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Recent successes in reinforcement learning (RL)

Google DeepMind's

AlphaFold 2

At last — a computer program that
can beat a champion Go player PAcE484

ALL SYSTEMS GO oy

SONGBIRDS SAFEGUARD HEN GENES
ALA CARTE TRANSPARENCY )T ‘SELFISH’

RL holds great promise in the next era of artificial intelligence.
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Recap: Supervised learning

Given i.i.d training data, the goal is to make prediction on unseen data:

— pic from internet

14



Reinforcement learning (RL)

In RL, an agent learns by interacting with an environment.

s~ ——n
= E\T’;‘é:?

L = =T ) =
® no training data

® trial-and-error
® maximize total rewards

® delayed reward

“Recalculating ... recalculating ...”
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Sample efficiency

I
CLINICAL TRIAL

DISCOVERY &
PRE-CLINICAL

FDA
APPROVAL

PHASE | PHASE 2 PHASE 3

=2

Source: chinsights.com B2 CBINSIGHTS

® prohibitively large state & action space
® collecting data samples can be expensive or time-consuming
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Sample efficiency

I
CLINICAL TRIAL

DISCOVERY &
PRE-CLINICAL

FDA
APPROVAL

PHASE | PHASE 2 PHASE 3

=2

Source: chinsights.com B2 CBINSIGHTS

® prohibitively large state & action space
® collecting data samples can be expensive or time-consuming

Challenge: design sample-efficient RL algorithms J
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Computational efficiency

Running RL algorithms might take a long time ...

® enormous state-action space

® nonconvexity
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Computational efficiency

Running RL algorithms might take a long time ...

® enormous state-action space

® nonconvexity

Challenge: design computationally efficient RL algorithms )
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Theoretical foundation of RL

asymptotic
ana IysV
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Theoretical foundation of RL

Y ,jg’e finite-sample
, analysis «

asymptotic
analysy

Understanding sample efficiency of RL requires a modern suite of
non-asymptotic analysis tools
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Sample complexity issues that permeate
state-of-the-art RL theory

regret
or
other metrics <

»
»

sample size
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Sample complexity issues that permeate
state-of-the-art RL theory

regret
or
other metrics

»
»

@ sample size

huge burn-in cost!
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Sample complexity issues that permeate
state-of-the-art RL theory

regret
or
other metrics

»
»

sample size

generative model / simulator @
online RL huge burn-in cost!

offline RL
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Sample complexity issues that permeate
state-of-the-art RL theory

regret
.or
other metrics

>
L

sample size

® multi-agent RL
® partially observable MDPs
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Sample complexity issues that permeate
state-of-the-art RL theory

regret
or
other metrics |-

>
>

® multi-agent RL sample size
® partially observable MDPs
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This tutorial

FIRST-ORDER METHODS
IN OPTIMIZATION High-Dimensional
Probability

1
tion

Numerical
Optimiza

Amir Beck

(large-scale) optimization (high-dimensional) statistics

Design sample- and computationally-efficient RL algorithms

1-11



This tutorial

FIRST-ORDER METHODS
IN OPTIMIZATION

Amir Beck

(large-scale) optimization (high-dimensional) statistics

Design sample- and computationally-efficient RL algorithms

Part 1. basics, RL w/ a generative model

Part 2. online / offline RL, multi-agent / robust RL
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Part 1

1. Basics: Markov decision processes

2. RL w/ a generative model (simulator)

> model-based algorithms (a “plug-in" approach)

» model-free algorithms



Markov decision process (MDP)

state s; action ay
agent ——1

environment |« — —J

A A 4

® S: state space

e A: action space
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Markov decision process (MDP)

state s¢ action a;
. Y agent ——1
1
i I
+ reward
11Tt =TS, At |
[
| I E— .
“ environment |« — —

® S: state space
e A: action space

® r(s,a) € [0,1]: immediate reward
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Infinite-horizon Markov decision process

action
state s;

[ jat ~ m([st)
R ) agent ——7

]
]
]
i reward |
i A T(St,at |

b

environment |« — —J

S: state space
A: action space
r(s,a) € [0,1]: immediate reward

7(+|s): policy (or action selection rule)
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Infinite-horizon Markov decision process

action
state s;

[ jat ~ m([st)
R ) agent ——7

]
]
]
i reward |
i A T(St,at |

b

environment |« — —J

| next state
St41 ~ P(c|st, ar)
S: state space
A: action space
r(s,a) € [0,1]: immediate reward
7(+|s): policy (or action selection rule)

P(-|s,a): unknown transition probabilities
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Help the mouse!
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Help the mouse!

e, e
el
s,
"

® state space S: positions in the maze
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Help the mouse!

® state space S: positions in the maze

® action space A: up, down, left, right
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Help the mouse!

® state space S: positions in the maze
® action space A: up, down, left, right
® immediate reward r: cheese, electricity shocks, cats

1-15



Help the mouse!

state space S: positions in the maze
action space A: up, down, left, right
immediate reward 7: cheese, electricity shocks, cats
policy m(-|s): the way to find cheese
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Value function

action

state s o
------- o) y &z om o n

reward |:> So I S1 I S2 I S3 l S4 I
re = 7r(S¢, at | T ) P N { % ¥ ) v

&

o o - e o
<=~ environment — ag ap az as ay
Al

So|

siy1 ~ P(st,ar)

Value of policy m: cumulative discounted reward

VseS: V7T(s):=E Z’ytr(st,at) |so=s
t=0
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Value function

action

state s
ag ~ T("|S
------- G b n on o om

T4

reward |:> So I S1 I S2 I S3 l
re = 7r(S¢, at | T } P N P N ¥ )

&

4=~ environment — ag ay az az
Al

Sth1 ~ })(Wstaaﬂ

Value of policy m: cumulative discounted reward

VseS: V7T(s):=E Z’ytr(st,at) |so=s
t=0

® v €10,1): discount factor

> take v — 1 to approximate long-horizon MDPs

> effective horizon: ﬁ

84

So|

'~

aq
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Q-function (action-value function)

T2 T3 T4 Ts

So,ao ‘—I—'sl—l—osz—l—>83—|—>54—|—>s5—|—>

ao ay ay as fl:t ’15

Q-function of policy 7:

V(s,a) e SxA: Q7(s,a):=E nytrt|so =s,a0=a
=0

® (gg7 s1,a1, S2,a2,- - ): induced by policy 7
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Q-function (action-value function)

70 T1 T2 T3 T4 75
(o) @m—lmbn Lo La L
aO' a'1 ay a'3 a:l a5
T2 r3 T4 5
(30, G0) ’—l—»sl—l—»52—|—>33—|—»s4—|—>s5_|—.
a.;. ?11 as &3 &1 W

Q-function of policy 7:

V(s,a) e SxA: Q7(s,a):=E nytrt|so =s,a0=a
=0

® (gg7 s1,a1, S2,a2,- - ): induced by policy 7
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Finite-horizon MDPs

<

| environment |« — -

Sh+nle>it Isafza(ﬂe«‘)’h, an)
H': horizon length
S: state space with size S e A: action space with size A
rh(sn,ap) € [0, 1]: immediate reward in step h
7 = {m}1,: policy (or action selection rule)

Py(-]s,a): transition probabilities in step h
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Finite-horizon MDPs

reward
rh =7(Sh, an I

| environment |« — —

<
next state
Sha1 ~ Pu(-|sn, an)

M=

value function: V7 (s) =E l rh(shyan) | sn = s]
t

h

M=

Q-function: Q7 (s,a) =E l rh(Sh, an) | Sp = 8,ap = a]

t

Il
>
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Optimal policy and optimal value

state s

14

=
=
&=

e optimal policy 7*: maximizing value function max, V"™
Proposition (Puterman’94)

For infinite horizon discounted MDP, there always exists a deterministic
policy ©*, such that

V™ (s)>V™(s), Vs, and .

1-19



Optimal policy and optimal value

L
AN
-
I’
-,

® optimal policy 7*: maximizing value function max, V"™

* optimal value / Q function: V* := V™" Q* := Q™

1-19



Optimal policy and optimal value

-
A
4 ’,W
S T

® optimal policy 7*: maximizing value function max, V"™
* optimal value / Q function: V* := V™" Q* := Q™

® How to find this 7*7

1-19



Basic dynamic programming algorithms
when MDP specification is known



Policy evaluation: Given MDP M = (S, A,r, P,) and policy
m:S — A, how good is 77 (i.e., how to compute V7™ (s), Vs7)



Policy evaluation: Given MDP M = (S, A,r, P,) and policy
m:S — A, how good is 77 (i.e., how to compute V7™ (s), Vs7)

Possible scheme:
® execute policy evaluation for each 7

® find the optimal one



Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7

1-22



Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7

Bellman’s consistency equation

V7 (s) = Equn(ls) [Q7 (s, )]

Q(s0)= r(sa) +y B | V() |
N~—— s'~P(:|s,a) S~——

immediate reward next state's value

Richard Bellman

1-22



Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7
Bellman’s consistency equation

V7 (s) = Equn(ls) [Q7 (s, )]

Q(sa)= 1r(sa) 4y E | V() ]
N~—— s'~P(:|s,a) S~——

immediate reward next state's value

® one-step look-ahead

Richard Bellman
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Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7

Bellman’s consistency equation

VT(s) = Eqer(ls) [Q”(s, a)]

Q(sa)= 1r(sa) 4y E | V() ]
~—— s'~P(-|s,a) ~——
immediate reward next state's value

® one-step look-ahead

® |et P™ be the state-action transition matrix
induced by m:

Q"=r+yP"Q" = Q" =(I-yP")'r
Richard Bellman
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Optimal policy 7*: Bellman’s optimality principle

Bellman operator

T(Q)(s,a) = 7r(s,a) +v E max Q(s',a’)
s'~P(|s,a) La’€A
immediate reward
next state's value

® one-step look-ahead
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Optimal policy 7*: Bellman’s optimality principle

Bellman operator

T(Q)(s,a):= r(s,a) +~v E max Q(s',a’)
s'~P(:|s,a) a’eA
immediate reward
next state's value

® one-step look-ahead

Bellman equation: Q* is unique solution to
TQ)=Q"
~-contraction of Bellman operator:

|7(Q1) — T(Q2)llo <V/[Q1 — Q2o Richard Bellman
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Two dynamic programming algorithms

Q(U)
Value iteration (VI) ol
Fort=0,1,..., ¢
-
Q(t+1) _ T(Q(t)) QW .
Q4

Policy iteration (PI)
Fort=0,1,..

