Statistical and Algorithmic Foundations of
Reinforcement Learning

Yuting Wei

Statistics & Data Science, Wharton
University of Pennsylvania

PKU, July 2023

Our wonderful collaborators

e o

q -
-
_ 9
h 2

Gen Li Shicong Cen Chen Cheng Laixi Shi
UPenn — CUHK CcMU Stanford CMU — Craltech

),
Yuling Yan Changxiao Cai Wenhao Zhan Yuantao Gu

Princeton — MIT ~ UPenn — UMich Princeton Tsinghua

A
1Sy
H\ﬁ'x s

Jason Lee Jianging Fan Yuxin Chen Yuejie Chi
Princeton Princeton UPenn CMU

Recent successes in reinforcement learning (RL)

Google DeepMind's

AlphaFold 2

At last — a computer program that
can beat a champion Go player PAcE484

ALL SYSTEMS GO oy

SONGBIRDS SAFEGUARD HEN GENES
ALA CARTE TRANSPARENCY)T ‘SELFISH’

RL holds great promise in the next era of artificial intelligence.

1-3

Recap: Supervised learning

Given i.i.d training data, the goal is to make prediction on unseen data:

— pic from internet

14

Reinforcement learning (RL)

In RL, an agent learns by interacting with an environment.

s~ ——n
= E\T’;‘é:?

L = =T) =
® no training data

® trial-and-error
® maximize total rewards

® delayed reward

“Recalculating ... recalculating ...”

1-5

Sample efficiency

I
CLINICAL TRIAL

DISCOVERY &
PRE-CLINICAL

FDA
APPROVAL

PHASE | PHASE 2 PHASE 3

=2

Source: chinsights.com B2 CBINSIGHTS

® prohibitively large state & action space
® collecting data samples can be expensive or time-consuming

1-6

Sample efficiency

I
CLINICAL TRIAL

DISCOVERY &
PRE-CLINICAL

FDA
APPROVAL

PHASE | PHASE 2 PHASE 3

=2

Source: chinsights.com B2 CBINSIGHTS

® prohibitively large state & action space
® collecting data samples can be expensive or time-consuming

Challenge: design sample-efficient RL algorithms)

1-6

Computational efficiency

Running RL algorithms might take a long time ...

® enormous state-action space

® nonconvexity

1-7

Computational efficiency

Running RL algorithms might take a long time ...

® enormous state-action space

® nonconvexity

Challenge: design computationally efficient RL algorithms J

1-7

Theoretical foundation of RL

asymptotic
ana IysV

1-8

Sttt i
199,V 1 o 2, 27254

The Contributions of Herbert Robbins to

Mathematical Statistics

Tze Leung Lai and David Siegmund

2. STOCHASTIC APPROXIMATION AND
ADAPTIVE DESIGN

In 1951, Robbins and his student, Sutton Monro,
founded the subject of stochastic approximation with
the publication of their celek d paper [26]. Con-
sider the problem of finding the root # (assumed
unique) of an equation g(x) = 0. In the classical

4. SEQUENTIAL EXPERIMENTATION AND
OPTIMAL STOPPING

The well known “multiarmed bandit problem” in
the statistics and engineering literature, which is pro-
totypical of a wide variety of adaptive control and
design probl was first formulated and studied by
Robbins [28]. Let A, B denote two statistical popula-
tions with finite means 4, up. How should we draw a

Herbert Robbins David Blackwell

David Blackwell, 1919-2010: An explorer in
mathematics and statistics

Peter J. Bickel™'

Blackwell channel. He also began to work in dynamic
programming, which is now called reinforcement
learning.| In a series of papers, Blackwell gave a rig-
orous foundation to the theory of dynamic program-
ming, introducing what have become known as
Blackwell optimal policies.

