(
θ
√
p

)
:=

(
1 +

λmax

κ
1/2
minζminα

)−1

φ

(
θ+ λΣ−1∇Mα(θ)/ζ∗α√

p

)
,

is 1-Lipschitz. Moreover, by the KKT conditions for the optimization defining the α-
smoothed Lasso in the fixed design model (Eq. (38)),

θ̂fα +
λΣ−1∇Mα(θ̂fα)

ζ∗α
= θ̂fα + Σ−1Σ1/2(τ∗αg−Σ1/2(θ̂fα − θ∗)) = θ∗ + τ∗αΣ−1/2g .

Because Rα(θ̂α) ≤minθ∈RpRα(θ) + γε2 for any γ, ε > 0, Theorem B.1 and the previous
two displays imply the result.
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B.5.3. Proof of Lemma B.8: closeness of the Lasso and the α-smoothed Lasso. The proof
of Lemma B.8 relies on showing that with high-probability, the Lasso objective is strongly
convex locally around its minimizer. We then show that because the value of the α-smoothed
Lasso objective is close to that of the Lasso objective pointwise, the minimizers of the two
objectives must also be close.

LEMMA B.9 (Local strong convexity of Lasso objective). Assume nζ∗/8≥ 1. Then there
exists C,c, c′, c1 > 0 depending only on Pmodel, PfixPt, and δ such that with probability at
least 1−Ce−cn the following occurs: for all θ ∈Rp with ‖θ− θ̂‖2/

√
p≤ c′,

R(θ)−R(θ̂)≥ c1

p
‖θ− θ̂‖22 .

Let us take Lemma B.9 momentarily and provide its proof below. By Eq. (36), R(θ) ≥
Rα(θ)≥R(θ)− λα

2δ for all θ ∈Rp. On the event of Lemma B.9, for ‖θ− θ̂‖2/
√
p≤ c′

Rα(θ)≥R(θ)− λα

2δ
≥R(θ̂) +

c1

p
‖θ− θ̂‖22 −

λα

2δ
≥Rα(θ̂) +

c1

p
‖θ− θ̂‖22 −

λα

2δ
.

Since θ̂α minimizes Rα(θ), we conclude that for α≤ αmax := 2c1c′2δ
λmax

‖θ̂α − θ̂‖2√
p

≤
√
λmaxα

2c1δ
.

The proof of Lemma B.8 is complete.

B.5.4. Proof of Lemma B.9: local strong convexity of the Lasso objective. We make the
observation that with high probability, the Lasso subgradient t̂= 1

λX
>(y −Xθ̂) (cf. (14)),

cannot have too many coordinates with magnitude close to 1, even off of the Lasso support.
The next lemma makes this precise.

LEMMA B.1. There exists C,c,∆> 0 depending only on Pmodel, PfixPt, and δ, such that

(83) P

(
|{j ∈ [p] | |t̂j | ≥ 1−∆/2}|

n
≥ 1− ζ∗/2

)
≤Ce−cn .

PROOF OF LEMMA B.1. The proof is as for Theorem 9 with the following minor changes.
We apply Eq. (75) with ∆ = ζ∗/(4c1) with c1 as in in that equation. By Eq. (71) and with
this choice of ∆, if |T (y̆f ,∆)|

n < 1 − 3ζ∗/4, then for all t ∈ Rp with |{j ∈ [p] | |tj | ≥ 1 −
∆/2}|/n≥ 1− ζ∗/2,

‖t̂f − t‖22
n

≥ ∆2ζ∗

16
=

ζ∗4

256c2
1

,

because there are at least ζ∗n/4 coordinates where t̂f and t differ by at least ∆/2. Absorbing
constants and taking D = {t ∈Rp | |{j ∈ [p] | 1− |tj | ≤∆}|/n≤ 1− 3ζ∗/4} in Lemma 10,
there exists C,c > 0 depending only on Pmodel, PfixPt, and δ such that Eq. (83) holds.

We are now ready to prove Lemma B.9. Define the minimum singular value of X over a
set S ⊂ [p] by

κ−(X, S) = inf {‖Xw‖2 | supp(w)⊂ S, ‖w‖2 = 1} ,
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and the s sparse singular value by

κ−(X, s) = min
|S|≤s

κ−(X, S) .

Consider the event

A :=
{
κ−
(
X, n(1−ζ∗/4)

)
≥ κ′min

}
∩
{
‖X‖op ≤C

}
∩
{ |{j ∈ [p] | |t̂j | ≥ 1−∆/2}|

n
≤ 1−ζ∗/2

}
.

(Note that we need not assume that (1− ζ∗/2)n≤ p or (1− ζ∗/4)n≤ p for these definitions
or events to make sense).

We aim to show that there exist κ′min,∆,C, c > 0 depending only on Pmodel, PfixPt, and δ
such that

(84) P(A)≥ 1−Ce−cn .

The second event in the definition of A is controlled by [53, Corollary 5.35] and the third
event by Lemma B.1. Now it is sufficient to consider the first event in the definition of A.

Case δ > 1. For δ > 1, we have P(κ−
(
X, n(1 − ζ∗/4)

)
≥ κ′min) ≥ 1 − Ce−cn because

κ−(X, n(1− ζ∗/4)) ≥ κ−(X, p) is the minimum singular value of X , whence we invoke
[53, Corollary 5.35].

Case δ ≤ 1. Consider now δ ≤ 1. Let k = bn(1 − ζ∗/4)c and note that k < p because
n≤ p. Because κ−(X, S′)≥ κ−(X, S) when S′ ⊂ S, we have that κ−(X, n(1− ζ∗/4)) =
min|S|=k κ−(x, S). By a union bound, for any t > 0

(85) P (κ−(X, n(1− ζ∗/4))≤ t)≤
∑
|S|=k

P(κ−(XS)≤ t) .

The matrix XS = X̃SΣ
1/2
S,S where X̃S has entries distributed i.i.d. N(0,1/n). Thus, one has

κ−(XS)≥ κ−(X̃S)κ−(Σ
1/2
S,S)≥ κ−(X̃S)κ

1/2
min.

Invoking the fact that X̃S has the same distribution for all |S|= k, expression (85) implies

P (κ−(X, n(1− ζ∗/4))≤ t)≤
(
p

k

)
P(κ−(X̃S)≤ t/κ1/2

min) ,

where the S appearing on the right-hand side can be any S with cardinality k. By Lemma 2.9
of [12],

P(κ−(X̃S)≤ t/κ1/2
min)≤C(n, t/κ

1/2
min) exp

(
nψ(k/n, t/κ

1/2
min)

)
,

where C(a, b) is a universal polynomial in a, b and ψ(a, b) := 1
2 [(1 − a) log b + 1 − a +

a loga− b]. (Lemma 2.9 of [12] states a bound on the density of κ−(X̃S), but a deviation
bound incurs only a factor t/κ1/2

min which we may absorb into the polynomial term). Note also
that

(
p
k

)
≤C ′(p) exp(nH(k/p)/δ), where C ′ is a universal polynomial. We conclude that

P (κ−(X, n(1− ζ∗/4))≤ t)≤C(n,p, t/κ
1/2
min) exp

(
n(H(k/p)/δ +ψ(k/n, t/κ

1/2
min))

)
.

Note that ψ(a, b) ≤ ζ∗

8 log b for all a = k/n ≤ 1 − ζ∗/4 and b ∈ (0,1). Thus, there exists
c,κ′min > 0, depending only on δ,κmin, ζmin, such that H(k/p)/δ + ψ(k/n,κ′min/κ

1/2
min) <
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−2c. Because C(n,p,κ′min/κ
1/2
min)e−cn is upper bounded by a constant C depending only on

δ,κmin, c, we conclude there exists C,c,κ′min > 0 depending only on δ,κ1/2
min, ζmin such that

P
(
κ−(X, n(1− ζ∗/4))≤ κ′min

)
≤Ce−cn .

This conclude the proof of the high-probability bound Eq. (84).
The remainder of the argument takes place on the high-probability event A. Consider any

θ ∈Rp. We first construct S+ ⊃ S(∆/2) such that

(86) (i) |S+| ≤ n(1− ζ∗/4) and (ii)
1
√
p
‖θSc+‖2 ≤

2
√

2

p
√
ζ∗δ
‖θS(∆/2)c‖1 ,

where we adopt the convention that ‖θ∅‖1 = ‖θ∅‖2 = 0. We establish this by considering two
cases.

Case 1: p≤ n(1− ζ∗/4). In this case, let S+ = [p]. Then Eq. (86) holds trivially.