.1

policy evaluation: Q) = Q™"

policy improvement: 71 (s) = argmax QW (s,0)
ac
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Iteration complexity

Theorem (Linear convergence of policy/value iteration)

09 - @l <0 -
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Iteration complexity

Theorem (Linear convergence of policy/value iteration)

1 = @[l < '1|Q" - Q"I

Implications: to achieve ||Q() — Q*||o < ¢, it takes no more than

) _ o*
. log <”QQ”OO> iterations
1—7 €
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Iteration complexity

Theorem (Linear convergence of policy/value iteration)

1 = @[l < '1|Q" - Q"I

Implications: to achieve ||Q() — Q*||o < ¢, it takes no more than

) _ o*
. log <”QQ”OO> iterations
1—7 €

Linear convergence at a dimension-free rate!
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When the model is unknown . ..

VoLuwe

Reinforcement |\ Dynamic Programming

Learning and Optimal Control
'8 DIMITRI P BERTSEKAS

A lnoducton |

hcand e |

Richard S. Sutton and Andrew G, Barto /
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When the model is unknown . ..

THIRD EDITION
T |

Reinforcement
Learning

A Introduction
second edition

Dynamic Programming
and Optimal Control

DIMITRI P. BERTSEKAS

—

15 i\
Richard S. Sutton and Andrew G. Barto / W

L

{ fm———
1
1
A
1
1
1

<.

/’—
,

A

Need to learn optimal policy from samples w/o model specification

1-26



Two approaches

model Pl

00 __—-p | R e
';;Vw{*’ff/ (i. P € RISIAIXISI) “Q‘f@s
S model-based p

samples value function
(experience) policy

Model-based approach (“plug-in”)
1. build an empirical estimate P for P

2. planning based on the empirical p
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Two approaches

K"Vo“" _____ > model | f)(q i
,;’V;' (ie. P € RISIAIXISTy %,19
/ wodel-based )
samples value function
(experience) policy
2 —
e model-free .-

Model-based approach (“plug-in”)
1. build an empirical estimate P for P

2. planning based on the empirical p

Model-free approach
— learning w/o estimating the model explicitly

1-27



Sampling mechanisms

1. RL w/ a generative model (a.k.a. simulator)
> can query arbitrary state-action pairs to draw samples
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Sampling mechanisms

1. RL w/ a generative model (a.k.a. simulator)
> can query arbitrary state-action pairs to draw samples

2. online RL
> execute MDP in real time to obtain sample trajectories
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Sampling mechanisms

1. RL w/ a generative model (a.k.a. simulator)
> can query arbitrary state-action pairs to draw samples

2. online RL
> execute MDP in real time to obtain sample trajectories

3. offline RL

> use pre-collected historical data

1-28



Exploration vs exploitation

Exploration

4 }“g’l\‘\(ﬁ

offline RL

S onts

===\

“Recalouating... recalulaing ..

online RL

generative model

1-29



Exploration vs exploitation

> Exploration

f :‘.:;f-{;i\xxk B W O R
| r/,'i 7 sl ’”3}@ =271 S
o Lol e Ly '"',:i_,ﬁ/\\\ AN st
offline RL online RL generative model

Varying levels of trade-offs between exploration and exploitation.

)
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Part 1

1. Basics: Markov decision processes

2. RL w/ a generative model (simulator)

» model-based algorithms (a “plug-in" approach)

» model-free algorithms



A generative model / simulator

— Kearns and Singh, 1999

gewerative model

e sampling: for each (s,a), collect N samples {(s,a, s/ \) hi<i<n
(i) F1=rs

1-31



A generative model / simulator

— Kearns and Singh, 1999

gewerative model

e sampling: for each (s,a), collect N samples {(s, a, S/(i))}lgiSN

® construct 7 based on samples (in total |S||A| x N)

1-31



(. -sample complexity: how many samples are required to

learn an e-optimal policy ?

-~

Vs: V() >V*(s)—e



An incomplete list of works

Kearns and Singh, 1999
Kakade, 2003

Kearns et al., 2002

Azar et al., 2012

Azar et al., 2013

Sidford et al., 2018a, 2018b
Wang, 2019

Agarwal et al., 2019
Wainwright, 2019a, 2019b
Pananjady and Wainwright, 2019
Yang and Wang, 2019
Khamaru et al., 2020

Mou et al., 2020

Cui and Yang, 2021



An even shorter list

of prior art

algorithm sample size range | sample complexity e-range
Empirical QVI [\SP\A\ ) IS[1A| (o, é]
Azar et al., 2013 (1-v)2° (1—7)3e2 Vv (1=7)[S|
Sublinear randomized VI [ |SI|A| ) |S]]Al (0 L}
Sidford et al., 2018b 1-2 (1—v)%e? P11y
Variance-reduced QVI [ |SI|A| ) |SI|A| (0,1]
Sidford et al., 2018a (1-7)3> (1-7)3e2 ’
Randomized primal-dual [ |S||A ) |S||A] (0 1 ]
Wang 2019 1-m2 (1—7)%e2 P 1-ny
Empirical MDP + planning [ |S||A]| o) ISIIAl (0, -]
Agarwal et al., 2019 1-2 (1-7)3e? P V1=

important parameters

—

e 4 states |S|, # actions | A

® the discounted complexity 1%

® approximation error ¢ € (0, -]

» T—~
1-34



Model estimation

Sampling: for each (s, a), collect
N ind. samples {(s, a, S/(Z-))}lgigjv

generative model



Model estimation

Sampling: for each (s, a) collect
N ind. samples {(s,a, s )}1<1<N

Empirical estimates

generative model /| S, (1 N Z ]1{8

-~

empirical frequency



Empirical MDP + planning

— Azar et al., 2013, Agarwal et al., 2019

[/ empirical MDP

H EN
| [ |
| - n =
e | planning =%
[ H B oracle
| [ | . .
| | | B e.g. dynamic programming
H BN
| |
r

empirical P

Find policy based on the empirical MDP (empirical maximizer)
—_——— —_— —

using, e.g., policy iteration (ﬁﬂn)



Challenges in the sample-starved regime

| H B
[
| =
||
H N
H N
|
L]
H N
H |
truth: P € RISIMAIXIS] empirical estimate: P

e Can't recover P faithfully if sample size < |S|?|.Al!



Challenges in the sample-starved regime

| H B
[
| =
[
H N
H N
|
L
H N
H |
truth: P € RISIMAIXIS] empirical estimate: P

e Can't recover P faithfully if sample size < |S|?|.Al!

e Can we trust our policy estimate when reliable model estimation is
infeasible?



(~-based sample complexity

Theorem (Agarwal Kakade, Yang'19)

Forany 0 < e < \/7 the optimal policy ™ of empirical MDP achieves

IVF =V <e

with high prob., with sample complexity at

~( ISI4
o ((1

_ ")/)362

most

)

V.




(~-based sample complexity

Theorem (Agarwal, Kakade, Yang'19)

1

Forany 0 < e < T

”Vﬁ* - V*Hoo <e

with high prob., with sample complexity at most

the optimal policy ™ of empirical MDP achieves

5 (_ISIIA]
o202
((1 — 7)32
® matches minimax lower bound: ﬁ((l“_ggé;) when ¢ < —7—

(equivalently, when sample size exceeds (|fl‘$‘2) Azar et al., 2013




(~-based sample complexity

Theorem (Agarwal, Kakade, Yang'19)

1

Forany 0 < e < T

”V%* - V*Hoo <e

with high prob., with sample complexity at most

the optimal policy ™ of empirical MDP achieves

5 (_ISIIA]
o202
((1 — 7)32
® matches minimax lower bound: ﬁ((l“_ggé;) when ¢ < 1177/

(equivalently, when sample size exceeds (|fl‘$‘2) Azar et al., 2013

® established upon leave-one-out analysis framework




sample
complexity

ISII-A]
(1=7)

EENE

(=)

N
3

‘K:%'
«be’ ; ,
«© — Sidford et al."18a

8

Agarwal et al.'19

A N , \\\/
z§ 1/,§



sample
complexity

IS|IA]
(1-7)3
S|I4]
(=)
|S[IA]
1-v [ 1 1 > —
AN AEN 6\\/ €2
7 7
7



sample
complexity

N
N
> /
&
2@‘6 — Sidford et al. "18a
3
o“é
-/ Agarwal etal/19
f , +
(\\‘«b
‘6\\
_/
1 1 1 » —
AN BN @\\/ €2
% ’
7
N XL
> >
. . . . S||lA
Agarwal et al., 2019 still requires a burn-in sample size = (|1_H7)‘2



sample

complexity
&
\:%'

ISII-A] S

(1—7)3 ~2‘>‘é — Sidford et al. "18a
S

ISHAI A/garwal et al.’19 \)(\

e 7 PR
\(‘\«\’b
Slag | ®
1-v 1 1 > —
N & ® 2
€
N N , \\/

ISILA]|

Agarwal et al., 2019 still requires a burn-in sample size = (E=E

Question: is it possible to break this sample size barrier? )




Perturbed model-based approach (Li et al. ’20)

/ empirical MDP

L
|
|
|
o ]

empirical P

perturb
rewards

—

|

—Li et al., 2020

planning %;
oracle

\ij_e:ynamic programming

b
3

empirical

Find policy based on the empirical MDP with slightly perturbed rewards

1-40



Optimal /,.-based sample complexity

Theorem (Li, Wei, Chi, Chen '20)

Forany 0 < e < ﬁ the optimal policy 7?; of perturbed empirical MDP
achieves

[V = V¥l < &

with high prob., with sample complexity at most

o(a-ya)

