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Reinforcement learning (RL): challenges

In RL, an agent learns by interacting with an environment

e unknown environments

e delayed rewards or feedback

e astronomically large state and action space
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Sample efficiency despite huge state/action space?

Collecting data samples might be expensive or time-consuming

e enormous sampling burden in the face of huge state/action space

- -

clinical trials online ads
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Sample efficiency despite huge state/action space?

Collecting data samples might be expensive or time-consuming

e enormous sampling burden in the face of huge state/action space

clinical trials online ads

Key solution: exploiting low-complexity models
(a.k.a. function approximation) J
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This talk: MDPs with
linearly realizable optimal Q-functions

linear Q*



Episodic Markov decision process (MDP)

reward
T = 1(Sh, an I

| environment ¢ — -

&

<

next state

Sha1 ~ Pr(-|sn,an)

e H: horizon length

5/ 19



Episodic Markov decision process (MDP)

reward
T = 1(Sh, an I

| environment ¢ — -

&
<

next state
Sha1 ~ Pr(-|sn,an)

e H: horizon length

e S: state space e A: action space

5/ 19



Episodic Markov decision process (MDP)

reward
rh = 1(Sh, an |

| environment ¢ — -

&
<

next state
Sha1 ~ Pr(-|sn,an)

e H: horizon length
e S: state space e A: action space

o 71(sp,ap) € [0,1]: immediate reward in step h

5/ 19



Episodic Markov decision process (MDP)

reward
rh = 1(Sh, an |

| environment ¢ — -

&
<

next state
Sh+41 ™~ P;,,(-\sh,ah)

H: horizon length
S: state space e A: action space
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Episodic Markov decision process (MDP)

reward
rh = 1(Sh, an |

""" environment |+ — =

next state
Sh+41 ™~ P;,,(-\sh,ah)

H: horizon length

S: state space e A: action space
rr(sn,an) € [0, 1]: immediate reward in step h
7 = {7 }i_,: policy (or action selection rule)

Py,(+|s,a): transition probabilities in step h
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Value function and Q-function of policy 7
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e execute policy 7 to generate sample trajectory
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Optimal policy and optimal values
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e Optimal policy 7*: maximizing the value function
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e Optimal policy 7*: maximizing the value function

e Optimal value / Q function: V;* := V™", Q% := QT
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Optimal policy and optimal values
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e Optimal policy 7*: maximizing the value function
e Optimal value / Q function: V;* := V™", Q% := QT
e Sub-optimality gap:
Agp=  min  {Vi(s) = Qis,a)}
s, h
a : suboptimal action
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Linear function representation
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Exploiting low-complexity model is essential for sample-efficient RL!
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Linear function representation

e Model-based (linear MDP): 3 features {py(s,a) € R9} s.t.
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Linear function representation

e Model-based (linear MDP): 3 features {py(s,a) € R9} s.t.

V(S,CL, h) : Ph(' | 57&) = <§0h(57a)7 Mh(')>
Th(57a) = <§0h(s7a)7 wh<37a)>
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Linear function representation

e Model-based (linear MDP): 3 features {py(s,a) € R9} s.t.
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e any Qp =1+ PpViha1 is linearly representable
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Linear function representation

e Model-based (linear MDP): 3 features {py(s,a) € R9} s.t.

V(S,CL, h) : Ph(' | 57&) = <§0h(57a)7 Mh(')>
Th(87a) = <§0h(s7a)7 wh<37a)>

e any Qp =1+ PpViha1 is linearly representable

e Value-based (linear Q*): 3 features {5 (s,a) € R?} s.t.
V(s,a,h) = Qp(s,a) = (pn(s,a), Op)
— only @y, =74+ P,Vi is linearly realizable
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Can we hope to achieve sample efficiency in
linear ()* problem?



Prior art: RL with a generative model / simulator

Can query arbitrary state-action pairs to get samples

generative model
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Prior art: RL with a generative model / simulator

Can query arbitrary state-action pairs to get samples

generative model

e In general, needs min {9 )1 samples (Weisz et al.'21)

e With sub-optimality gap, needs only poly(d, H, ﬁ) samples
(Du et al.'20)
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Prior art: online RL

Obtain data samples via sequential interaction with environment

e collect N episodes of data, each consisting of H steps
e in the n-th episode, execute MDP using a policy ©"
Ty
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Prior art: online RL

Obtain data samples via sequential interaction with environment

e collect N episodes of data, each consisting of H steps
e in the n-th episode, execute MDP using a policy ©"
Ty
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} samples when Ag,, < 1! (Wang et al. '21) J