Case 2: p > n(1− ζ∗/4). Let S1, . . . , Sk be a partition of [p] \ S(∆/2) satisfying the fol-
lowing properties: first, |Si| ≥ nζ∗/8 for i = 1, . . . , k − 1; second, |S1| ≥ · · · ≥ |Sk|; third,
|S(∆/2) ∪ S1| ≤ n(1− ζ∗/4); and fourth, |θj | ≥ |θj′ | if j ∈ Si and j′ ∈ Si′ for i≤ i′. This
is possible because |S(∆/2)| ≤ n(1− ζ∗/4) and, because nζ∗/8≥ 1, there exists an integer
between n(1−ζ∗/4) an n(1−ζ∗/8). In this case, let S+ = S(∆/2)∪S1. Condition (i) holds
by construction. To verify condition (ii), observe

1

p
‖θSc+‖

2
2 =

1

p

k∑
i=2

‖θSi‖22 ≤
1

p

k∑
i=2

|Si|
(
‖θSi−1

‖1
|Si−1|

)2

≤ 1

pmini=1,...,k−1{|Si−1|}

k−1∑
i=1

‖θSi‖21

≤ 8

p2ζ∗δ
‖θS(∆/2)c‖21 ,

where the first inequality holds because |θj | ≤ ‖θSi−1
‖1/|Si−1| for j ∈ Si, the second in-

equality holds because |Si| ≤ |Si−1|, and the third inequality holds because |Si| ≥ nζ∗/8 for
i≤ k− 1. Thus, Eq. (86) holds in this case as well.

We lower bound the growth of the Lasso objective by

R(θ)−R(θ̂) =
1

2n
‖X(θ− θ̂)‖22 +

1

n
〈X>(y−Xθ̂), θ̂− θ〉+ λ

n

(
‖θ‖1 − ‖θ̂‖1

)
=

1

2n
‖X(θ− θ̂)‖22 +

λ

n

(
〈t̂, θ̂− θ〉+ ‖θ‖1 − ‖θ̂‖1

)
.

We first make the observation that

〈t̂, θ̂− θ〉+ ‖θ‖1 − ‖θ̂‖1 ≥
∆

2
‖θS(∆/2)c‖1 .

Because t̂ ∈ ∂‖θ̂‖1 and |tj | ≤ 1−∆/2 on S(∆/2)c so that tj(θ̂j − θj) + |θj | − |θ̂j | ≥ 0 for
all j, and is no smaller than ∆|θj |/2 for j ∈ S(∆/2)c. Thus, it is guaranteed that

R(θ)−R(θ̂)≥ λ∆

2n
‖θS(∆/2)c‖1 +

1

2n
‖X(θ− θ̂)‖22 .

Now choose S+ ⊂ [p] satisfying Eq. (86). Condition (ii) of Eq. (86) implies

R(θ)−R(θ̂)≥ c1√
p
‖θSc+‖2 ,(87)
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where c1 > 0 depends on Pmodel, PfixPt, and δ. Next we prove that there exists c′ > 0 such
that for ‖θS+

− θ̂S+
‖2/
√
p < c′,

R(θ)−R(θ̂)≥ c′
√
p
‖θS+

− θ̂S+
‖22 holds true on event A.(88)

In order to see this, if ‖XS+
(θS+

− θ̂S+
)‖2/2≥ ‖XSc+θSc+‖2, then

R(θ)−R(θ̂)≥ 1

8n
‖XS+

(θS+
− θ̂S+

)‖22 ≥
κ′2min

8n
‖θS+

− θ̂S+
‖22 ,

as a consequence of Eq. (84). Otherwise, if ‖XS+
(θS+

− θ̂S+
)‖2/2 < ‖XSc+θSc+‖2, then

‖θS+
− θ̂S+

‖2 ≤ κ′−1/2
min ‖XS+

(θS+
− θ̂S+

)‖2 ≤ 2κ
′−1/2
min ‖XSc+θSc+‖2 ≤C‖θSc+‖2. Thus

R(θ)−R(θ̂)≥ c1√
p
‖θSc+‖2 ≥

c1√
p
‖θS+

− θ̂S+
‖2 ,

where the value of c1 changes between the last inequalities. Combining the previous two
displays, we have established inequality (88), where again the value of c′ has changed from
the previous displays.

Combined with Eq. (87), we conclude there exists c1, c
′ > 0 depending only on Pmodel,

PfixPt, and δ such that for ‖θ− θ̂‖2/
√
p≤ c′,

R(θ)−R(θ̂)≥ c′

p
‖θ− θ̂‖22 .

The proof is completed.

B.5.5. Proof of Corollary 12. To start, let us define

φ1(x,∆) := min(1, x/∆− z1−q/2/∆ + 1)+.

The function φ1(x) equals to 0 for x ≤ z1−q/2 −∆ and 1 for x ≥ z1−q/2, and linearly in-
terpolates between these two regions elsewhere. Therefore, the false-coverage proportion
FCP := 1

p

∑p
j=1 1θ∗j 6∈CIj can be controlled as

FCP =
1

p

p∑
j=1

1

|θ̂d
j − θ∗j |>

Σ
−1/2
j|−j ‖y−Xθ̂‖2
√
n(1− ‖θ̂‖0/n)

z1−q/2


≤ 1

p

p∑
j=1

φ1

Σ
1/2
j|−j(1− ‖θ̂‖0/n)|θ̂d

j − θ∗j |

‖y−Xθ̂‖2/
√
n

,∆



≤ 1

p

p∑
j=1

φ1

(
Σ

1/2
j|−j |θ̂

d
j − θ∗j |/τ∗,∆

)
+

1

∆

∣∣∣∣∣ 1− ‖θ̂‖0/n
‖y−Xθ̂‖2/

√
n
− 1

τ∗

∣∣∣∣∣
1

p

p∑
j=1

Σ
1/2
j|−j |θ̂

d
j − θ∗j |

 .

We bound the terms on the right-hand side respectively.

• By Theorems 8 and Theorem 9, there exist C,c, c′ > 0 depending only on Pmodel, PfixPt,

and δ such that for ε < c′, we have
∣∣∣ 1−‖θ̂‖0/n
‖y−Xθ̂‖2/

√
n
− 1

τ∗

∣∣∣ < ε with probability at least 1−
C
ε3 e
−cnε6 .
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• Because Σ
1/2
j|−j ≤ κ

1/2
max for all j, the quantity 1

p

∑p
j=1 Σ

1/2
j|−j |θ̂

d
j −θ∗j | is

√
κmax/p-Lipschitz

in θ̂d. Moreover, when θ̂d is replaced by θ∗ + τ∗Σ−1/2g, this equantity has expectation
bounded by a constant depending only onPmodel,PfixPt, and δ. By Theorem 11, there exist
C,C ′, c > 0 depending only on Pmodel,PfixPt, and δ such that 1

p

∑p
j=1 Σ

1/2
j|−j |θ̂

d
j −θ∗j |<C ′

with probability at least 1−Ce−cn.
• The quantity 1

p

∑p
j=1 φ1

(
Σ

1/2
j|−j |θ̂

d
j − θ∗j |/τ∗,∆

)
is L

∆
√
p -Lipschitz in θ̂d, where L is a

constant depending only on Pmodel, PfixPt, and δ. By Theorem 11, we conclude there
exists C,c, c′ > 0 depending only on Pmodel, PfixPt, and δ such that for ε < c′, we have

1

p

p∑
j=1

φ1

(
Σ

1/2
j|−j |θ̂

d
j − θ∗j |/τ∗,∆

)
<

1

p

p∑
j=1

E
[
φ1

(
Σ

1/2
j|−j |(τ

∗Σ−1/2g)j |/τ∗,∆
)]

+ ε/∆,

with probability at least 1− C
ε3 e
−cnε6 .

• Using the fact that the standard Gaussian density is upper bounded by (2π)−1/2, we obtain
the bound E

[
φ1

(
Σ

1/2
j|−j |(τ

∗Σ−1/2g)j |/τ∗,∆
)]
≤ q+ 2∆√

2π
.

Combining the previous bounds, we conclude there exist C,C ′, c, c′ > 0 depending only
on Pmodel, PfixPt, and δ such that for all ε < c′, we have FCP ≤ q + C ′(∆ + ε/∆) with
probability at least 1 − C

ε3 e
−cnε6 . Optimizing over ∆, we conclude there exists C,c, c′ > 0

depending only on Pmodel, PfixPt, and δ such that for all ε < c′, we have FCP≤ q + ε with
probability at least 1− C

ε6 e
−cnε12 .

The lower bound holds similarly.

B.6. More details on confidence interval for a single coordinate. Because they may be
of independent interest, we first describe in detail the construction of the exact tests outlined
in the discussion in Section 3.5 and state some results about the quantities involved in the
construction (Lemma B.10 and Theorem B.11 below). The proof of Theorem 13 uses a spe-
cial case of Lemma B.10, whereas Theorem B.11 is independent of any future development,
and is stated only for general interest.