1-41




Optimal /,.-based sample complexity

Theorem (Li, Wei, Chi, Chen '20)

1
Forany 0 <e < =y

achieves

the optimal policy 7 of perturbed empirical MDP

[V = V*||oo < €

with high prob., with sample complexity at most

o(a-ya)

® matches minimax lower bound: Q(%) Azar et al., 2013

e full e-range: € € (0, ﬁ] — no burn-in cost

® established upon more refined leave-one-out analysis and a
perturbation argument

1-41



sample
complexity

X
N
> //
¢ s
>
éé — Sidford et al.'18a
......... X o




A sketch of the main proof ingredients

1-43



Notation and Bellman equation

Bellman equation: V™ =r, +~yP, V"™

e /™ value function under policy 7
> Bellman equation: V™ = (I —yP;) " lr,

e /™. empirical version value function under policy 7

> Bellman equation: V™ = (I —vP;)"!r,

1-44



Notation and Bellman equation

Bellman equation: V™ =r, +~yP, V"™

V™. value function under policy 7
> Bellman equation: V™ = (I —yP;) " lr,

V™. empirical version value function under policy 7

> Bellman equation: V™ = (I —vP;)"!r,

m*: optimal policy for V™

7*: optimal policy for VT

1-44



Main steps

Elementary decomposition:

VAV = (V- VT 1 (V- V) 4 (V- VT

< (V™ -VT) 40+ (VE -V
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Main steps

Elementary decomposition:

VAV = (V- VT 1 (V- V) 4 (V- VT

< (V™ -VT) 40+ (VE -V

e Step 1: control V™ — V7 for a fixed 7 (called “policy evaluation”)
(Bernstein inequality + a peeling argument)
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Main steps

Elementary decomposition:

VAV = (V- VT 1 (V- V) 4 (V- VT

< (V™ V™) 10+ (VE V)

e Step 1: control V™ — V7 for a fixed 7 (called “policy evaluation”)
(Bernstein inequality + a peeling argument)

e Step 2: extend it to control V7' — V7 (7* depends on samples)
(decouple statistical dependency)

1-45



Key idea 1: a peeling argument (for fixed policy)

First-order expansion

VT VT = v(I - 'yP7r)_1 (ﬁw — P7r)177r [Agarwal et al., 2019]
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Key idea 1: a peeling argument (for fixed policy)

First-order expansion

VT VT = (I - 'yPﬂ)_l (ﬁﬂ - P7r)‘77r [Agarwal et al., 2019]

Ours: higher-order expansion + Bernstein — tighter control

VT — V™ = (I —P;) " (Pr = Pr) V" +
+y(I=vPr) " (Pr = Po) (VT = V7)

Bernstein’s inequality: ](P7r — PW)V”| <4/ Va;{,‘/ﬂ + ”V;[”‘”
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Key idea 1: a peeling argument (for fixed policy)

First-order expansion

VT VT = (I - ’wa)_l (]37r — PW)‘/}’r [Agarwal et al., 2019]

Ours: higher-order expansion + Bernstein — tighter control
VT VT = (I —~P;)  (Pr — P) V™ +
+~2 ((I —P) Py — PW)>2V”
+ 3 <(I —P,) (P - PW)>3V“

+ ...

. . ~ - VarlV™] | V™|l
Bernstein's inequality: |(Pr — Pr) V™| < 4/ m}{, I N”

1-46



Byproduct: policy evaluation

Theorem (Li, Wei, Chi, Gu, Chen’20)

Fix any policy w. For every 0 < € < plug-in estimator v obeys

1
1—~’

V™ =Vl <&

with sample complexity at most

(= )

1-47



Byproduct: policy evaluation

Theorem (Li, Wei, Chi, Gu, Chen’20)

1

Fix any policy w. For every 0 < € < j— plug-in estimator v obeys

V™ =Vl <&

with sample complexity at most

0=

® minimax lower bound [Azar et al., 2013, Pananjady and Wainwright, 2019]
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Byproduct: policy evaluation

Theorem (Li, Wei, Chi, Gu, Chen’20)
1
1—~’

Fix any policy . For every 0 < & < plug-in estimator yr obeys
IV =Vl <&

with sample complexity at most

(= )

® minimax lower bound [Azar et al., 2013, Pananjady and Wainwright, 2019]

® tackle sample size barrier: prior work requires sample size > %
[Agarwal et al., 2013, Pananjady and Wainwright, 2019, Khamaru et al,, 2020]
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Step 2: controlling Ve v

A natural idea: apply our policy evaluation theory 4+ union bound

148



Step 2: controlling Ve v

A natural idea: apply our policy evaluation theory 4+ union bound

® highly suboptimall!
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Step 2: controlling Ve v

A natural idea: apply our policy evaluation theory 4+ union bound

® highly suboptimall!

key idea 2: a leave-one-out argument to decouple stat. dependency btw
7 and samples

— inspired by [Agarwal et al., 2019] but quite different ...
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Key idea 2: decouple dependency for vy

— inspired by [Agarwal et al., 2019] but quite different . ..

(
— ! H EBN | 1
decouple == ] =“ -. B -=

dependency [ | ] [ ]

HE B HE B

H EHR H EHR

| | | |
H B H B

H E R H EH B

EE BN EEm N
empirical P T leave-one-out P(*®) (5@

. ~ empirical maximizer =
e define w(*s o) s (Pls:a) p(s:0)
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Key idea 2: decouple dependency for vy

— inspired by [Agarwal et al., 2019] but quite different . ..

p -
—> ! H H N H 1
decouple “i.- ] =“ -. B -=

dependency [ | ] [ ]

HE B HE B

H EHR H EHR

| | | |
H B H B

H E R H EH B

EE BN EEm N
empirical P T leave-one-out P(*®) (5@

. ~ empirical maximizer =
e define w(*s o) s (Pls:a) p(s:0)

» decouple dependency by dropping randomness in 13( | s,a)

» scalar 7(>%) ensures Q* and V* unchanged
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Key idea 2: decouple dependency for vy

— inspired by [Agarwal et al., 2019] but quite different . ..

p -
—> ! H H N H 1
decouple “i.- ] =“ -. B -=

dependency [ | ] [ ]

HE B HE B

H EHR H EHR

| | | |
H B H B

H E R H EH B

EE BN EEm N
empirical P T leave-one-out P(*®) (5@

e define 51'\( o empirical maximizer) (ﬁ(sva) T(S’a))

(S Q) = = 7* can be determined under separation condition

-~

VseS, Q4s,7*(s)) — 'n;zizc( )Q*(&a) >0

149



Key idea 3: tie-breaking via perturbation

® How to ensure the optimal policy stand out from other policies?

VseS, Q(s,7(s))— max Q*(s,a)>w

a:a#£7T*(s)



Key idea 3: tie-breaking via perturbation

® How to ensure the optimal policy stand out from other policies?

VseS, Q(s,7(s))— max Q*(s,a)>w

a:a#£7T*(s)

*

e Solution: slightly perturb rewards r — 7

P
> ensures the uniqueness of 7, » y
> VT VT W
\v \%*/ - )
N B
S
s“‘ 1 — l
—a 1 b
e ] ‘ > 3
2 3



Summary of model-based RL

sample
. 4
complexity

IS|IA|
1-72[=
|S||A] |
(1-y?
|S]IA]
1 1 ] > 1
@\\ 6‘\\ 6\\/ &'2
7 N
N
> V%

Model-based RL is minimax optimal & does not suffer from a
sample size barrier! J
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Part 1

1. Basics: Markov decision processes

2. RL w/ a generative model (simulator)

> model-based algorithms (a “plug-in" approach)

» model-free algorithms



Model-based vs. model-free RL

o model | P,
e i IIJ41x|S] g
.}’Mf’c' (i-e. P € RISIAIXISI f\lfﬁs

/

wodel-based

’ \\
/
samples value function
(experience) policy
4 4

Model-based approach (“plug-in”)
1. build empirical estimate P for P
2. planning based on empirical P

Model-free / value-based approach

— learning w/o modeling & estimating environment explicitly
— memory-efficient, online, ...



finite-time &
\ finite-sample analysis

asymptotic
analysis

1989 1992 1994 2018

Focus of this part: classical Q-learning algorithm and its variants



A starting point: Bellman optimality principle

Bellman operator

I
= max S,a
T(Q)(s,a) r(s,a)  + VS,NPII?‘S’G) max (s’ a’)
immediate reward
next state's value

® one-step look-ahead



A starting point: Bellman optimality principle

Bellman operator

T(Q)(s,a) = 7r(s,a) +v E max Q(s',a’)
—— s'~P(-|s,a) La’€A
immediate reward
next state's value

® one-step look-ahead

Bellman equation: Q* is unique solution to
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A starting point: Bellman optimality principle

Bellman operator

T(Q)(s,a) = 7r(s,a) +v E max Q(s',a’)
—— s'~P(-|s,a) La’€A
immediate reward
next state's value

® one-step look-ahead
Bellman equation: Q* is unique solution to
T(Q)=Q"

® takeaway message: it suffices to solve the
Bellman equation

. . . Richard Bell
® challenge: how to solve it using stochastic ichard Befiman

samples?
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Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins & K/Ionro, 1951

TQ) -Q=0
where
T@(s0) = r(sa) +7 E [maxQ,d)].
~—— s'~P(-|s,a) La'€A
immediate reward ————r

next state's value



Q-learning: a stochastic approximation algorithm

4

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) —Q =0

Qut1(s,a) = Qu(s,a) + ﬁt(ﬁ(@t)(sa a) — Qu(s, a)), t=>0

TV
sample transition (s,a,s’)




Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) —Q =0

Qut1(s,a) = Qu(s,a) + ﬁt(ﬁ(@t)(sa a) — Qu(s, a)), t=>0

TV
sample transition (s,a,s’)

Te(Q)(s,a) = (s, a) +ymax Q(s',a")
T(Q)(s,a) =r(s,a) +v E [max Q(s, a’)}

s/~P(:|s,a) = a’
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A generative model / simulator

— Kearns, Singh '99

gewerative model

Each iteration, draw an independent sample (s, a, s’) for given (s, a)



Synchronous Q-learning

Chris Watkins Peter Dayan

./{"

fort=0,1,...,7T
for each (s,a) € S x A

draw a sample (s, a,s’), run

Qeei(s.0) = (1= 1)Qi(s,a) + mp{r(s.0) + ymax Qu(s'.a)) |

synchronous: all state-action pairs are updated simultaneously J

e total sample size: T|S||A|



Sample complexity of synchronous Q-learning

Theorem (Li, Cai, Chen, Wei, Chi’21)

For any 0 < e <1, synchronous Q-learning yields H@ — Q"o < € with
high prob. and E[||Q — Q*||~] < €, with sample size at most

{5 (;*g ES

0 % if|Al =1 (TD learning)




Sample complexity of synchronous Q-learning

Theorem (Li, Cai, Chen, Wei, Chi’21)

For any 0 < e <1, synchronous Q-learning yields H@ — Q"o < € with
high prob. and E[||Q — Q*||~] < €, with sample size at most

O(-SIAL ) if 4] > 2

(1—7)%e?