1-9

Theoretical foundation of RL

Y ,jg’e finite-sample
, analysis «

asymptotic
analysy

Understanding sample efficiency of RL requires a modern suite of
non-asymptotic analysis tools

1-9

This tutorial

FIRST-ORDER METHODS
IN OPTIMIZATION High-Dimensional

Numerical
tion

Amir Beck

(large-scale) optimization (high-dimensional) statistics

Demystify sample- and computational efficiency of RL algorithms

1-10

This tutorial

T s FiRsT-ORDER METHODS
IN OPTIMIZATION i lo High-Dimensional
tepie Probabili

N -
7
Amir Beck

(large-scale) optimizaﬁon (high-dimensional) statistics

Demystify sample- and computational efficiency of RL algorithms

Part 1. basics, model-based and model-free RL
Part 2. robust RL, offline RL and multi-agent RL
Part 3. policy optimization

1-10

Outline (Part 1)

Basics: Markov decision processes
Basic dynamic programming algorithms
Model-based RL (“plug-in" approach)

Value-based RL (a model-free approach)

1-11

Basics: Markov decision processes

Markov decision process (MDP)

state s; action ay
agent ——1

environment |« — —J

A A 4

® S: state space

e A: action space

1-13

Markov decision process (MDP)

state s¢ action a;
. Y agent ——1
1
i I
+ reward
11Tt =TS, At |
[
| I E— .
“ environment |« — —

® S: state space
e A: action space

® r(s,a) € [0,1]: immediate reward

1-13

Infinite-horizon Markov decision process

action
state s;

[jat ~ m([st)
R) agent ——7

]
]
]
i reward |
i A T(St,at |

b

environment |« — —J

S: state space
A: action space
r(s,a) € [0,1]: immediate reward

7(+|s): policy (or action selection rule)

1-14

Infinite-horizon Markov decision process

action
state s;

[jat ~ m([st)
R) agent ——7

]
]
]
i reward |
i A T(St,at |

b

environment |« — —J

| next state
St41 ~ P(c|st, ar)
S: state space
A: action space
r(s,a) € [0,1]: immediate reward
7(+|s): policy (or action selection rule)

P(-|s,a): unknown transition probabilities

1-14

Help the mouse!

1-15

Help the mouse!

e, e
el
s,
"

® state space S: positions in the maze

1-15

Help the mouse!

® state space S: positions in the maze

® action space A: up, down, left, right

1-15

Help the mouse!

® state space S: positions in the maze
® action space A: up, down, left, right
® immediate reward r: cheese, electricity shocks, cats

1-15

Help the mouse!

state space S: positions in the maze
action space A: up, down, left, right
immediate reward 7: cheese, electricity shocks, cats
policy m(-|s): the way to find cheese

1-15

Value function

action

state s o
------- o) y &z om o n

reward |:> So I S1 I S2 I S3 l S4 I
re = 7r(S¢, at | T) P N { % ¥) v

&

o o - e o
<=~ environment — ag ap az as ay
Al

So|

siy1 ~ P(st,ar)

Value of policy m: cumulative discounted reward

VseS: V7T(s):=E Z’ytr(st,at) |so=s
t=0

1-16

Value function

action

state s
ag ~ T("|S
------- G b n on o om

T4

reward |:> So I S1 I S2 I S3 l
re = 7r(S¢, at | T } P N P N ¥)

&

4=~ environment — ag ay az az
Al

Sth1 ~ })(Wstaaﬂ

Value of policy m: cumulative discounted reward

VseS: V7T(s):=E Z’ytr(st,at) |so=s
t=0

® v €10,1): discount factor

> take v — 1 to approximate long-horizon MDPs

> effective horizon: ﬁ

84

So|

'~

aq

1-16

Q-function (action-value function)

T2 T3 T4 Ts

So,ao ‘—I—'sl—l—osz—l—>83—|—>54—|—>s5—|—>

ao ay ay as fl:t ’15

Q-function of policy 7:

V(s,a) e SxA: Q7(s,a):=E nytrt|so =s,a0=a
=0

® (gg7 s1,a1, S2,a2,- -): induced by policy 7

1-17

Q-function (action-value function)

70 T1 T2 T3 T4 75
(o) @m—lmbn Lo La L
aO' a'1 ay a'3 a:l a5
T2 r3 T4 5
(30, G0) ’—l—»sl—l—»52—|—>33—|—»s4—|—>s5_|—.
a.;. ?11 as &3 &1 W

Q-function of policy 7:

V(s,a) e SxA: Q7(s,a):=E nytrt|so =s,a0=a
=0

® (gg7 s1,a1, S2,a2,- -): induced by policy 7

1-17

Finite-horizon MDPs

5h+nle>’$;EL;?E% an)
H: horizon length
S: state space with size S e A: action space with size A
rh(sn,ap) € [0,1]: immediate reward in step h
7 = {my }i,: policy (or action selection rule)

Py,(-|s,a): transition probabilities in step h

1-18

Finite-horizon MDPs

next state
sha1 ~ Pu(-sn, an)

H
value function: V7 (s) =E [Z rh(sn,an) | sn = S]
t=h

Q-function: Q}(s,a) =E

I
I

Il
>

rh(sh,ah) | Sp = S,ap = a,]
t

1-18

Optimal policy and optimal value

state s

14

=
=
&=

optimal policy 7*: maximizing value function max, V™
Proposition (Puterman’94)

For infinite horizon discounted MDP, there always exists a deterministic
policy ©*, such that

V™ (s)>V™(s), Vs, and .

1-19

Optimal policy and optimal value

L
AN
-
I’
-,

optimal policy 7*: maximizing value function max, V™

* optimal value / Q function: V* := V™" Q* := Q™

1-19

Optimal policy and optimal value

-
A
4 ’,W
S T

optimal policy 7*: maximizing value function max, V™
* optimal value / Q function: V* := V™" Q* := Q™

® How to find this 7*7

1-19

Basic dynamic programming algorithms
when MDP specification is known

Policy evaluation: Given MDP M = (S, A,r, P,) and policy
m:S — A, how good is 77 (i.e., how to compute V7™ (s), Vs7)

Policy evaluation: Given MDP M = (S, A,r, P,) and policy
m:S — A, how good is 77 (i.e., how to compute V7™ (s), Vs7)

Possible scheme:
® execute policy evaluation for each 7

® find the optimal one

Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7

1-22

Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7

Bellman’s consistency equation

V7 (s) = Equn(ls) [Q7 (s,)]

Q(s0)= r(sa) +y B | V() |
N~—— s'~P(:|s,a) S~——

immediate reward next state's value

Richard Bellman

1-22

Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7
Bellman’s consistency equation

V7 (s) = Equn(ls) [Q7 (s,)]

Q(sa)= 1r(sa) 4y E | V()]
N~—— s'~P(:|s,a) S~——

immediate reward next state's value

® one-step look-ahead

Richard Bellman

1-22

Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7

Bellman’s consistency equation

VT(s) = Eqer(ls) [Q”(s, a)]

Q(sa)= 1r(sa) 4y E | V()]
~—— s'~P(-|s,a) ~——
immediate reward next state's value

® one-step look-ahead

® |et P™ be the state-action transition matrix
induced by m:

Q"=r+yP"Q" = Q" =(I-yP")'r
Richard Bellman

1-22

Optimal policy 7*: Bellman’s optimality principle

Bellman operator

T(Q)(s,a) = 7r(s,a) +v E max Q(s',a’)
s'~P(|s,a) La’€A
immediate reward
next state's value

® one-step look-ahead

1-23

Optimal policy 7*: Bellman’s optimality principle

Bellman operator

T(Q)(s,a):= r(s,a) +~v E max Q(s',a’)
s'~P(:|s,a) a’eA
immediate reward
next state's value

® one-step look-ahead

Bellman equation: Q* is unique solution to
TQ)=Q"
~-contraction of Bellman operator:

|7(Q1) — T(Q2)llo <V/[Q1 — Q2o Richard Bellman

1-23

Two dynamic programming algorithms

Q(U)
Value iteration (VI) ol
Fort=0,1,..., ¢
-
Q(t+1) _ T(Q(t)) QW .
Q4

Policy iteration (PI)
Fort=0,1,...,

policy evaluation: Q) = Q™"

policy improvement: w(t+1)(s) = argmax Q(t)(s,a)
ac

o
/ i

1-24

Iteration complexity

Theorem (Linear convergence of policy/value iteration)

09 - @l <0 -

1-25

Iteration complexity

Theorem (Linear convergence of policy/value iteration)

1 = @[l < '1|Q" - Q"I

Implications: to achieve ||Q() — Q*||o < ¢, it takes no more than

) _ o*
. log <”QQ”OO> iterations
1—7 €

1-25

Iteration complexity

Theorem (Linear convergence of policy/value iteration)

1 = @[l < '1|Q" - Q"I

Implications: to achieve ||Q() — Q*||o < ¢, it takes no more than

) _ o*
. log <”QQ”OO> iterations
1—7 €

Linear convergence at a dimension-free rate!