B.6.1. Description of exact test. For any ω ∈ R, the statistician may construct the
“pseudo-outcome” yω := y− ωx̆⊥j . We have

(89) yω =X−jθ
∗
loo + x̆⊥j (θ∗j − ω) + σz

where θ∗loo is defined in (21). As with the leave-one-out model of Section 3.5, expression (89)
can be viewed as defining a linear-model with p−1 covariates, true parameter θ∗loo, and noise

variance σ2
loo(ω) = σ2 +

Σj|−j(θ∗j−ω)2

n . Generalizing the leave-one-out lasso estimate θ̂loo, the
variable importance statistic ξj , and the estimated effective noise level in the leave-one-out
model τ̂ j , we define

θ̂ωloo : = arg min
θ∈Rp−1

{
1

2n
‖yω −X−jθ‖22 +

λ

n
‖θ‖1

}
,

and similarly

ξωj : =
(x̆⊥j )>(y̆ω −X−j θ̂ωloo)

Σj|−j(1− ‖θ̂ωloo‖0/n)
,
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and

τ̂ω,jloo : =
‖yω −X−j θ̂ωloo‖2√
n(1− ‖θ̂ωloo‖0/n)

.

Whereas the statistic ξj should be large when θ∗j 6= 0, the statistic ξωj should be large when
θ∗j 6= ω. It is normally distributed conditional on (y,X−j) when θ∗j = ω, and is always ap-
proximately normally distributed unconditionally.

LEMMA B.10. We have the following.

(a) (Exact conditional normality of ξωj when θ∗j = ω). If θ∗j = ω, then

(90) ξωj /τ̂
ω,j
loo ∼N(0,Σ−1

j|−j) .

(b) (Approximate normality of ξωj in general). Assume p≥ 2. Let δloo = n/(p−1). Assume λ,
Σ, and σ satisfy assumption A1, and that θ∗−j is (s,

√
δloo(1−∆min),M)-approximately

sparse with respect to covariance Σ−j,−j for some s/(p−1)≥ νmin > 0 and 1≥∆min >

0. Let M ′ > 0 be such that |θ∗j − ω| ≤M ′(p− 1)1/4 and |θ∗j | ≤M ′(p− 1)1/4.
Then there exist constants C,c, c′ > 0 depending only on Pmodel, νmin, ∆min, M , M ′,

and δloo such that the following occurs. There exist random variables rj ,Rj ,Zj such that

(ξωj − (θ∗j − ω))/τ̂ω,jloo = rjZj +Rj ,

and for all ε < c′

Zj ∼N(0,Σ−1
j|−j) , P (|rj − 1|> ε)≤ C

ε2
e−cnε

4

, P (|Rj |> ε)≤ C

nε2
.

Lemma B.10(a) implies that the test which rejects when |ξωj | ≥Σ
−1/2
j|−j τ̂

ω,j
loo z1−α/2 is an exact

level-α test of the null θ∗j = ω. Lemma B.10(b) states that under the alternative ξωj is approx-
imately normal with mean θ∗j −ω and standard deviation τ̂ω,jloo . (The latter quantity is random
but concentrates). Thus, Lemma B.10(b) permits a power analysis of the exact test.

The next theorem is included because it may be of independent interest. No future devel-
opment depend upon this theorem, and it can safely be skipped.

THEOREM B.11. Let τω,∗loo , ζ
ω,∗
loo be the solution to the fixed point equations (8a) and (8b)

in the model (89) for the Lasso at regularization λ.

(a) (Power of exact test). There exist constants C,c, c′ > 0 depending only on Pmodel, νmin,
∆min, M , M ′, and δloo such that for all ε < c′,
(91)∣∣∣Pθ∗j (|ξωj | ≥Σ

−1/2
j|−j τ̂

ω,j
loo z1−α/2

)
− P

(
|θ∗j + τω,∗loo G− ω|> τω,∗loo z1−α/2

) ∣∣∣
≤C

(
(1 + |θ∗j − ω|)ε+

1

ε2
e−cnε

6

+
1

nε2

)
,

where G∼N(0,1).
(b) (Insensitivity of fixed point parameter to ω). There exists L,M ′1 > 0 depending only

on Pmodel, νmin, ∆min, M , M ′, and δloo such that for |θ∗j − ω|/
√
n ≤ M ′1, we have

|τω,∗loo − τ
θ∗j ,∗
loo | ≤ L|θ

∗
j − ω|/

√
n.
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Theorem B.11 says that the exact test of the null θ∗j = ω described above has power ap-
proximately equal to that achieved by a standard two-sided confidence interval for Gaussian
observations at noise-variance (τω,∗loo )2. Part (b) states that this noise variance is effectively
constant for all ω = o(

√
n).

Because we have an exact test for θ∗j = ω for all ω ∈ R, we may in principle construct
exact confidence intervals by inverting this collection of tests. As described in Section 3.5,
constructing such confidence intervals would require computing a Lasso estimate at each
value of ω.

B.6.2. Proof of Lemma B.10, Theorem 13, and Theorem B.11.

Proof of Lemma B.10(a). Wehn θ∗j = ω, the data (yω,X−j) is independent of x̆⊥j . Be-
cause θ̂ωloo is σ(yω,X−j)-measurable,

ξωj /τ̂
ω,j
loo =

√
n(x̆⊥j )>(yω −X−j θ̂ωloo)

Σj|−j‖yω −X−j θ̂ωloo‖2
.

Because x̆⊥j ∼ N(0,Σj|−jIp/n) and is independent of yω − X−j θ̂ωloo, conditionally on
yω,X−j the quantity is distributed N(0,Σ−1

j|−j). Thus, it is distributed N(0,Σ−1
j|−j) uncon-

ditionally as well. We have established (90).

Proof of Lemma B.10(b). We may without loss of generality consider the case ω = 0.
Indeed, the joint distribution of (yω,X−j , x̆

⊥
j , θ̂

ω
loo) under θ∗j is equal to the joint distribution

of (y,X−j , x̆
⊥
j , θ̂

0
loo) if the jth coordinate were instead θ∗j − ω. Under this transformation,

the conditions of the Theorem are still met, possibly with M ′ replaced by 2M ′.
Thus, consider the case ω = 0. Note y0 = y, θ̂0

loo = θ̂loo, and ξ0
j = ξj . To simplify notation,

we thus remove the superscript 0 in the remainder of the argument. Define the quantity

ξ̃j := (x̆⊥j )>(y−X−j θ̂loo)− θ∗jΣj|−j(1− ‖θ̂loo‖0/n) .

Direct calculations give

ξ̃j = (x̆⊥j )>(σz + x̆⊥j θ
∗
j +X−jθ

∗
loo −X−j θ̂loo)− θ∗jΣj|−j(1− ‖θ̂loo‖0/n)

= (x̆⊥j )>(σz +X−jθ
∗
loo −X−j θ̂′loo)︸ ︷︷ ︸

∆1

+ (x̆⊥j )>(x̆⊥j θ
∗
j +X−j(θ̂

′
loo − θ̂loo))− θ∗jΣj|−j(1− ‖θ̂loo‖0/n)︸ ︷︷ ︸

∆2

,

where

θ̂′loo : = arg min
θ∈Rp

{
1

2n
‖σz +X−jθ

∗
loo −X−jθ‖22 +

λ

n
‖θ‖1

}
.

In particular, θ̂′loo is σ(z,X−j)-measurable, so is independent of x̆⊥j , whence

∆1 |z,X−j ∼N
(

0,Σj|−j‖σz +X−jθ
∗
loo −X−j θ̂′loo‖22/n

)
.

The estimate θ̂loo is a function of z, X−j , and x̆⊥j . We make this explicit by writing
θ̂loo(z,X−j , x̆

⊥
j ). Following this notation, θ̂′loo defined above is equal to θ̂loo(z,X−j ,0).

Next consider the term ∆2. First define

F (z,X−j , x̆
⊥
j ) : = x̆⊥j θ

∗
j +X−j(θ̂loo(z,X−j ,0)− θ̂loo(z,X−j , x̆

⊥
j )) .
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Use ∇x̆⊥j to denote the Jacobian with respect to x̆⊥j . Almost surely, ∇x̆⊥j F (z,X−j , x̆
⊥
j ) =

θ∗j (In − PX−j Ŝ), where PX−j Ŝ is the projector onto the span of {x̆k | k ∈ Ŝ} and Ŝ is the
support of θ̂loo(z,X−j , x̆

⊥
j ) [55]. The function F is θ∗j -Lipschitz in x̆⊥j for fixed z,X−j .

Therefore we conclude that ∆2 = (x̆⊥j )>F (z,X−j , x̆
⊥
j )− Σj|−j divx̆⊥j F (z,X−j , x̆

⊥
j )/n.

Applying Stein’s formula and the second-order Stein’s formula [8, Eq. (2.1) and Theorem
2.1], we get

E[∆2|z,X−j ] = 0 and Var(∆2|z,X−j) =
Σj|−j

n

(
E
[
‖F (z,X−j , x̆

⊥
j )‖22 +

Σj|−j

n
‖∇x̆⊥j F (z,X−j , x̆

⊥
j )‖2F

∣∣ z,X−j]) .