0 % if|Al =1 (TD learning)

e Covers both constant and rescaled linear learning rates:

1 1
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log? T log2 T
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Sample complexity of synchronous Q-learning

Theorem (Li, Cai, Chen, Wei, Chi’21)

For any 0 < e <1, synchronous Q-learning yields H@ — Q"o < € with
high prob. and E[||Q — Q*||~] < €, with sample size at most

O(glkly) iflal>2 (7

9 (1,5)'352 if|Al =1 (minimax optimal)

other papers sample complexity

= _ISIIA]
- ! -
Even-Dar & Mansour '03 2 (—)%e2
I IS|214]2
Beck & Srikant'12 (1—~)5¢2
Wainwright '19 (1—~)Be2
Chen, Maguluri, Shakkottai, Shanmugam '20 LSLAl

(a-y)5e2




All this requires sample size at least ;=515 HA‘ s (A >2)...

y\ o)
SR”
\//

sample
complexity
(log scale)

1
log scale
— (log scale)



All this requires sample size at least ;=515 SUAL HA‘ s (A >2)...

B
4 SR
sample (s

complexity
(log scale) S

1
log scale
— (log scale)

Question: /s Q-learning sub-optimal, or is it an analysis artifact?



. S
A numerical example: % samples seem necessary ...

— observed in Wainwright '19

o
>

=)
o

o
>

sample size per state-action: N

10%
4’)/ — 1 ——— Q-learning
e ———— Theory: N < “717),
2
37 10 10 15 20 25 130 35 40
7”‘(0, 1) — 07 ,,,(1, 1) — 7"(1, 2) =1 discount complexity: e
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Q-learning is NOT minimax optimal

Theorem (Li, Cai, Chen, Wei, Chi, 2021)

For any 0 < & < 1, there exists an MDP with | A| > 2 such that to
achieve ||Q — Q*|loc < €, synchronous Q-learning needs at least

(A

m) samp/es




Q-learning is NOT minimax optimal

Theorem (Li, Cai, Chen, Wei, Chi, 2021)

For any 0 < & < 1, there exists an MDP with | A| > 2 such that to
achieve ||Q — Q*||s < &, synchronous Q-learning needs at least

Q (%) samples

® Tight algorithm-dependent lower bound

® Holds for both constant and rescaled linear learning rates

1
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Q-learning is NOT minimax optimal

Theorem (Li, Cai, Chen, Wei, Chi, 2021)

For any 0 < & < 1, there exists an MDP with | A| > 2 such that to
achieve ||Q — Q*|loc < €, synchronous Q-learning needs at least

Q <(1‘8|—"ﬁ|82> samples

S

%\\ &

4 N A

sample T Q/

complexity
-
(log scale) £
& N
K L}@“ \5\\1\.\51
o

e

T

1
T (log scale)




Improving sample complexity via variance reduction

— a powerful idea from finite-sum stochastic optimization



Variance-reduced Q-learning updates (Wainwright '19)
— inspired by SVRG (Johnson & Zhang'13)

Qi(s,0) = (1 = 1)Qe-1(s,0) +1(Ti(Qi-1) ~T@) +T(@) ) (5.0)

use Q to help reduce variability



Variance-reduced Q-learning updates (Wainwright '19)
— inspired by SVRG (Johnson & Zhang'13)

Qi(s,0) = (1 = 1)Qe-1(s,0) +1(Ti(Qi-1) ~T@) +T(@) ) (5.0)

use Q to help reduce variability

® (): some reference Q-estimate

o T empirical Bellman operator (using a batch of samples)

Te(Q)(s,0) = r(s, ) + ymaxQ(s',a)
T@(sa)=r(s,a)+7 E  [maxQ(s,a)]

s/'~P(-|s,a) a’



An epoch-based stochastic algorithm

— inspired by Johnson & Zhang '13

u pdate variance-reduced

Q-learning
)-)‘)-)-
epoch 1 epoch 2 epoch 3

for each epoch
1. update Q and '7‘(@) (which stay fixed in the rest of the epoch)

2. run variance-reduced Q-learning updates iteratively



Sample complexity of variance-reduced Q-learning

Theorem (Wainwright '19)

For any 0 < € < 1, sample complexity for variance-reduced
synchronous Q-learning to yield ||Q — Q*||c < € is at most

)

® allows for more aggressive learning rates
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Sample complexity of variance-reduced Q-learning

Theorem (Wainwright '19)

For any 0 < € < 1, sample complexity for variance-reduced
synchronous Q-learning to yield ||Q — Q*||c < € is at most

)

® allows for more aggressive learning rates

® minimax-optimal for 0 <e <1
> remains suboptimal if 1 < e < ﬁ

1-67



Reference: general RL textbooks |

“Reinforcement learning: An introduction,” R. S. Sutton, A. G. Barto, MIT
Press, 2018
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"Algorithms for reinforcement learning,” C. Szepesvari, Springer, 2022

“Bandit algorithms,” T. Lattimore, C. Szepesvari, Cambridge University Press,
2020



Reference: model-based algorithms |

“Finite-sample convergence rates for Q-learning and indirect algorithms,”
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“On the sample complexity of reinforcement learning,” S. Kakade, 2003
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learning,” A. Pananjady, M. J. Wainwright, IEEE Trans. on Information Theory,

2020

® “Spectral methods for data science: A statistical perspective,” Y. Chen, Y. Chi,
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® “Breaking the sample size barrier in model-based reinforcement learning with a
generative model,” G. Li, Y. Wei, Y. Chi, Y. Chen, Operations Research, 2024
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Reference: model-free algorithms |

" A stochastic approximation method,” H. Robbins, S. Monro, Annals of
Mathematical Statistics, 1951

" Robust stochastic approximation approach to stochastic programming,”
A. Nemirovski, A. Juditsky, G. Lan, A. Shapiro, SIAM Journal on optimization,
2009

" Q-learning,” C. Watkins, P. Dayan, Machine Learning, 1992

" Learning rates for Q-learning,” E. Even-Dar, Y. Mansour, Journal of Machine
Learning Research, 2003

" The asymptotic convergence-rate of Q-learning,” C. Szepesvari, NeurlPS, 1998
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“Sample complexity of asynchronous Q-learning: Sharper analysis and variance
reduction,” G. Li, Y. Wei, Y. Chi, Y. Gu, Y. Chen, IEEE Trans. on Information
Theory, 2022

1-72



Part 2

. Online RL
. Offline RL

. Multi-agent RL

. Robust RL



Online RL: interacting with real environment

o 1 T2 T3 T4 Ts5
S0—<—S1 xl S2—<—53 \I 54 \I 55 \I
T 1 I 1 T 1 L 1 T 1 I 1
oo’ AN o’ o’ Mo’ N
ag ay as as (2] as

mo(-lao) mi(-lar) ma(-laz) 73(las) ma(-las) m5(-|as)

exploration via adaptive policies

® trial-and-error
® sequential and online

® adaptive learning from data

“Recalculating ... recalculating ...”
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A much simpler problem: multi-arm bandit



Multi-arm bandit

Which slot machine will give me the most money?

First proposed in [Thompson'33], popularized by [Robbins'52].

2.4



Learning the best arm

Can we learn which slot machine gives the most money?

2-5



Formulation

We can play multiple rounds ¢t =1,2,...,7T.

In each round, we select an arm i; from a fixed set ¢ = 1,2,...,n; and
observe the reward r; that the arm gives.

Arm 1
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Formulation

We can play multiple rounds ¢t =1,2,...,7T.

In each round, we select an arm i; from a fixed set ¢ = 1,2,...,n; and
observe the reward r; that the arm gives.

Arm 1 Arm 2

Objective: Maximize the total reward over time.

2-6



Stochastic bandit with i.i.d. rewards

Arm 1 Arm 2 Arm 3 Arm 4

® Each arm distributes rewards according to some (unknown)
distribution over [0, 1], with

Elrit) =i, Vien], t=1,2...
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Stochastic bandit with i.i.d. rewards

Arm 1 Arm 2 Arm 3 Arm 4 Am 5

® Each arm distributes rewards according to some (unknown)
distribution over [0, 1], with

Elrit) =i, Vien], t=1,2...
® Suppose we play arm i; at round ¢, and receive the reward
Tigt

drawn i.i.d. from the arm i;'s distribution.
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Stochastic bandit with i.i.d. rewards

Arm 1 Arm 2 Arm 3 Arm 4 Am 5

® Each arm distributes rewards according to some (unknown)
distribution over [0, 1], with

Elrid =i, Vie[n], t=1,2...
® Suppose we play arm i; at round ¢, and receive the reward
Tigt
drawn i.i.d. from the arm i;'s distribution.
Partial information: Every round we cannot observe the reward of all

arms: we just know the reward of the arm that we played. e



Regret: performance metric

We design algorithms that determine the sequence {i;}, i.e. policies.

How to evaluate the performance?