1-25

When the model is unknown . ..

VoLuwe

Reinforcement |\ Dynamic Programming

Learning and Optimal Control
'8 DIMITRI P BERTSEKAS

A lnoducton |

hcand e |

Richard S. Sutton and Andrew G, Barto /

1-26

When the model is unknown . ..

THIRD EDITION
T |

Reinforcement
Learning

A Introduction
second edition

Dynamic Programming
and Optimal Control

DIMITRI P. BERTSEKAS

—

15 i\
Richard S. Sutton and Andrew G. Barto / W

L

{ fm———
1
1
A
1
1
1

<.

/’—
,

A

Need to learn optimal policy from samples w/o model specification

1-26

Three approaches

Wy model AL,

X e ey R
&&;& (ie. P € RISIMIXIS]) %,19
/ wodel-based \
samples value function
(experience) policy
>, 4
~..__model-free -

Model-based approach (“plug-in”)
1. build an empirical estimate P for P

2. planning based on the empirical P

1-27

Three approaches

o model A

9 (e P e w7 g,

& *\:19
/ wmodel-based \
samples value function
(experience) policy
N, 4
.._model-free .-

Model-based approach (“plug-in”)
1. build an empirical estimate P for P

2. planning based on the empirical P

Value-based approach
— learning w/o estimating the model explicitly

Policy-based approach
— optimization in the space of policies

1-27

Three approaches

o model A

T e p e RIS T g

!ﬁ’c‘«// \:19
/ model-based \
samples value function
(experience) policy
S s 4
“.._model-free .-

Model-based approach (“plug-in”)
1. build an empirical estimate P for P

2. planning based on the empirical P

Value-based approach
— learning w/o estimating the model explicitly

Policy-based approach
— optimization in the space of policies

1-27

Model-based RL (a “plug-in” approach)

A generative model / simulator

— Kearns and Singh, 1999

gewerative model

e sampling: for each (s,a), collect N samples {(s,a, s/ \) hi<i<n
(i) F1=rs

1-29

A generative model / simulator

— Kearns and Singh, 1999

gewerative model

e sampling: for each (s,a), collect N samples {(s,a, s/ \) hi<i<n
(i)/ A==

® construct 7 based on samples (in total |S||A| x N)

1-29

(. -sample complexity: how many samples are required to

learn an e-optimal policy ?

-~

Vs: V() >V*(s)—e

An incomplete list of works

Kearns and Singh, 1999
Kakade, 2003

Kearns et al., 2002

Azar et al., 2012

Azar et al., 2013

Sidford et al., 2018a, 2018b
Wang, 2019

Agarwal et al., 2019
Wainwright, 2019a, 2019b
Pananjady and Wainwright, 2019
Yang and Wang, 2019
Khamaru et al., 2020

Mou et al., 2020

Cui and Yang, 2021

1-31

An even shorter list

of prior art

algorithm sample size range | sample complexity e-range
Empirical QVI [\SP\A\) IS[1A| (o, é]
Azar et al., 2013 (1-v)2° (1—7)3e2 Vv (1=7)[S|
Sublinear randomized VI [|SI|A|) |S]]Al (0 L}
Sidford et al., 2018b 1-2 (1—v)%e? P11y
Variance-reduced QVI [|SI|A|) |SI|A| (0,1]
Sidford et al., 2018a (1-7)3> (1-7)3e2 ’
Randomized primal-dual [|S||A) |S||A] (0 1]
Wang 2019 1-m2 (1—7)%e2 P 1-ny
Empirical MDP + planning [|S||A]| o) ISIIAl (0, -]
Agarwal et al., 2019 1-2 (1-7)3e? P V1=

important parameters

—

e 4 states |S|, # actions | A

® the discounted complexity 1%

® approximation error ¢ € (0, -]