Note that, almost surely ‖∇x̆⊥j F (z,X−j , x̆
⊥
j )‖2F = θ∗j

2(n−‖θ̂loo‖0). Further, ‖F (z,X−j , x̆
⊥
j )‖22 ≤

θ∗j
2‖x̆⊥j ‖22 because F is θ∗j -Lipschitz and F (z,X−j ,0) = 0. Thus,

Var(∆2|z,X−j)≤
Σj|−j

n
E
[
θ∗j

2
(
‖x̆⊥j ‖22 +Σj|−j

(
1− ‖θ̂loo‖0

n

))∣∣∣z,X−j]≤ 2Σ2
j|−jθ

∗
j

2

n
almost surely.

Because the E[∆2|z,X−j ] = 0 almost surely, we have Var(∆2) ≤ 2Σ2
j|−jθ

∗
j

2/n as well.

Next observe that ξ̃j

Σj|−j(1−‖θ̂loo‖0/n)
= ξj − θ∗j . Thus,

√
n(1− ‖θ̂loo‖0/n)(ξj − θ∗j )
‖y−X−j θ̂loo‖2

=
‖σz +X−jθ

∗
loo −X−j θ̂′loo‖2

‖y−X−j θ̂loo‖2
∆1

Σj|−j‖σz +X−jθ∗loo −X−j θ̂′loo‖2/
√
n

+
∆2

Σj|−j‖y−X−j θ̂loo‖2/
√
n

=: rjZj +Rj ,

where Zj : = ∆1

Σj|−j‖σz+X−jθ∗loo−X−j θ̂′loo‖2/
√
n
∼ N(0,Σ−1

j|−j) (and normality follows by the
proof of Eq. (90)).

The singular values of Σ−j,−j are bounded between the minimal and maximal singu-
lar values of Σ. Thus, the matrix Σ−j,−j satisfies assumption A1(b) because Σ does. In
particular, the triple λ, Σ−j,−j , and σ satisfy assumption A1. Because θ∗−j is (s,

√
δloo(1−

∆min),M)-approximately sparse, we may choose x−j ∈ {−1,0,1}p−1 and θ̄∗−j ∈Rp−1 such
that

‖θ∗−j − θ̄∗−j‖1/(p− 1)≤M, x−j ∈ ∂‖θ̄∗−j‖1,

and ‖x−j‖0/(p− 1)≥ νmin, G(x−j ,Σ−j,−j)≤
√
n/(p− 1)(1−∆min).

Also, ‖θ∗jΣ
−1
−j,−jΣ−j,j‖1/(p − 1) ≤M ′‖Σ−1

−j,−jΣ−j,j‖2/
√
p− 1 ≤M ′κ−1/2

min κmax/
√
p− 1.

Using the same sparse approximation θ̄∗−j and subgradient x−j , we conclude that

θ∗loo is (s,
√
δloo(1−∆min),M +M ′κ

−1/2
min κmax/

√
p− 1)− approximately sparse.

By Theorem 2, there exists PfixPt depending only on Pmodel, νmin, ∆min, and δ such that
assumption A2 is satisfied by the observations σz +X−jθ

∗
loo and design matrix X−j which

are used to fit θ̂′loo.
Because F is θ∗j -Lipschitz in x̆⊥j , we have |‖y − X−j θ̂loo‖2 − ‖σz + X−jθ

∗
loo −

X−j θ̂
′
loo‖2| < θ∗j‖x̆⊥j ‖2. By Theorem 8 and since θ∗j

2‖x̆⊥j ‖22/n ∼ θ∗j
2χ2

n/n
2, there exist
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C,c, c′ > 0 depending only on Pmodel, PfixPt, δ, and M ′ such that for ε < c′, it is guaranteed
that

P (|rj − 1|> ε) = P

(∣∣∣∣∣‖σz +X−jθ
∗
loo −X−j θ̂′loo‖2/

√
n

‖y−X−j θ̂loo‖2/
√
n

− 1

∣∣∣∣∣> ε

)

= P

(∣∣∣∣∣‖σz +X−jθ
∗
loo −X−j θ̂′loo‖2/

√
n− ‖y−X−j θ̂loo‖2/

√
n

‖y−X−j θ̂loo‖2/
√
n

∣∣∣∣∣> ε

)

≤ P

(
|θ∗j |‖x̆⊥j ‖2/

√
n

‖y−X−j θ̂′loo‖2/
√
n− |θ∗j |‖x̆⊥j ‖2/

√
n
> ε

)
<
C

ε2
e−cnε

4

,

Where the final inequality has the following justification: First, we have used that ‖y −
X−j θ̂

′
loo‖2/

√
n concentrates on a quantity for which we have a lower bound by The-

orem 8. Second, we have used that P(|θ∗j |‖x̆⊥j ‖2/
√
n > M ′(p − 1)1/4/

√
nΣ

1/2
j|−j + t) ≤

C exp(−cn2t2). The right-hand side of the preceding display is larger than 1 from ε =

O(n−1/4) and M ′(p − 1)1/4/
√
nΣ

1/2
j|−j = O(n−1/4), whence we get P(|θ∗j |‖x̆⊥j ‖2/

√
n >

ε)≤ C
ε2 exp(−cnε4), as desired. The O’s hide constants depending only on Pmodel, PfixPt, δ,

and M ′.
Similarly, combining the concentration of Σj|−j‖y −X−j θ̂′loo‖2/

√
n on a quantity for

which we have a lower bound, the high probability upper bound on |θ∗j‖x̆⊥j ‖2/
√
n, and

Chebyshev’s inequality applied to ∆2, there exists C,c′ > 0 depending only on Pmodel,
PfixPt, δ, and M ′ such that for ε < c′ such that

P (|Rj |> ε)<
C

nε2
.

The proof of the lemma is complete.

Proof of Theorem 13(a). The event θ 6∈ CIloo
j is equivalent to

Σ
1/2
j|−j(1− ‖θ̂loo‖0/n)|ξj − θ|

‖y−X−j θ̂loo‖2/
√
n

≥ z1−α/2 .

With rj ,Rj defined as in Theorem B.10 for ω = 0, this is equivalent to

A := Σ
1/2
j|−j(rjZj +Rj) +

Σ
1/2
j|−j(1− ‖θ̂loo‖0/n)(θ∗j − θ)

‖y−X−j θ̂loo‖2/
√
n

6∈ [−z1−α/2, z1−α/2] .

By Theorems 8 and 9 on concentration of the Lasso residual and sparsity and Theorem B.10
on the concentration of rj and Rj , there exist C,c, c′ > 0 depending only on Pmodel, PfixPt,
δloo, and M ′ such that for all ε < c′,

P

∣∣∣∣∣∣A−Σ
1/2
j|−jZj −

Σ
1/2
j|−j(θ

∗
j − θ)

τ∗,0loo

∣∣∣∣∣∣> (1 + |θ∗j − θ|)ε

≤ C

ε3
e−cnε

6

+
C

nε2
.
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Thus, by direct calculation (where C may take different values between lines)

P
(
A 6∈ [−z1−α/2, z1+α/2]

)
≥ P

∣∣∣Σ1/2
j|−jZj +

Σ
1/2
j|−j(θ

∗
j − θ)

τ∗,0loo

∣∣∣> z1−α/2 + (1 + |θ∗j − θ|)ε


− P

∣∣∣A−Σ
1/2
j|−jZj −

Σ
1/2
j|−j(θ

∗
j − θ)

τ∗,0loo

∣∣∣> (1 + |θ∗j − θ|)ε


≥ P

∣∣∣Σ1/2
j|−jZj +

Σ
1/2
j|−j(θ

∗
j − θ)

τ∗,0loo

∣∣∣> z1−α/2 + (1 + |θ∗j − θ|)ε

−C( 1

ε3
e−cnε

6

+
1

nε2

)

≥ P
(
|θ∗j + Σ

−1/2
j|−j τ

∗,0
looG− θ| ≥Σ

−1/2
j|−j τ

∗,0
looz1−α/2

)
−C

(
(1 + |θ∗j − θ|)ε+

1

ε3
e−cnε

6

+
1

nε2

)
.

The reverse inequality is obtained similarly.

Proof of Theorem 13(b). By definition, one has

τ̂ jloo

τ∗loo

=
‖y−X−j θ̂loo‖2/

√
n

(1− ‖θ̂loo‖0/n)τ∗loo

.

The singular values of Σ−j,−j are bounded between the minimal and maximal singular values
of Σ. Thus, the matrix Σ−j,−j satisfies assumption A1(b) because Σ does. Further, σ2

min ≤
σ2 ≤ σ2

loo ≤ σ2
max + κmaxM ′

2(p−1)1/2

n ≤ σ2
max + κmaxM

′2. In particular, the triple λ, Σ−j,−j ,
and σloo satisfy assumption A1 with σ2

max replaced by σ2
max + κmaxM

′2. (In fact, that as
n,p→∞, we have an upper bound on σloo which converges to σmax).