Definition (Expected regret)

The expected regret over 1" rounds is defined as

T
_T [Z ] |
t=1

where (¥ = maxi<j<p (i is the highest expected reward over all arms.

T

> (i —Tig)

t=1

Rr = max E
1<i<n

v
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Regret: performance metric

We design algorithms that determine the sequence {i;}, i.e. policies.

How to evaluate the performance?

Definition (Expected regret)

The expected regret over 1" rounds is defined as

T
_T [Z ] |
t=1

where (¥ = maxi<j<p (i is the highest expected reward over all arms.

T

> (i —Tig)

t=1

Rr = max E
1<i<n

v

® 1st term captures the highest cumulative reward in hindsight.
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Regret: performance metric

We design algorithms that determine the sequence {i;}, i.e. policies.

How to evaluate the performance?

Definition (Expected regret)

The expected regret over 1" rounds is defined as

T
_T [Z ] |
t=1

where (¥ = maxi<j<p (i is the highest expected reward over all arms.

T

> (i —Tig)

t=1

Rr = max E
1<i<n

® 1st term captures the highest cumulative reward in hindsight.

® 2nd term captures the actual accumulated reward.
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The UCB algorithm

[Auer et al.’02]:: the idea is to always try the best arm, where "best”
includes exploration and exploitation.

1. Initial phase: try each arm and observe the reward.
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The UCB algorithm

[Auer et al.’02]:: the idea is to always try the best arm, where "best”
includes exploration and exploitation.

1. Initial phase: try each arm and observe the reward.

2. Foreachroundt=n+1,...,T:
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The UCB algorithm

[Auer et al.’02]:: the idea is to always try the best arm, where "best”
includes exploration and exploitation.

1. Initial phase: try each arm and observe the reward.

2. Foreachroundt=n+1,...,T:
> Calculate the UCB (upper confidence bound) index for each arm i:

logt
T’

UCBiyt == ﬁi,t +

where 71, , is the empirical average reward for arm ¢ and T} ; is the
number of times arm ¢ has been played up to round t¢.
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The UCB algorithm

[Auer et al.’02]:: the idea is to always try the best arm, where "best”
includes exploration and exploitation.

1. Initial phase: try each arm and observe the reward.

2. Foreachroundt=n+1,...,T:
> Calculate the UCB (upper confidence bound) index for each arm i:

logt
T’

UCBiyt == ﬁi,t +

where 71, , is the empirical average reward for arm ¢ and T} ; is the
number of times arm ¢ has been played up to round t¢.

» Play the arm with the highest UCB index and observe the reward.

2-9



Understanding UCB

P e—

- —

g -

8 gy @

§ 7(1) L

Arm 1 Arm 2 Arm 3 -
. logt
UCBZ>t = lu”L,t + T 9
it

® Exploitation: 7z, ; is the average observed reward. High observed
rewards of an arm leads to high UCB index.
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Understanding UCB

P e—

- —

g @

8 gy @

§ 7(1) L

Arm 1 Arm 2 Arm 3 -
_ logt
UCBZ>t = lu”L,t + T 9
it

® Exploitation: 7z, ; is the average observed reward. High observed
rewards of an arm leads to high UCB index.

I;fgtt decreases as we make more observations (7 ¢+
2,

grows). Few observations of an arm leads to high UCB index.

® Exploration:

2-10



Theory of UCB algorithm

Theorem (Worst-case regret bound of UCB)
For T' > n, the expected regret of UCB algorithm is upper bounded as

Ry < 44/nTlogT + 8n.
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Theory of UCB algorithm

Theorem (Worst-case regret bound of UCB)
For T' > n, the expected regret of UCB algorithm is upper bounded as

Ry < 44/nTlogT + 8n.
® When n = O(1), the regret scales as
Rr = O(\/TlogT) = 5(\@)

® The logarithmic factor can be shaved away [Audibert and
Bubeck'09]
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Back to online RL...



Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps

D 1
Lk execute m

. £ 11 IVH
episode 1 |:> {8k @py T bt
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Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps

execute !

. £ 11 IVH
episode 1 |:> {8k @py T bt

! i ([ execute 72

i
LT 2 2 2\H
R Sy,ay,T —
episode 2 >  {shoahridin
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Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps

e
b

episode 1
| el |-
il

episode 2
n= TRy 5
Bl

episode K

execute !

:> {Silwailellz}IILizl

execute 72

2 2 2\H
>  {shanritia

execute &

K K K \H
|:> {8, an Tk Th=1
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Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps
— sample size: T'= KH

;
1
Ll execute m

episode 1 —>  {sha.ridl,

! i ([ execute 72

i
LT 2 2 2\H

R Sy,ay,T —
episode 2 >  {shoahridin

execute &

. K
episode K |:> {5{5-, a}lfva}thl

exploration (exploring unknowns) vs. exploitation (exploiting learned info) J
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Regret: gap between learned policy & optimal
policy

adversary learner

L% )

initial state execute
1 = 1
51 policy 7

episode 1
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Regret: gap between learned policy & optimal
policy

adversary learner

SUL I\
initial state execute initial state
= == T =

episode 1 episode K




Regret: gap between learned policy & optimal
policy

adversary learner

SUL I\
initial state execute initial state
= == T =

episode 1 episode K

Performance metric: given initial states {s}}/£ , define

K

Regret(T) = > (V7"(sh) = v (sh)

k=1
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Lower bound
(Domingues et al, 2021)

Regret(T') =2 VH?SAT

Existing algorithms

UCB-VI: Azar et al, 2017

UBEV: Dann et al, 2017
UCB-Q-Hoeffding: Jin et al, 2018
UCB-Q-Bernstein: Jin et al, 2018
UCB2-Q-Bernstein: Bai et al, 2019
EULER: Zanette et al, 2019
UCB-Q-Advantage: Zhang et al, 2020
MVP: Zhang et al, 2020

UCB-M-Q: Menard et al, 2021
Q-EarlySettled-Advantage: Li et al, 2021
(modified) MVP: Zhang et al, 2024



Existing algorithms

® UCB-VI: Azar et al, 2017

e UBEV: Dann et al, 2017

® UCB-Q-Hoeffding: Jin et al, 2018
Lower bound ® UCB-Q-Bernstein: Jin et al, 2018

(Domingues et al, 2021) e UCB2-Q-Bernstein: Bai et al, 2019
® EULER: Zanette et al, 2019
Regret(T) 2 H2SAT ® UCB-Q-Advantage: Zhang et al, 2020

® MVP: Zhang et al, 2020

® UCB-M-Q: Menard et al, 2021

® Q-EarlySettled-Advantage: Li et al, 2021

® (modified) MVP: Zhang et al, 2024

Which online RL algorithms achieve near-minimal regret?




Model-based online RL with UCB exploration



Model-based approach for online RL

execute 7!

repeat:

® use collected data to estimate transition probabilities

{sh- ah, i by

[ empirical MDP

planning
oracle

"

:

execute 7T2

® apply planning to the estimated model to derive a new policy for
sampling in the next episode
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Model-based approach for online RL

execute 7!

repeat:

® use collected data to estimate transition probabilities

{sh- ah, i by

[ empirical MDP

planning
oracle

"

:

execute 7T2

® apply planning to the estimated model to derive a new policy for
sampling in the next episode

How to balance exploration and exploitation in this framework?

2-17



Optimism in the face of uncertainty:

® explores based on the best optimistic estimates associated with the
actions!

® a common framework: utilize upper confidence bounds (UCB)

accounts for estimates + uncertainty level
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T. L. Lai H. Robbins

Optimism in the face of uncertainty:

® explores based on the best optimistic estimates associated with the
actions!

® a common framework: utilize upper confidence bounds (UCB)

accounts for estimates + uncertainty level

Optimistic model-based approach: incorporates UCB framework into
model-based approach

2-18



UCB-VI (Azar et al.’17)

For each episode:
1. Backtrack h=H,H —1,...,1: run value iteration

Qn(snsan) < h(sn,an) + Phsya, Vit
N——
model estimate

\%
h(sn) < max Qn(sh,a)
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UCB-VI (Azar et al.’17)

For each episode:
1. Backtrack h = H,H —1,...,1: run optimistic value iteration

Qn(sn,an) < Th(sn,an) + Phsyan Va1 +  bn(snan)
N—— —
model estimate  bonus (upper confidence width)

\%
h(sn) < max Qn(sh,a)
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UCB-VI (Azar et al.’17)

For each episode:
1. Backtrack h = H,H —1,...,1: run optimistic value iteration

Qn(sn,an) < Th(sn,an) + Phsyan Va1 +  bn(snan)
N—— —
model estimate  bonus (upper confidence width)

\%
h(sn) < max Qn(sh,a)

2. Forward h =1,..., H: take actions according to greedy policy

< argma; ,
mn(s) « argmax Qn(s, a)

to sample a new episode {sy, ap, rh}hH:1
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UCB-VI is asymptotically regret-optimal

— Azar, Osband, Munos, 2017

Regret(T")

1

A

VH2SAT

—_

>

sample size : T
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UCB-VI is asymptotically regret-optimal

— Azar, Osband, Munos, 2017

Regret(T")

ﬂk
. VH?SAT
UCB-VI1 —

H*S2A —

0 sample size : T
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UCB-VI is asymptotically regret-optimal

— Azar, Osband, Munos, 2017

Regret(T")

ﬂk
. VH?SAT
UCB-VI1 —

H*S2A —

0 S3A*HS  sample size : T
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UCB-VI is asymptotically regret-optimal

— Azar, Osband, Munos, 2017

Regret(T")

ﬂk
. VH?SAT
UCB-VI1 —

H*S2A —

0 S3A*HS  sample size : T

huge burn-in cost!

2-20



UCB-VI is asymptotically regret-optimal

— Azar, Osband, Munos, 2017

Regret(T")

ﬂk
. VH?SAT
UCB-VI1 —

H4S2A —

0 S3A*HS  sample size : T

huge burn-in cost!