Needs min {eQ(d
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generative model

generative model: idealistic online RL: more restrictive/practical
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generative model | online RL

no sub-optimality gap inefficient inefficient
with sub-optimality gap efficient inefficient
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generative model

generative model: idealistic online RL: more restrictive/practical
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generative model | online RL

no sub-optimality gap inefficient inefficient
with sub-optimality gap efficient inefficient
1 T2 3 TH
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generative wodel ( 1,01,71,92,W2,72, yTHyWH, H)
generative model: idealistic online RL: more restrictive/practical

Is there a sampling mechanism — more flexible than standard online
RL, yet practically relevant — that still promises efficient learning?
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A new sampling protocol: state revisiting

Allow one to revisit previous states in the same episode

— also called local access to generative model (Yin et al. '21)
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A new sampling protocol: state revisiting

Allow one to revisit previous states in the same episode

— also called local access to generative model (Yin et al. '21)
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e Input: initial state (chosen by nature)

e generate a length-H trajectory
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A new sampling protocol: state revisiting

Allow one to revisit previous states in the same episode

— also called local access to generative model (Yin et al. '21)
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e Input: initial state (chosen by nature)

e generate a length-H trajectory

e Pick any previously visited state s, in this episode, and repeat
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A new sampling protocol: state revisiting

Allow one to revisit previous states in the same episode

— also called local access to generative model (Yin et al. '21)
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e Input: initial state (chosen by nature)

e generate a length-H trajectory

e Pick any previously visited state sj, in this episode, and repeat
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A new sampling protocol: state revisiting

“save files” feature in video games Monte Carlo Tree Search
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A new sampling protocol: state revisiting

“save files” feature in video games Monte Carlo Tree Search

e more flexible than standard online RL
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A new sampling protocol: state revisiting

“save files” feature in video games Monte Carlo Tree Search

e more flexible than standard online RL

e more restrictive/practical than generative model

Issue: frevisit attempts might affect sample size |
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Our contributions: a sample-efficient algorithm

Given N initial states {s7}1<,<xn chosen by nature, define
1S1<n< Y

Regret(N Z (Vl st) (s’f))

n=1
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Our contributions: a sample-efficient algorithm

Given N initial states {s} }1<p<n chosen by nature, define

Regret(N Z (Vl sty =V (s’f))

Theorem 1 (Li, Chen, Chi, Gu, Wei'21)
We propose an algorithm that achieves (up to log factor)

d*H7
T

1
NRegret(N) S

5
where T' is sample size, and { state revisits is at most O( A2 )
gap
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Implications

Theorem 2 (Li, Chen, Chi, Gu, Wei'21)
We propose an algorithm that achieves (up to log factor)

d*H7
T

1
NRegret(N) <

. . .. . =~ 2 175
where T is sample size, and { state revisits is at most O(dAf )
gap

e Sample size needed to get ¢ average regret: poly(d, H, ﬁ, %)
independent of S and A
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Implications

Theorem 2 (Li, Chen, Chi, Gu, Wei'21)
We propose an algorithm that achieves (up to log factor)

d*H7
T

1
NRegret(N) <

. . .. . =~ 2 175
where T is sample size, and { state revisits is at most O(dAf )
gap

e Sample size needed to get ¢ average regret: poly(d, H, ﬁ, %)
independent of S and A

e Limited state revisits: poly(d, H, ﬁ) almost independent of ¢

e Can be easily refined to get logarithmic regret bound (in T')
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A glimpse of our algorithm: LinQ-LSVI-UCB
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Key ingredients:
e Adapted from LSVI-UCB (originally designed for linear MDPs)
Jin, Yang, Wang, Jordan 20

e Check exploration bonus: if this uncertainty term exceeds
Agap/2, then revisit states to draw more samples

— see our paper for detailed procedures



Concluding remarks

"
53—~ 84— SgTw
) i )
N N ot
3 ay
! U
Sy % SH %
i ]
0"2’ (],:,; AN Ly
-~ o, by
{ i
N N
S0 B =8 61— SH—~—
H 1 H 1 ( 1 H 1 1
oo’ ‘\_f’ o’ g ‘\_/, \\_al
ag ay az as ay

e A new sampling protocol (more flexible than standard online RL
yet still practically relevant)

e A sample-efficient solution: exploiting state revisiting to help
remedy error accumulation/blowup across layers

“Sample-Efficient Reinforcement Learning Is Feasible for Linearly Realizable MDPs with

Limited Revisiting,” NeurlPS2021, arXiv:2105.08024
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