Further, as argued in the proof of Theorem B.10(b), θ∗loo is (s,
√
δloo(1 − ∆min),M +

M ′κ
−1/2
min κmax/

√
p− 1)-approximately sparse, so is in fact (s,

√
δloo(1 − ∆min),M +

M ′κ
−1/2
min κmax)-approximately sparse. (In fact, we have as n,p→∞ that the `1-approximation

constant M + M ′κ
−1/2
min κmax/

√
p− 1 converges to M ). By Theorem 2, there exists PfixPt

such that assumption A2 holds on the model (y,X−j). Equation (25) follows from Theorems
8 and 9 on the concentration results for the Lasso residual and the sparsity.

Proof of Lemma B.11(a). The joint distribution of (yω,X−j , x̆
⊥
j , θ̂

ω
loo) under θ∗j is equal

to the joint distribution of (y,X−j , x̆
⊥
j , θ̂loo) if the jth coordinate were instead θ∗j − ω. (We

also used this fact in the proof of Theorem B.10(b)). Thus,

Pθ∗j (|ξ
ω
j | ≥Σ

−1/2
j|−j τ̂

ω,j
loo z1−α/2) = Pθ∗j

(√
n(1− ‖θ̂ωloo‖0/n)|ξωj |
‖yω −X−j θ̂ωloo‖2

>Σ
−1/2
j|−j z1−α/2

)

= Pθ∗j−θ

(√
n(1− ‖θ̂loo‖0/n)|ξj |
‖y−X−j θ̂loo‖2

>Σ
−1/2
j|−j z1−α/2

)
= Pθ∗j−ω

(
0 6∈ CIloo

j

)
.

Then Eq. (91) follows from Eq. (24).

Proof of Theorem B.11(b). As argued in the proof of Theorem B.10(b), the leave-one-out
parameter vector θ∗loo is (s,

√
δloo(1 −∆min),M + M ′1κ

−1/2
min κmax/

√
p− 1)-approximately
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sparse. We view (89) as defining linear model with aspect ratio δloo = n/(p − 1), design
covariance Σ−j,−j , noise variance σ2

loo(ω) = σ2 +
Σj|−j(θ∗j−ω)2

n , and true parameter θ∗loo.
Note σ2

loo(θ∗j ) = σ2 is bounded by σ2
min ≤ σ2 ≤ σ2

max by assumption. Thus, by Theorem
2, there exist parameters PfixPt = (τmin, τmax, ζmin, ζmax) depending only on Pmodel, νmin,
∆min, M , M ′1 such that τmin ≤ τ

θ∗j ,∗
loo ≤ τmax and ζmin ≤ ζ

θ∗j ,∗
loo ≤ ζmax. The notation PfixPt

will refer to the parameters in this lower and upper bound for the remainder of the proof.
To control the fixed point parameter τω,∗loo , we will study the functional objective E0 of

Eq. (41) for the linear model (89) as we vary ω. For simplicity of notation, we will drop
the subscript on E0. As we vary ω, the only parameter defining the leave-one-out model
which changes is the noise variance σ2

loo(ω). Thus, we will make the dependence of the
functional objective on σloo explicit but leave its dependency on all other parameters implicit.
In particular, we write

E σloo(v) :=
1

2

(√‖v(g)‖2L2

n
+ σ2

loo −
〈g,v〉L2

n

)2

+
+
λ

n
E
{
‖θ∗loo + (Σ−j,−j)

−1/2v(g)‖ − ‖θ∗loo‖1
)}
,

where we emphasize that E σloo is a function L2(Rp−1;Rp−1)→ R and where we take g to
be the identity function in L2(Rp;Rp). The model (89) for ω = θ∗j corresponds to the choice
σ2

loo = σ2. Denote the unique minimizer of E σloo by vσloo,∗. Existence and uniqueness is
guaranteed by the proof of Lemma A.2. Also by the proof of Lemma A.2,

(92) τω,∗loo =
√
σ2

loo(ω) + ‖vσloo,∗‖2L2/n.

The objective E σloo is L-Lipschitz in σ2
loo on σ2

loo > σ2
min for some L depending only

on PfixPt. By the proof of Lemma A.5, there exists r, a > 0 depending only on PfixPt and
δloo such that E σloo is a/n-strongly convex in v on ‖v − vσloo,∗‖2/

√
n≤ r. Thus, for ‖v −

vσloo,∗‖L2/
√
n≤ r,

E σloo(v)≥ E σ(v)−L|σ2
loo − σ2| ≥ E σ(vσ,∗) +

a

n
‖v− vσ,∗‖2L2 −L|σ2

loo − σ2|

≥ E σloo(vσ,∗) +
a

n
‖v− vσ,∗‖2L2 − 2L|σ2

loo − σ2| .

We conclude that if
√

2L|σ2
loo − σ2|/a≤ r, then ‖vσloo,∗−vσ,∗‖L2/

√
n≤

√
2L|σ2

loo − σ2|1/2/a.

Recalling that σ2
loo(ω) − σ2 = Σj|−j(θ

∗
j − ω)2/n, we see that for |θ∗j − ω|/

√
n ≤M ′3 :=

r
√
a/(2Lκmax) we have ‖vσloo(ω),∗−vσ,∗‖L2/

√
n≤

√
2LΣj|−j/a|θ∗j−θ|/

√
n. By Eq. (92),

|τω,∗loo − τ
θ∗j ,∗
loo |=

∣∣∣∣√σ2
loo(ω) + ‖vσloo(ω),∗‖2L2/n−

√
σ2 + ‖vσ,∗‖2L2/n

∣∣∣∣≤
√

2LΣj|−j

a

|θ∗j − ω|√
n

+
1

2σ

Σj|−j(θ
∗
j − ω)2

n

≤ L
|θ∗j − ω|√

n
,

where the L in the final line differs from the one in the preceding line and depends only on
Pmodel, PfixPt, δloo, and M ′1.

The proof is complete.

B.7. Uniform control over λ: proof of Theorem 6. To make the dependence of the Lasso
objective on λ explicit, we write Rλ(θ) for Eq. (1). As before, Cλ(v) is a re-parametrization
ofRλ(θ), namely Cλ(v) : =Rλ(θ∗+Σ−1/2v). We also write θ̂λ for the minimizer ofRλ(θ)
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and v̂λ for the minimizer of Cλ(v) (in particular θ̂λ = θ∗ + Σ−1/2v̂λ). Finally, in order to
expose the full dependency of η on the regularization parameter λ, we redefine

η(yf , ζ/λ) : = argmin
θ∈Rp

{
ζ

2λ
‖yf −Σ1/2θ‖22 + ‖θ‖1

}
.

Throughout this section we will use this definition instead of Eq. (4). We denote the Lasso
error vector in the fixed-design model at regularization λ by

v̂f,λ := Σ1/2(η(Σ1/2θ∗ + τ∗g, ζ∗/λ)− θ∗) ,

where implicitly τ∗, ζ∗ depend on λ via the fixed-point Eqs. (8a) and (8b). For simplicity, we
write φ̃

(
v√
p

)
= φ
(
θ∗+Σ−1/2v√

p , θ
∗
√
p

)
. For λ ∈ [λmin, λmax], let

Dλ
ε : =

{
v ∈Rp

∣∣∣ ∣∣∣φ̃( v√
p

)
−E

[
φ̃
( v̂f,λ
√
p

)]∣∣∣> ε

}
.

Define E λ : L2(Rp;Rp)→ R as E (v) = E0(v), where E0 is as in the proof of Lemma A.3,
and we make dependence on λ explicit in the notation. In particular,

E λ(v) :=
1

2

(√‖v(g)‖2L2

n
+ σ2 − 〈g,v〉L

2

n

)2

+
+
λ

n
E
{
‖θ∗ + Σ−1/2v(g)‖1 − ‖θ∗‖1

}
.

We emphasize that the argument v is not a vector but a function v : Rp→Rp. Recall, by the
proof of Lemma A.2, that v̂f,λ, viewed as a function of g and thus a member of L2(Rp;Rp),
is the unique minimizer of E λ.

The proof of Theorem 6 relies on two lemmas. The first quantifies the sensitivity of the
Lasso problem (1) to the regularization parameter λ. The second quantifies the continuity of
the minimizer of the objective function E λ in the regularization parameter λ.

LEMMA B.12. Assume θ∗ is (s,
√
δ(1−∆min),M)-approximately sparse for the matrix

Σ. Then, under assumption A1, there exist constantsK,C0, c0 > 0 depending only on Pmodel,
∆min, M , and δ such that

P
(
∀λ,λ′ ∈ [λmin, λmax], Cλ′(v̂λ)≤ min

v∈Rp
Cλ′(v) +K|λ− λ′|

)
≥ 1−C0e

−c0n.