Issues: large burn-in cost

2-20



Regret-optimal algorithm w/o burn-in cost

Regret(T)
A
VH2SAT
UCB-VI
H*S?A
0 S3AHS sample size : T'

Theorem (Zhang, Chen, Lee, Du’24)

The model-based algorithm Monotonic Value Propagation achieves

Regret(T) < O(VH2SAT)
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Regret-optimal algorithm w/o burn-in cost

Regret(T)
A
VH2SAT
UCB-VI
H*S?A
0 S3AHS sample size : T'

Theorem (Zhang, Chen, Lee, Du’24)

The model-based algorithm Monotonic Value Propagation achieves

Regret(T) < O(VH2SAT)

® the only algorithm so far that is regret-optimal w/o burn-ins

2-21



Part 2

Four variants of our basics settings to illustrate the approaches so far:

® Online RL
e Offline RL
® Multi-agent RL
® Robust RL



Offline RL / batch RL

e Collecting new data might be expensive or time-consuming

® But we have already stored tons of historical data

THE COMING INAUTONOMOUS VEHICLES

AR - L]
‘ L s e
;ﬂ é : = A\
N> L y
p ~ T PERDAL..EACHDAY
’ < =
medical records data of self-driving clicking times of ads
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Offline RL / batch RL

e Collecting new data might be expensive or time-consuming
® But we have already stored tons of historical data

THE COMING INAUTONOMOUS VEHICLES

o
]

’ NTONGHOLS VERCLES \
5 < S PERDAY.. DAY 2

medical records data of self-driving clicking times of ads

Question: Can we design algorithms based solely on historical
data? J

2-23



Offline RL / batch RL

No longer Transition kernel
arbitrary!

2.24



Offline RL / batch RL

svp ’%\ <s,a

initial distribution behavior 'PDI‘""’H No longer transition kernel
arbitrary!

2-24



Offline RL / batch RL

A historical dataset D = {(s(,a(?, s'D)}: N independent copies of
Sprv aNﬂ-b("S)7 S,NP('|S?G)

for some state distribution p® and behavior policy 7®
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Offline RL / batch RL

A historical dataset D = {(s(,a(?, s'D)}: N independent copies of
Sprv aNﬂ-b("S)7 S,NP('|S?G)

for some state distribution p® and behavior policy 7®

Goal: given some test distribution p and accuracy level ¢, find an
g-optimal policy 7 based on D obeying

V)= Vi(p)= E [V*(s)] — E [V7(s)] <e¢

s~p s~p

— in a sample-efficient manner

2-24



Challenges of offline RL

¢ Distribution shift:

distribution(D) # target distribution under 7*
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Challenges of offline RL

¢ Distribution shift:
distribution(D) # target distribution under 7*

¢ Partial coverage of state-action space:

R 0
VIS T2 ]

e
— s

uniform coverage over entire space
(sufficiently explored)
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Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under 7*

¢ Partial coverage of state-action space:

> /\' samples cover all (s,a) & all policie:
>

\
\
T2 )/
-z ]
N |
~——\

uniform coverage over entire space

(sufficiently explored)

N -
Practically,
\
) -
s/ A
RN

\
historical dataset D

A
AN
|
< /
1
2
-z ! %o
Ny 5 Pan—
SN ,

o

partial coverage
(inadequately explored)
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How to quantify the distribution shift?

Single-policy concentrability coefficient (Rashidineiad et al.)
C* == max —(————=
sa d™(s,a)

where d”(s,a) = (1 —v) Y ;2o v'P((s",a") = (s,a) | w) is the state-action
occupation density of policy .

2-26




How to quantify the distribution shift?

Single-policy concentrability coefficient (Rashidineiad et al.)
C* == max —(————=
sa d™(s,a)

where d”(s,a) = (1 —v) Y ;2o v'P((s",a") = (s,a) | w) is the state-action
occupation density of policy .

-~ b ’ N
B ! -

® captures distribution shift

® allows for partial coverage
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How to quantify the distribution shift? — a
refinement

Single-policy clipped concentrability coefficient (Li et al., '22)
. ﬂ-* 1
N min{d b(s,a), /S}
5,0 d™(s,a)

where d™(s,a) = (1 — ) Y52 v'P((s*,a") = (s,a) | 7) is the state-action
occupation density of policy w.

* 5
clipped -

>1/8
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How to quantify the distribution shift? — a
refinement

Single-policy clipped concentrability coefficient (Li et al., '22)
. min{d™ (s,a),1/S}
Clipped = E d™ (s, a)

where d™(s,a) = (1 — ) Y52 v'P((s*,a") = (s,a) | 7) is the state-action
occupation density of policy w.

>1/8

.y 7 \
B ! Y~

® captures distribution shift

h
A,

historical dataset D AN Yk
\ C* < o0

® allows for partial coverage ™

Y *_ < * AN
C’cI|pped <C \\\\\7,4;\\\




A “plug-in” model-based approach

— (Azar et al. '13, Agarwal et al. '19, Li et al. '20)

[/ empirical MDP

H EH B
|| |
| H B
|| [ | ) ~x
. . . planning T
| H B oracle
[ | [ | . .
.. . e.g. dynamic programming
H BB
| [ |
r

empirical P

Planning (e.g., value iteration) based on the the empirical MDP P
Q(s,a) « r(s,a) +v(P(-|5,a),V), V(s)=maxQ(s,a).
a

Issue: poor value estimates under partial and poor coverage. )
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Key idea: pessimism in the face of uncertainty

— Jin et al. ‘20, Rashidinejad et al. '21, Xie et al. '21

online

upper confidence bounds
— promote exploration of under-explored (s, a)
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Key idea: pessimism in the face of uncertainty

— Jin et al. ‘20, Rashidinejad et al. '21, Xie et al. '21

online

upper confidence bounds
— promote exploration of under-explored (s, a)

offline

lower confidence bounds
— stay cautious about under-explored (s, a)

2-29



Key idea: pessimism in the face of uncertainty

— Jin et al. ‘20, Rashidinejad et al. '21, Xie et al. '21

A model-based offline algorithm: VI-LCB

1. build empirical model P

2. (value iteration) for ¢ < Tyay:

~

Quls,0)  [r(s.0)+7(P(|5.a), Vi)

for all (s,a), where V;(s) = max, Q:(s, a)
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Key idea: pessimism in the face of uncertainty

— Jin et al. ‘20, Rashidinejad et al. '21, Xie et al. '21

A model-based offline algorithm: VI-LCB

1. build empirical model P

2. (pessimistic value iteration) for ¢ < Ty ay:

~

Qus,a) « [r(s,a)+7(P(|s,0) Tia) = bs.aVia) |
N—r +
penalize poorly visited (s,a)

for all (s,a), where V;(s) = max, Q:(s, a)
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Key idea: pessimism in the face of uncertainty

— Jin et al. ‘20, Rashidinejad et al. '21, Xie et al. '21

A model-based offline algorithm: VI-LCB

1. build empirical model P

2. (pessimistic value iteration) for ¢ < Ty ay:

~

Qi(s,a) « [r(s,a)+’y<]3(-|s,a),17t_1> - b(s,a; Vi_1) Lr

penalize poorly visited (s,a)

compared w/ prior works

® no need of variance reduction e variance-aware penalty

2-29



Sample complexity of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)
Forany 0 < e < ﬁ the policy 7 returned by VI-LCB achieves

V¥(p) = V7(p) <e

with high prob., with sample complexity at most

’O" SC:Iipped
(1 —7)3e?




Sample complexity of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)

1
Forany 0 <e < T—

the policy 7 returned by VI-LCB achieves
V*(p) = V7(p) <e

with high prob., with sample complexity at most

’O" SC:Iipped
(1 —7)3e?

® depends on distribution shift (as reflected by Cj;,.q)

e full e-range (no burn-in cost)




Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)

For any v € [2/3,1), S > 2, Cfjppeq = 87/, and 0 < e < 42(1 -y, there
exists some MDP and batch dataset such that no algorithm succeeds if

the sample size is below
Q SC4 clipped
=%/
¥)°€
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Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)

For any v € [2/3,1), S > 2, Cfjppeq = 87/, and 0 < e < 42(1 -y, there

exists some MDP and batch dataset such that no algorithm succeeds if

the sample size is below
Q Scéllpped
=)

® verifies the near-minimax optimality of the pessimistic model-based
algorithm

i . . *
® improves upon prior results by allowing C’C“ppe

L =1/S.

2-31




sample
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complexity %2,
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Part 2

Four variants of our basics settings to illustrate the approaches so far:

® Online RL

e Offline / batch RL
e Multi-agent RL

® Robust RL



Multi-agent reinforcement learning (MARL)

2-34



Challenges

In MARL, agents learn by probing the (shared) environment

® unknown or changing environment
e delayed feedback

® explosion of dimensionality



Challenges

In MARL, agents learn by probing the (shared) environment

® unknown or changing environment
delayed feedback

explosion of dimensionality

curse of multiple agents



Background: two-player zero-sum Markov games

0 -1 1

Scissors
@ beats paper @
%,

K
%
S
b, a{?ﬁ@ -
o
[y
()
1
[y



Two-player zero-sum Markov games

ﬂ; | action ay,
max-player —_——
mm————— piays —I

state Sn action by,

|

Li _
e S =[5]: state space e A = [A]: action space of max-player
® H: horizon e 3 = [B]: action space of min-player
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Two-player zero-sum Markov games

ﬂ; | action ay,
max-player —_——
mm————— piays —I

reward 7,

state sp

[ min-player

1

1

i

! action by,
1

! reward -1y, I
1

1

1

L

-
e S =[5]: state space e A = [A]: action space of max-player
® H: horizon e 3 = [B]: action space of min-player

® immediate reward: max-player r(s,a,b) € [0, 1]
min-player —r(s, a,b)
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Two-player zero-sum Markov games

actlon

max-player —_——
mm— LS
reward 7, _I
action |
state sp, b ~ vn(- | sn)