LEMMA B.13. Assume θ∗ is (s,
√
δ(1−∆min),M)-approximately sparse for the matrix

Σ. Then, under assumption A1, there exists constants K,c′ > 0 depending only on Pmodel,
∆min, M , and δ such that for all λ,λ′ ∈ [λmin, λmax] with |λ− λ′|< c′ we have

for all λ,λ′ ∈ [λmin, λmax],
1
√
p
‖v̂f,λ′ − v̂f,λ‖L2 ≤K|λ′ − λ|1/2 ,

where in the previous display we view v̂f,λ, v̂f,λ
′

as functions of the same random vector g
and thus as members of L2(Rp;Rp).

The characterization of the Lasso solution involves only the distribution of v̂f,λ. The preced-
ing lemma implicitly constructs a coupling between these distributions defined for different
values of λ by using the same source of randomness g in defining v̂f,λ and v̂f,λ

′
. We prove

Lemma B.12 and B.13 in Sections B.7.1 and B.7.2 respectively.
To achieve a uniform control over λ ∈ [λmin, λmax], we invoke an ε-net argument. Because

θ∗ is (s,
√
δ(1−∆min),M)-approximately sparse and assumption A1 is satisfied, assump-

tion A2 is satisfied for some PfixPt depending only on Pmodel, δ, νmin, and ∆min. Con-
sider ε < c′, where c′ is as in Theorem 4. Let C0, c0 be as in Lemma B.12 and Lemma and
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let K1,K2 be the K’s which appear in Lemma B.12 and Lemma B.13, respectively. Set
ε′ = min

{
γε2/K1, εκ

1/2
min/K2

}
. Define λi = λmin + iε′ for i = 1, . . . , k, k : = bλmin−λmax

ε′ c
and λk+1 = λmax.

By a union bound over λi, Theorem 4 implies that, for C,c, c′, γ > 0 depending only on
Pmodel, PfixPt, and δ, with probability at least 1− C(k+1)

ε2 exp(−cnε4),

∀v ∈Rp, ∀λi, Cλi(v)≤ min
v∈Rp

Cλi(v) + γε2 ⇒ v ∈ (Dλi
ε )c .(93)

Further, Lemma B.12 implies that with probability at least 1−C0e
−c0n, the following occurs:

for all λ ∈ [λmin, λmax]

Cλi(v̂λ)≤ min
v∈Rp

Cλi(v) +K|λ− λi| ≤ min
v∈Rp

Cλi(v) + γε2,

where i= i(λ) is chosen such that λ ∈ [λi, λi+1] and the inequality holds by the choice of ε′.
Combining with inequality (93), we conclude that

for all λ, v̂λ ∈ (Dλi
ε )c where i= i(λ) is such that λ ∈ [λi, λi+1] .

Because φ is 1-Lipschitz,∣∣∣∣Eφ̃( v̂f,λ√p )−Eφ̃
( v̂f,λi
√
p

)∣∣∣∣≤ 1
√
p
E
[
‖Σ−1/2(v̂f,λ − v̂f (λi)‖2

]
≤
κ
−1/2
min√
p
‖v̂f,λ − v̂f,λi‖L2

≤Kκ−1/2
min |λi − λ|

1/2 ≤ ε
where the third-to-last inequality holds by Jensen’s inequality, and the second-to-last inequal-
ity holds by Lemma B.13, and the last inequality holds by the choice of ε′. Note we have
compared the two expectations on the left-hand side by constructing a coupling between the
distribution of v̂f,λ defined for different values of λ; see comment following Lemma B.13.
By the triangle inequality, if v̂λ ∈ (Dλi

ε )c, then v̂λ ∈ (Dλ
2ε)

c. Thus, we conclude that with
C,c, c′ > 0 depending only on Pmodel, νmin, ∆min, and δ,

P
(
∃λ ∈ [λmin, λmax], v̂λ ∈Dλ

2ε

)
≥ 1− C(k+ 1)

ε2
e−cnε

4

.

For ε < c′, we have (k+ 1)≤C/ε2 for some C depending only on Pmodel, νmin, ∆min, and
δ. Absorbing constants appropriately, the proof of Theorem 6 is complete.

B.7.1. Proof of Lemma B.12.

LEMMA B.14. Assume x ∈ {−1,0,1}p is such that x ∈ ∂‖θ̄∗‖1 with G(x,Σ) ≤ (1 −
∆min)

√
δ. Then there exist finite constants a, c0,C0 > 0 depending only on ∆min, κmin, κmax,

and δ such that if n≥
√

2/∆min the following happens with probability at least 1−C0e
−c0n.

For any w ∈Rp:

‖θ̄∗ +w‖1 − ‖θ̄∗‖1 ≤ 0 ⇒ ‖Xw‖2 ≥ a‖w‖2 .(94)

PROOF OF LEMMA B.14. The Gaussian width G(x,Σ) is an upper bound on the standard
notion of Gaussian width Gstd(x,Σ) defined in Eq. (12). Thus,

(95) (1−∆min)
√
δ ≥ Gstd(x,Σ) =

1

p
=

1

p
E
[

max
v∈K(x,Σ)
‖v‖22/p≤1

〈v,g〉
]
.

The result then follows from standard results; see, for example, Corollary 3.3 of [16] and its
proof. We repeat the proof here for convenience.
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For simplicity of notation, we will denote K=K(x,Σ). Note that

‖θ̄∗ +w‖1 − ‖θ̄∗‖1 = ‖wSc‖1 + ‖(θ̄∗ +w)S‖1 − ‖θ̄∗S‖1 ≥ ‖wSc‖1 +
∑

j∈supp(x)

xjwj ,

whence ‖θ̄∗ +w‖1 − ‖θ̄∗‖1 ≤ 0 implies Σw ∈K. Thus, it suffices to show that with proba-
bility at least 1−C0e

−c0n, one has

Σw ∈K ⇒ ‖Xw‖2 ≥ a‖w‖2 .

Define the minimum singular value over K as

κ−(X,K) : = inf
{
‖Xw‖2 |w ∈K,‖w‖2 = 1

}
,

and define κ̃−(X,K) : = inf
{
‖Xw‖2 |w ∈K,‖Σ1/2w‖2 = 1

}
. Then, becauseK is a cone

(and so is scale invariant),

κ−(X,K)≥ κ̃−(X,K) · min
‖w‖2=1

‖Σ1/2w‖2 ≥ κ̃−(X,K)κ
1/2
min .

Thus, it suffices to show there exists a > 0 depending on ∆min, κmin, κmax, and δ such with
high-probability κ−(X,K)≥ a.

By definition,

−E[κ̃−(X,K)] = E[ max
w∈K

‖Σ1/2w‖2=1

−‖Xw‖2] = E[ max
w∈K

‖Σ1/2w‖2=1

min
‖u‖2=1

u>Xw] .

Recall that the rows ofX are distributed iid from N(0,Σ/n). By Gordon’s lemma (Corollary
G.1 of [35])

−E[κ̃−(X,K)] ≤ E
[

max
w∈K

‖Σ1/2w‖2=1

min
‖u‖2=1

1√
n
‖Σw‖2〈h, u〉+

1√
n
‖u‖2〈Σ1/2w, g〉

]

=
1√
n
E
[

max
w∈K

‖Σ1/2w‖2=1

−‖h‖2 + 〈Σ1/2w, g〉
]
≤−

√
n

n+ 1
+

√
p

n
G̃(x,Σ)

≤−
√

n

n+ 1
+ 1−∆min ,

where the second-to-last equality uses E[‖h‖2] ≥ n√
n+1

and the definition of G̃(x,Σ), and
the last inequality uses the upper bound on the Gaussian width (95). For all n ≥ 2 we have√
n/(n+ 1)≥

√
(n− 1)/n≥ 1− 1√

2n
. Thus, for n≥

√
2/∆min, E[κ̃−(X,K)]≥∆min/2.

The quantity κ̃−(X,K) as a function of XΣ−1/2 is 1√
n

-Lipschitz with respect to the
Frobenius norm. Thus

P(κ̃−(X,K)≤ E[κ̃−(X,K)]− t)≤ e−nt2/2.

Taking t= ∆min/4 and using E[κ̃−(X,K)]≥∆min/2 gives P(κ−(X,K)≤ κ1/2
min∆min/4)≤

e−n∆2
min/32. The proof of inequality (94) is complete.