[ min-player

1

1

1

1

1

1

H -
! reward -1y,
1

1

1

L

-
S = [S]: state space e A = [A]: action space of max-player
H': horizon e 3 = [B]: action space of min-player

immediate reward: max-player 7(s,a,b) € [0, 1]
min-player —r(s, a,b)

w:S x [H] — A(A): policy of max-player

v:S x [H|] — A(B): policy of min-player
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Two-player zero-sum Markov games

reward 7,

state sp

“hext state
sn1 ~ Pu(- | snyan, br)

o A=
.B:

immediate reward: max-player r(s,a,b) €

S = [5]: state space

H: horizon

min-player —r

[ min-player

environment

actlon

state sh an ~ (- | 5n)
max- layer —_—
—— n

action |
bn ~vn(- | sn)

|
-

[A]: action space of max-player
[B]: action space of min-player

[0, 1]
(s,a,b)

w:S x [H] — A(A): policy of max-player
v:S x [H|] — A(B): policy of min-player

Py(-|s,a,b): unknown transition probabilities

2-37



Value function & Q-function

max—player
l'““a"
! reward 7 rh Thil Th+2
I state sy | action th T ? IS
e L N I
! reward -1, I ,’\L_,“| {t\,/‘\ |'t'~_) 1
i G/ it N
: —o VRE
Sh1 ~ Pa(- | sn, an, bn)
Value function of policy pair (u, v):
H
[a2ld — —
VI""(s) ==F g (8¢, at, by) ’ s1=s
t=1



Value function & Q-function

state Sh action ah
m———— max—player
! reward 7}, T That Thao T
! state sy I action th [ | I ‘
s et o g led el . g
! reward -1, I ,'l'\_,“| i ,/“| |'t'~_) 1 i/
I san ) \ah+1, \dita ) \aw !
: : th_ o o2 ;
k: —— oo '
Sha1 ~ Pr(- | s, an, br)
Value function of policy pair (u, v):
H
214 R —
VI""(s) ==F g (8¢, at, by) ’ s1=s
t=1

® (ay,by,s2,---): generated when max-player and min-player execute

policies . and v independently (i.e., no coordination) b



Value function & Q-function

state Sh action ah
m———— max—player

: Th Th+1 Th+2 rH
I state sy - | action bh I I I I

1 », min-player — s 1 erl
[ bviete e WA P

1 reward -7y, I gl I e B Lty in_s )

1 an J \aht1, At H

i -
I . by, b b b
Li----4=— environment |{ — —J " i -

Sht1 ~ Pu(- | sn,an, bn)

Value function and Q function of policy pair (u,v):
H

VI (s) =E ZT(Staatybt) ’ 51=5

t=1
H

Q1" (s,a,b) =K Zr(st,at,bt) ’ s1=8,a1 =a,by =0
t=1

® (aj,by,s2,--): generated when max-player and min-player execute

policies u and v independently (i.e., no coordination) -



Optimal policy?

® Each agent seeks optimal policy maximizing her own value



Optimal policy?

JN

A\

s
TS

X
which action b which action a
j to take? to take? -"'">
~
*‘Hr’ ~

state s

® Each agent seeks optimal policy maximizing her own value

® But two agents have conflicting goals ...



Compromise: Nash equilibrium (NE)

John von Neumann John Nash
An NE policy pair (u*, v*) obeys

* * % . *
max VH*Y =VH* Y =minVH* ¥
n v
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Compromise: Nash equilibrium (NE)

John von Neumann John Nash
An NE policy pair (u*, v*) obeys

* * % . *
max VH*Y =VH* Y =minVH* ¥
n v

® no unilateral deviation is beneficial
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Compromise: Nash equilibrium (NE)

John von Neumann John Nash
An NE policy pair (u*, v*) obeys

* * % . *
max VH*Y =VH* Y =minVH* ¥
n v

® no unilateral deviation is beneficial

® no coordination between two agents (they act independently)
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Compromise: Nash equilibrium (NE)

John von Neumann John Nash

An e-NE policy pair (i, ) obeys

® no unilateral deviation is beneficial

® no coordination between two agents (they act independently)

2-40



Sampling mechanism: a generative
model / simulator

— Kearns, Singh '99

simulator

One can query generative model w/ state-action-step tuple (s,a,b, h),
query g
and obtain s' 7% Pu(s'|s,a,b)
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Question: how many samples are sufficient to
learn an £-Nash policy pair?



Model-based approach w/ non-adaptive sampling

— Zhang, Kakade, Basar, Yang '20

B”

hﬂ !;

for any (s, h)

1. for each (s,a,b, h), call generative models N times
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Model-based approach w/ non-adaptive sampling

— Zhang, Kakade, Basar, Yang '20

for each (a,b)

’_’ _____________________ , call generative model
N times
for any (s, h)

1. for each (s,a,b, h), call generative models N times
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Model-based approach w/ non-adaptive sampling

— Zhang, Kakade, Basar, Yang '20

for each (a,b)

empirical
model P

’_’ _____________________ , call generative model
N times
for any (s, h)

1. for each (s,a,b, h), call generative models N times
2. build empirical model p

2-43



Model-based approach w/ non-adaptive sampling

— Zhang, Kakade, Basar, Yang '20

for each (a,b)

planning
oracle

empirical
model P

’.’ _____________________ , call generative model
N times
for any (s, h)

1. for each (s,a,b, h), call generative models N times
2. build empirical model ﬁ and run classical planning algorithms

. 4
sample complexity: H—fﬁ J

2-43



Curse of multiple agents

u
N
I
=
I

1 player: A

Let's look at the size of joint action space ...
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Curse of multiple agents

PE€F IEEE

1 player: A

2 players: AB

Let's look at the size of joint action space ...
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Curse of multiple agents

oMk
i

I—\ﬂ

PE€F IEEE

1 player: A 2 players: AB 3 players: A1 AzA3

Let's look at the size of joint action space ... )
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Curse of multiple agents

%

I—\ﬂ

PE€F IEEE

1 player: A 2 players: AB 3 players: A1 AzA3

The number of joint actions blows up geometrically in # players! )

2-44



Breaking curse of multi-agents?

— Song, Mei, Bai 21, Jin, Liu, Wang, Yu 21, ...

V-learning: overcomes curse of multi-agents in online RL

® estimate V-function only (much lower-dimensional than Q)
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Breaking curse of multi-agents?

— Song, Mei, Bai 21, Jin, Liu, Wang, Yu 21, ...

V-learning: overcomes curse of multi-agents in online RL

® estimate V-function only (much lower-dimensional than Q)
® adaptive sampling: take sample based on current policy iterates

® adversarial learning subroutine: Follow-the-Regularized-Leader

H5S(A+B)

sample complexity: 2

HSS(A+B
&

episodes J
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horizon

A
V-learning
H6 ........... .
model-based
4
H Y .
. i : >

A+ B AB  dfactions



horizon

A
V-learning
H6 ........... ‘
\? model-based

H* ... ﬁ. .......................................... ®

3
O H H . :

A+ B AB  dfactions

Can we simultaneously overcome
curse of multi-agents & barrier of long horizon?



Our algorithm

Key ingredients:

® for each player, estimate only one-sided objects
> e.g. Q(s,a) as opposed to Q(s,a,b)
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Our algorithm

Key ingredients:
® for each player, estimate only one-sided objects
> e.g. Q(s,a) as opposed to Q(s,a,b)
e adaptive sampling
> sampling based on current policy iterates

¢ adversarial learning subroutine for policy updates
> e.g. Follow-the-Regularized-Leader (FTRL)
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Our algorithm

Key ingredients:
® for each player, estimate only one-sided objects
> e.g. Q(s,a) as opposed to Q(s,a,b)
e adaptive sampling
> sampling based on current policy iterates

¢ adversarial learning subroutine for policy updates
> e.g. Follow-the-Regularized-Leader (FTRL)

® optimism principle in value estimation
» upper confidence bounds (UCB)
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Main result (two-player zero-sum Markov games)

Theorem (Li, Chi, Wei, Chen '22)

For any 0 < ¢ < H, the policy pair (ji,V) returned by the proposed
algorithm is e-Nash, with sample complexity at most

5(H4S(A + B))

£2
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Main result (two-player zero-sum Markov games)

Theorem (Li, Chi, Wei, Chen '22)

For any 0 < ¢ < H, the policy pair (ji,V) returned by the proposed
algorithm is e-Nash, with sample complexity at most

5(H4S(A + B))

c2

® minimax lower bound: ﬁ(%)

® breaks curse of multi-agents & long-horizon barrier at once!
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Main result (two-player zero-sum Markov games)

Theorem (Li, Chi, Wei, Chen '22)

For any 0 < ¢ < H, the policy pair (ji,V) returned by the proposed
algorithm is e-Nash, with sample complexity at most

5(H4S(A + B))

c2

~ 4
* minimax lower bound: Q(W)
® breaks curse of multi-agents & long-horizon barrier at once!

e full e-range (no burn-in cost)
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Main result (two-player zero-sum Markov games)

Theorem (Li, Chi, Wei, Chen '22)

For any 0 < ¢ < H, the policy pair (ji,V) returned by the proposed
algorithm is e-Nash, with sample complexity at most

5(H4S(A + B))

c2

minimax lower bound: Q(W)

® breaks curse of multi-agents & long-horizon barrier at once!
e full e-range (no burn-in cost)
® other features: Markov policy, decentralized, ...
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Extension: m-player general-sum Markov games

Theorem (Li, Chi, Wei, Chen '22)

For any 0 < ¢ < H, the joint policy T returned by the proposed
algorithm is e-CCE, with sample complexity at most

5(}14522. A,.>

2

2-49




Extension: m-player general-sum Markov games

Theorem (Li, Chi, Wei, Chen '22)

For any 0 < ¢ < H, the joint policy T returned by the proposed
algorithm is e-CCE, with sample complexity at most

5(}14522. A,.>

g2

H4S max; A; )

* minimax lower bound: Q( =

® near-optimal when number of players m is fixed
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Part 2

. Online RL
. Offline RL

. Multi-agent RL

. Robust RL



Safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment £ Test environment
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Safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

qp”

Training environment £ Test environment

Sim2Real Gap: Can we learn optimal policies that are robust to
model perturbations? J
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Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U (P°) ={pP: p(P,r°) <o}
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Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U’ (P°) ={pP: p(P,r°) <o}

——
// /\——\ /’_\>/ N '\\
//—\/ Y \
A )
% W
A y 8 .9
ENREAN o <
(/ ?/'* N/ . po &
\ —
/>~~\\ \\ ) / P
—_— 7
B A
S-< pe . S<—-( S
\ ~—-
el s

2-52



Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U’ (P°) ={pP: p(P,r°) <o}
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Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U’ (P°) ={pP: p(P,r°) <o}

——
/i /\—\\//"\>/"\ ~N
/{/ - \\\ \l
g WA
/‘( //\ \
\ N
(/ "‘ \\ \(/
7r~\\ \ /r’/
—_ 7
< —
\ \\_Pi\ /L*/)(
~<_ p° \\__/‘)/\ v
O J~—-
N7

® Examples of p: f-divergence (TV, x2, KL...)
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Robust value/Q function

state s action
s o r1 T2 r3 T4
E- ] | l | |
I reward | |:> 3'0 ~ S1— 3? = §3— S4—
: : ‘\_,/I t_’/l \\_’/I t_’/l ;\_‘/'
'?' — ao ai ag as aq
sé1 ~ P(ls,ar)
Robust value/Q function of policy 7:
oo
VseS: V™o (s):= inf E.p Z’ytn | S9 =S8
Pl (P?)
t=0
(o]
V(is,a) eSxA: Q™%(s,a):= inf E;p Z’ytrt |so=s,a0=a
Pl (P°) P

Measures the worst-case performance of the policy in the uncertainty set.
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Distributionally robust MDP

Find the policy 7* that maximizes V™7

(lyengar. '05, Nilim and El Ghaoui. '05)
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Distributionally robust MDP

Find the policy 7* that maximizes V™7

(lyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman’s optimality equation: the optimal robust policy 7*
and optimal robust value V*7 := V™7 satisfy

Q" (s,a) =r(s,a) +~ inf (Ps,a, V),
Psa€U” (P2,)

V*9(s) = max Q" (s, a)
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Distributionally robust MDP

Find the policy 7* that maximizes V™7

(lyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman’s optimality equation: the optimal robust policy 7*
and optimal robust value V*7 := V™7 satisfy

Q" (s,a) =r(s,a) +~ inf (Ps,a, V),
Psa€U” (P2,)

V*7(s) = max Q*(s,a)

Distributionally robust value iteration (DRVI):

Q(s,a) < r(s,a) +~ inf <P8,aa V),
Psa€U? (P2,)

where V(s) = max, Q(s,a).
254



Learning distributionally robust MDPs

®Q
A
[eY®)
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Nowminal Transition
kernel



Learning distributionally robust MDPs

arbitra ry

(s,a)

Nowminal Transition
kernel

Goal of robust RL: given D := {(s;,a;, s})}}¥., from the nominal
environment P, find an e-optimal robust policy 7 obeying

Vo V’ﬁ,o <e

— in a sample-efficient manner
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A curious question

empirical MDP

~
N~*

Learn the optimal policy of
the nominal MDP?

Learn the robust policy
around the nominal MDP?



A curious question

. . . Learn the optimal policy of
.. . = ,/" the nominal MDP?
’/
| | gl
HE B
H B R
[ | [N
.- . \~‘~~ .
- . - ~4 Learn the robust policy
. - around the nominal MDP?

empirical MDP

Robustness-statistical trade-off? Is there a statistical premium that
one needs to pay in quest of additional robustness? J




Prior art: TV uncertainty

Sample complexity“

SA
W h | — Upper bound [Clavier et al.] s

SA | Standard MDPs L
W 7 upper & minimax lower bound
—5)3¢

Lower bound [Yang et al.]

0 ou-v o 1

® |arge gaps between existing upper and lower bounds

® Unclear benchmarking with standard MDP

>
»

g
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Prior art: \? uncertainty

Sample complexity 4

S2A

Upper bound 5%Ac
[Panaganti and Kalathil] (1—n)te?

(1 —n)te?

SA
=)=

SA

(1 —n)e? 0

Standard MDPs

SA
(1 =)
Lower bound [Yang et al.]

1 1 1

\4

O(1—17) 0(1) 0(1/(1—7))

® | arge gaps between existing upper and lower bounds

® Unclear benchmarking with standard MDP

upper & minimax lower bound =



Our theorem under TV uncertainty

Theorem (Shi et al., 2023)

Assume the uncertainty set is measured via the TV distance with radius
o € [0,1). For sufficiently small e > 0, DRVI outputs a policy T that
satisfies V*? — V™% < ¢ with sample complexity at most

0 ((1 —7)? mi:{ll — %0}62>

ignoring logarithmic factors. In addition, no algorithm can succeed if the
sample size is below

. <<1 —v)?mafil —%0}62> |

® Establish the minimax optimality of DRVI for RMDP under the TV
uncertainty set over the full range of .



When the uncertainty set is TV

Sample complexity“
54 bound [CI; 1]
T a5 U Clavier et al.] ==
(1 - 7)482 [~ Upper bound [Clavier et a
|
1
|
SA J Standard MDPs
— =5 1 1 upper & minimax lower bound =~~~
(1 =) PP
Upper & minimax lower bound
SA (this work)
=
SA(] _ ’Y) Lower bound [Yang et al.]
e? . > 5
0 1




When the uncertainty set is TV

Sample complexity“
SA
W - | Upper bound [Clavier et al.] =
|
1
|
SA L J____ &Sta@ard l\lllDPs bound ==+
— upper & minimax lower boun
(1 =)
Upper & minimax lower bound
SA (this work)
(1—7)2e?
SA(] _ ’}/) . Lower bound [Yang et al.]
2 >
0 o1-4)  0Q) 19




Our theorem under \? uncertainty

Theorem (Upper bound, Shi et al., 2023)

Assume the uncertainty set is measured via the x* divergence with radius
o € [0,00). For sufficiently small ¢ > 0, DRVI outputs a policy T that
satisfies V*7 — V™7 < e with sample complexity at most

d=to)

ignoring logarithmic factors.
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Our theorem under y? uncertainty

Theorem (Upper bound, Shi et al., 2023) |

Assume the uncertainty set is measured via the x* divergence with radius
o € [0,00). For sufficiently small ¢ > 0, DRVI outputs a policy T that
satisfies V*7 — V™7 < e with sample complexity at most

d=to)

ignoring logarithmic factors.

Theorem (Lower bound, Shi et al., 2023)

In addition, no algorithm succeeds when the sample size is below

0 oSA .
Q (min{l,(l—'y)4(1+o—)4}52) otherwise
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When the uncertainty set is y? divergence

. 3
Sample complexity )
Upper bound S? Ao
S2A [Panaganti and Kalathil] (1 —n7)e?
Lower bound
(1 —)te? (this work)
Upper bound SAg
(this work) (1—v)te?
SA -
(1 =v)te?
SAo SAc
(1=y)*1+0)* €2
SA Standard MDPs
(1— )32 N N upper & minimax lower bound ™
SA . Lower bound [Yang et al.]
(1 —)e?

o1-7) 0@y 0@/1-9)
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When the uncertainty set is y? divergence

Sample complexity“

S2A

[Panaganti and Kalathil]

(1 —)te?

SA
(1 =)t

(1 —7)%?

S? Ao
1— )2
=7 Lower bound
(this work)
SAc
(1 =7)te?
SAc
=2

Standard MDPs
upper & minimax lower bound =

Lower bound [Yang et al.]

\4

o(1/(1-)

RMDPs can be harder to learn than standard MDPs.
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Concluding remarks



This tutorial

FIRsT-ORDER METHODS
IN OPTIMIZATION High-Dimensional
Probability

Amir Beck

(large-scale) optimization (high-dimensional) statistics

Demystify sample- and computational efficiency of RL algorithms

Part 1. basics, RL w/ a generative model

Part 2. online / offline RL, multi-agent / robust RL
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Concluding remarks

[ ———
‘\\ o state . FiRsT-OR0ER METHODS
(¥ agent action IN OPTIMIZATION
¥ G S a0 o | e —_—
Reinforcement |\ \ Dynamic Programming r I
Learning \X and Optimal Control 1
. i xi H
i |
[r— B p 1: reward A
-—¢——1 environment —_—

inext state

Understanding non-asymptotic performances of RL algorithms is a
fruitful playground! J




Beyond the tabular setting

Policy network Value network
Pojp @ls) vy (8)
*

l't‘ -

> &>

Figure credit: (Silver et al., 2016)
® function approximation for dimensionality reduction
® Provably efficient RL algorithms under minimal assumptions
(Osband and Van Roy, 2014; Dai et al., 2018; Du et al., 2019; Jin et al., 2020)




Multi-agent RL

e 4

e Competitive setting: finding Nash equilibria for Markov games

e Collaborative setting: multiple agents jointly optimize the policy
to maximize the total reward

(Zhang, Yang, and Basar, 2021; Cen, Wei, and Chi, 2021)



Hybrid RL

this is done \
many times
= A
7

Offline/Batch RL
® no interaction

® data is given

Online RL
® interact with environment

® actively collect new data

train for
many epoch

big dataset from
past interactions

deploy learned policy in new scenarios

Can we achieve the best of both worlds?
(Wagenmaker and Pacchiano, 2022; Song et al., 2022; Li et al., 2023) 2.68



Concluding remarks

/:\ = state . FIRST-ORDER METHODS
AN action IN OPTIMIZATION
] F———— agent —_—
Reinforcement |\ \ Dynamic Programming 1 I
Le ‘\ X and Optimal Control 1
X 1.
—0 1: reward Amir Beck
/ -—¢——1 environment _—
inext state i

Understanding non-asymptotic performances of RL algorithms is a
fruitful playground! J

Promising directions:

® function approximation ® hybrid RL
® multi-agent/federated RL ® many more...

Thank you for your attention! https://yutingwei.github.io/
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