LEMMA B.15. Assume θ∗ is (s,
√
δ(1 −∆min),M)-approximately sparse for the ma-

trix Σ. If n ≥
√

2/∆min, then there exist constants C,C0, c0 > 0 depending only on
σ,∆min, κmin, κmax, λmin, λmax, and δ such that

P
(
∀λ ∈ [λmin, λmax] :

1

n

∣∣‖θ∗ + Σ−1/2v̂λ
∥∥

1
−
∥∥θ∗∥∥

1

∣∣≤C)≥ 1−C0e
−c0n .(96)



LASSO WITH GENERAL GAUSSIAN DESIGNS 43

PROOF OF LEMMA B.15. The proof follows almost exactly that for [35, Proposition
C.4], using Lemma B.14. The primary difference is the approximation of θ∗ by θ̄∗.

Because θ∗ is (s,
√
δ(1−∆min),M)-approximately sparse, there exists θ̄∗ ∈Rp and x ∈

{−1,0,1}p such that 1
p‖θ̄

∗ − θ∗‖1 ≤M , x ∈ ∂‖θ̄∗‖1, and G(x,Σ)≤
√
δ(1−∆min). Note

that
λ

n

(
‖θ∗ + Σ−1/2v̂λ‖1 − ‖θ∗‖1

)
≥ λ

n

(
‖θ̄∗ + Σ−1/2v̂λ‖1 − ‖θ̄∗‖1 − 2‖θ̄∗ − θ∗‖1

)
≥ λ

n

(
‖θ̄∗ + Σ−1/2v̂λ‖1 − ‖θ̄∗‖1

)
− 2λM .

We show that the high probability event (96) is implied by the event

A :=
{
‖θ̄∗ +w‖1 − ‖θ̄∗‖1 ≤ 0 ⇒ ‖Xw‖2 ≥ a‖w‖2

}⋂{
‖z‖2 ≤ 2

√
n
}
,

where a is as in Lemma B.14. On this event, C(v̂λ)≤ Cλ(0) = σ2‖z‖22/(2n)≤ 2σ2, whence

1

n

(
‖θ̄∗ + Σ−1/2v̂λ‖1 − ‖θ̄∗‖1

)
≤ 2σ2/λmin + 2M ,

which further implies

(97)
1

n

(
‖θ∗ + Σ−1/2v̂λ‖1 − ‖θ∗‖1

)
≤ 2σ2/λmin + 4M .

Let ŵλ = Σ−1/2v̂λ. On the event A, we also have

2σ2 ≥ C(v̂λ)≥ 1

2n
‖σz −Xŵλ‖22 −

λ

n
‖ŵλ‖1 − 2λM

≥ 1

4n
‖Xŵλ‖22 −

σ2

2n
‖z‖22 −

λ√
δn
‖ŵλ‖2 − 2λM

≥ a

4n
‖ŵλ‖22 − 4σ2 −

λ
√
p

n
‖ŵλ‖2 − 2λM .

We conclude that

1√
n
‖ŵλ‖2 ≤ 2

√
2σ2 + 2λM +

λ2

aδ
≤C(1 + λ+M),

for C depending only on σ,a, δ, so in fact only on σ,∆min, δ, κmin, κmax. Then

(98) −Cδ−1/2(1 + λmax +M)≤− 1

n
‖ŵλ‖1 ≤

1

n
(‖θ∗ + ŵλ‖1 − ‖θ∗‖1).

The event A has probability at least 1 − C0e
−c0n by Lemma B.14 and concentration of

Lipschitz functions of Gaussian vectors, where C0, c0 depend only δ, ∆min, κmin, and κmax.
Lemma B.15 now follows by combining (97) and (98).

Lemma B.12 follows from Lemma B.15 by exactly the same argument in the proof of [35,
Lemma C.5].

B.7.2. Proof of Lemma B.13. Recall from the proof of Lemma A.2 (in particular,
Eq. (42)) that v̂f,λ, where the latter is viewed as a function of g and hence an element of
L2(Rp;Rp), is the unique minimizer of E λ. By optimality,

(99)
σ2

2
= E λ(0)≥ E λ(v̂f,λ)≥ λ

n
E
{
‖θ∗ + Σ−1/2v̂f,λ(g)‖1 − ‖θ∗‖1 ,

}
.
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We now find also a lower bound on the right-hand side. Because θ∗ is (s,
√
δ(1−∆min),M)-

approximately sparse, there exists θ̄∗ ∈Rp and x ∈ {−1,0,1}p such that 1
p‖θ̄

∗−θ∗‖1 ≤M ,
x ∈ ∂‖θ̄∗‖1, and G(x,Σ)≤

√
δ(1−∆min). Note that

λ

n
E
{
‖θ∗ + Σ−1/2v̂λ‖1 − ‖θ∗‖1

}
≥ λ

n
E
{
‖θ̄∗ + Σ−1/2v̂λ‖1 − ‖θ̄∗‖1 − 2‖θ̄∗ − θ∗‖1

}
≥ λ

n
E
{
‖θ̄∗ + Σ−1/2v̂λ‖1 − ‖θ̄∗‖1

}
− 2λM .

By the definition of Gaussian width (see Eq. (10)), either
λ

n
E
{
‖θ̄∗ + Σ−1/2v̂λ‖1 − ‖θ̄∗‖1

}
≥ 0 ,

or

σ2

2
= E λ(0)≥ E λ(v̂f,λ)≥ 1

2

(
‖v̂f,λ‖L2

√
n

− G(x,Σ)‖v̂f,λ‖L2

√
nδ

)2

+

− λ

n
E
{
‖Σ−1/2v̂f,λ(g)‖1

}
− 2λM

≥
‖v̂f,λ‖2L2

2n
∆2

min −
λ√
nδ

E
{
‖Σ−1/2v̂f,λ(g)‖2

}
− 2λM

≥
‖v̂f,λ‖2L2

2n
∆2

min −
λκmax√

δ

‖v̂f,λ‖L2

√
n

− 2λM .

In the latter case, we conclude

‖v̂f,λ‖L2

√
n

≤ 2

√
2λM +

σ2

2
+
λ2κ2

max

2δ∆2
min

.

Thus, in this case
(100)

1

n
E
{
‖θ∗ + Σ−1/2v̂f,λ‖1 − ‖θ∗‖1

}
≥−λκmax√

δ

‖v̂f,λ‖L2

√
n

− 2λM

≥−κmax√
δ

2

√
2λmaxM +

σ2
max

2
+
λ2

maxκ
2
max

2δ∆2
min

− 2M .

Combining Eqs. (99) and (100), there exists C depending only on Pmodel, ∆min, M , and δ
such that ∣∣∣∣ 1nE{‖θ∗ + Σ−1/2v̂f,λ‖1 − ‖θ∗‖1

}∣∣∣∣≤C .
By Theorem 2, the solutions to the fixed point equations (8a) and (8b) are bounded by some

parameters PfixPt = (ζmin, ζmax, τmin, τmax) which depend only on Pmodel, νmin, ∆min, M ,
and δ. By the proof of Lemma A.5, there exists r, a > 0 depending only on Pmodel, PfixPt,
and δ such that E λ is a/n strongly-convex in the neighborhood ‖v− v̂f,λ‖L2/

√
n≤ r around

its minimizer. Thus, we conclude for any v ∈ L2 we have

E λ(v)≥ E λ(v̂f,λ) + h(‖v− v̂f,λ‖L2/
√
n)

where h(x) := min{ax2/2, ar|x|/2}. It worth emphasizing that this bound holds for with the
same a, r for all λ ∈ [λmin, λmax]. Then direct calculations further give

E λ(v̂f,λ
′
)≥ E λ(v̂f,λ) + h(‖v̂f,λ′ − v̂f,λ‖L2/

√
n)≥ E λ′(v̂f,λ) + h(‖v̂f,λ′ − v̂f,λ‖L2/

√
n)−C|λ′ − λ|

≥ E λ′(v̂f,λ
′
) + 2h(‖v̂f,λ′ − v̂f,λ‖L2/

√
n)−C|λ′ − λ|

≥ E λ(v̂f,λ) + 4h(‖v̂f,λ′ − v̂f,λ‖L2/
√
n)− 2C|λ′ − λ| ,
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where the last inequality holds by the same string of manipulations justifying the first three.
Take c′ = ar2/C . If |λ−λ′|< c′, we have h(‖v̂f,λ′ − v̂f,λ‖L2/

√
n)≤ ar2/2, whence in fact

h(‖v̂f,λ′ − v̂f,λ‖L2/
√
n) =

a‖v̂f,λ′−v̂f,λ‖2
L2

2n . We conclude ‖v̂f,λ′ − v̂f,λ‖L2/
√
p≤

√
Cδ
a |λ−

λ′|1/2. Therefore the claimed result holds with K =
√

Cδ
a .

B.8. Control of the emprical distribution: proof of Corollary 7. In the fixed design
model, let I be uniformly distributed on [p] independently of g. Let µ∗ be the distribution
of (θ∗I , θ̂

f
I ). For any k, we have 1

p

∑p
i=1 φk(θ

∗
i , θ̂

f
i ) is τκ−1/2

min /
√
p-Lipschitz in g, so that by

Gaussian concentration of Lipschitz functions,

P

(∣∣∣1
p

p∑
i=1

φk(θ
∗
i , θ̂

f
i )−E

[1

p

p∑
i=1

φk(θ
∗
i , θ̂

f
i )
]∣∣∣> t

)
≤ 2e−2pκmint2/τ2

max ,

whence E
[∣∣∣1p∑p

i=1 φk(θ
∗
i , θ̂

f
i )−E

[
1
p

∑p
i=1 φk(θ

∗
i , θ̂

f
i )
]∣∣∣] ≤ C/

√
p, for some C depend-

ing on Pmodel,PfixPt. Summing the above inequality over k = 1, . . . ,∞, we obtain
that E

[
dw∗

(
1
p

∑p
i=1 δθ∗i ,θ̂

f
i
, µ∗

)]
≤ C/

√
p. Note further that dw∗

(
1
p

∑p
i=1 δθ∗i ,θ̂

f
i
, µ∗

)
is

τmaxκ
−1/2
min /

√
p-Lipschitz in g. Applying Gaussian Lipschitz concentration in the fixed de-

sign model, we conclude the second inequality in Corollary 7. In addition, applying Theorem
6, we conclude the first inequality in Corollary 7.

C. Auxiliary results and proofs.

C.1. Gaussian width under correlated designs: proof of Proposition 3.

PROOF OF PROPOSITION 3. Let us first establish the following relation

(101) G(x,Σ)≤ κ1/2
condω

∗(‖x‖0/p) .

To start with, notice that

sup
v∈D(x,Σ)
‖v‖2

L2/p≤1

1

p
〈v,g〉L2 = sup

w∈D(x,Ip)
‖w‖2

L2/p≤1

‖w‖L2〈Σw,g〉L2

p‖Σw‖L2

≤ κ
1/2
max

κ
1/2
min

sup
w∈D(x,Ip)
‖w‖2

L2/p≤1

〈Σw,g〉L2

pκ
1/2
max

,(102)

where in the equality we have used thatw↔‖w‖L2Σw/‖Σw‖L2 is a bijection between the
sets over which the suprema are taken, and in the inequality we have used that the supremum
is positive (because w = 0 is feasible) and ‖w‖L2/‖Σw‖L2 ≥ κ1/2

min. The Lagrangian for the
maximization on the right-hand side is

LΣ(w;κ, ξ) :=
1

pκ
1/2
max

E
[
w>Σ1/2g

]
+
κ

2

(
1− 1

p
E
[
‖w‖22

])
− ξ

p
E
[∑
j∈S

xjwj + ‖wSc‖1
]

=
κ

2
+

1

p
E

w>Σ1/2g

κ
1/2
max

− κ

2
‖w‖22 − ξ

∑
j∈S

xjwj + ‖wSc‖1

 .
The optimal w ∈ L2 maximizes the integrand for almost every g, whence

sup
w∈L2

LΣ(w;κ, ξ) =
κ

2
+

1

p
E

 sup
w∈Rp

w>Σ1/2g

κ
1/2
max

− κ

2
‖w‖22 − ξ

∑
j∈S

xjwj + ‖wSc‖1


 .
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We emphasize that the dummy variable w is in L2 on the left-hand side and Rp on
the right-hand side. We apply the Sudakov-Fernique inequality [1, Theorem 2.2.3] to up-
per bound the expectation in the preceding display. Indeed, for w,w′ ∈ Rp, we have
E[w>Σ1/2g/κ

1/2
max] = E[w>g] = 0 and Var((w −w′)>Σ1/2g/κ

1/2
max)≤Var((w −w′)>g)

because ‖Σ1/2/κ
1/2
max‖op ≤ 1. Thus, the Sudakov-Fernique inequality implies

sup
w∈L2

LΣ(w;κ, ξ)≤ κ

2
+

1

p
E

 sup
w∈Rp

w>g− κ

2
‖w‖22 − ξ

∑
j∈S

xjwj + ‖wSc‖1


= sup

w∈L2

LIp(w;κ, ξ).

For any κ, ξ ≥ 0, supw∈L2 LΣ(w;κ, ξ)≥ supw∈D(x,Ip)
‖w‖2

L2/p≤1

〈Σw,g〉L2

pκ
1/2
max

, whence, by Eq. (102),

G(x,Σ) = sup
v∈D(x,Σ)
‖v‖2

L2/p≤1

1

p
〈v,g〉L2 ≤ κ1/2

cond sup
w∈L2

LIp(w;κ, ξ).

Note that LIp(w;κ, ξ) is the Lagrangian for the optimization Eq. (10) defining G(x, Ip).
Because the constraints on w in this optimization are strictly feasible, strong duality holds.
Thus, Eq. (101) follows by taking the infimum over κ, ξ ≥ 0 in the preceding display.

Parts (a) and (b) of Proposition 3 now follow from the following constructions.

(a) If ‖θ∗‖qq/p ≤ νq for some ν > 0 and q > 0, take x to be supported on the largest
bpε∗(κcond, δ/2)c coordinates of θ∗ and take θ̄∗j = θ∗j for j ∈ supp(x) and 0 other-
wise. We have an upper bound on the Gaussian width of

√
δ/2 and an upper bound on

‖θ̄∗ − θ∗‖1/p of M = ν(1− ε∗(κcond, δ/2)).
(b) If ‖θ∗‖0/p≤ ε∗(κcond, α) for some α < δ, take x to have support size bpε∗(κcond, α)c

with support containing supp(θ∗)8 and take θ̄∗ = θ∗. We have an upper bound on the
Gaussian width of

√
α and an upper bound on ‖θ̄∗ − θ∗‖1/p of M = 0,

The proof of Proposition 3 is complete.

C.2. Properties of the design matrix. Given every integer j ∈ {1, . . . , p}, each row of our
design matrix is sampled independently from a multivariate Gaussian distribution, namely

for i= 1, . . . , n (Xi,j ,Xi.−j)∼N

(
0,

1

n
Σ

)
Σ =

(
Σj,j Σj,−j

Σ−j,j Σ−j,−j

)
,

where the 1/n factor is due to the normalization of the design matrix. HereX.,j stands for the
covariate corresponding to the j-th coordinate of θ and X.,−j ∈R(p−1) stands for covariates
corresponding to rest of θ.

Let us further define X⊥j : = Xj − Σj,−jΣ
−1
−j,−jX−j for every j ∈ {1, . . . , p} and the

sampled version x̆⊥ : = xj −X−jΣ−1
−j,−jΣ−j,j ∈ Rn. Then the linear model can be written

as

y = x̆⊥θ∗j +X−j(θ
∗
−j + θ∗jΣ

−1
−j,−jΣ−j,j) + σz.

In addition, we state without proof the following straightforward properties.

• Xj |X−j ∼N(Σj,−jΣ
−1
−j,−jX−j ,

1
n(Σj,j −Σj,−jΣ

−1
−j,−jΣ−j,j)).

• X⊥j |X−j ∼N(0, 1
n(Σj,j −Σj,−jΣ

−1
−j,−jΣ−j,j)).

• X⊥j ∼N(0, 1
n(Σj,j −Σj,−jΣ

−1
−j,−jΣ−j,j)).

• The entries of x̆⊥ are i.i.d with distribution N(0, 1
n(Σj,j −Σj,−jΣ

−1
−j,−jΣ−j,j)).

8Note it is important that x have support large enough, even if θ∗ is sparser than ε∗(κcond, α).
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D. Additional Simulations.

D.1. Hidden Markov model specification. In the hidden Markov model, the covariates
xij are conditionally independent given latent states sij which are generated according to a
Markov chain. In particular, the distribution satisfies P(si(j+1) | {si`}`≤j) = P(si(j+1) | sij).
The latent states (values for sij) and observed values (values of xij) in the hidden Markov
model that we consider here, take values in {1,2,3,4,5}. Both the transition and emission
probabilities are given by a symmetric random walk with reflection at the boundary; that is,

P(si(j+1) = a|sij = b) = P(xij = a|sij = b) =


1/2 b ∈ {2,3,4} and |a− b|= 1,

1 b ∈ {1,2} and |a− b|= 1,

0 otherwise.

We initialize this Markov chain (i.e., si1) from its stationary distribution. In this case, the
covariance of xij and xij′ is only a function of |j − j′|, as plotted below. We see that covari-
ates which are within approximately distance 10 of each other have non-trivial correlation.
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D.2. Debiasing under Gaussian AR1 models. Here we collect simulations which repeat
those in Figure 1 at different model parameters. These simulations demonstrate the success
of debiasing at many settings of the model parameters. In particular, we run the simulations
varying the correlation parameter ρ = 0, .5, .8 and the sample size n = 25,50,75,100. We
show the legend for the first two plots. The legend for the remaining plots is the same.
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