=
1-32

Model estimation

Sampling: for each (s, a), collect
N ind. samples {(s, a, S/(Z-))}lgigjv

generative model

Model estimation

Sampling: for each (s, a) collect
N ind. samples {(s,a, s)}1<1<N

Empirical estimates

generative model /| S, (1 N Z]1{8

-~

empirical frequency

Empirical MDP + planning

— Azar et al., 2013, Agarwal et al., 2019

[/ empirical MDP

H EN
| [|
| - n =
e | planning =%
[H B oracle
| [| . .
| | | B e.g. dynamic programming
H BN
| |
r

empirical P

Find policy based on the empirical MDP (empirical maximizer)
—_——— —_— —

using, e.g., policy iteration (ﬁﬂn)

1-34

Challenges in the sample-starved regime

| H B
[
| =
||
H N
H N
|
L]
H N
H |
truth: P € RISIMAIXIS] empirical estimate: P

e Can't recover P faithfully if sample size < |S|?|.Al!

Challenges in the sample-starved regime

| H B
[
| =
[
H N
H N
|
L
H N
H |
truth: P € RISIMAIXIS] empirical estimate: P

e Can't recover P faithfully if sample size < |S|?|.Al!

e Can we trust our policy estimate when reliable model estimation is
infeasible?

(~-based sample complexity

Theorem (Agarwal Kakade, Yang'19)
Forany 0 < e < \/7 the optimal policy ™ of empirical MDP achieves

IVF =V <e

with high prob., with sample complexity at most

A=)

(~-based sample complexity

Theorem (Agarwal, Kakade, Yang'19)

1

Forany 0 < e < T

”Vﬁ* - V*Hoo <e

with high prob., with sample complexity at most

the optimal policy ™ of empirical MDP achieves

5 (_ISIIA
o202
((1 — 7)3?
® matches minimax lower bound: ﬁ((l“_ggé;) when ¢ < —7—

(equivalently, when sample size exceeds (|fl‘$‘2) Azar et al., 2013

(~-based sample complexity

Theorem (Agarwal, Kakade, Yang'19)

1

Forany 0 < e < T

the optimal policy ™ of empirical MDP achieves
”V%* - V*Hoo <e

with high prob., with sample complexity at most

5 (_ISIIA
o202
((1 — 7)3?
® matches minimax lower bound: ﬁ((l“_ggé;) when ¢ < 1177/

(equivalently, when sample size exceeds (|fl‘$‘2) Azar et al., 2013

® established upon leave-one-out analysis framework

sample
complexity

ISII-A]
(1=7)

EENE

(=)

N
3

‘K:%'
«be’ ; ,
«© — Sidford et al."18a

8

Agarwal et al.'19

A N , \\\/
z§ 1/,§

1-37

sample
complexity

IS|IA]
(1-7)3
S|I4]
(=)
|S[IA]
1-v [1 1 > —
AN AEN 6\\/ €2
7 7
7

1-37

sample
complexity

N
N
> /
&
2@‘6 — Sidford et al. "18a
3
o“é
-/ Agarwal etal/19
f , +
(\\‘«b
‘6\\
_/
1 1 1 » —
AN BN @\\/ €2
% ’
7
N XL
> >
. . . . S||lA
Agarwal et al., 2019 still requires a burn-in sample size = (|1_H7)‘2

1-37

sample

complexity
&
‘K:%'

ISII-A] St

(1—7)3 ~2§>‘é — Sidford et al."18a
S

ISHAI A/garwal et al.’19 \)(\

e 7 PR
\(‘\«\’b
sl |- ®
1-v 1 1 > —
@ & © 2
13
A N , \\/

ISILA]|

Agarwal et al., 2019 still requires a burn-in sample size = (E=E

Question: is it possible to break this sample size barrier?)

1-37

Perturbed model-based approach (Li et al. ’20)

/ empirical MDP

L
|
|
|
o]

empirical P

perturb
rewards

—

|

—Li et al., 2020

planning %;
oracle

\ij_e:ynamic programming

b
3

empirical

Find policy based on the empirical MDP with slightly perturbed rewards

Optimal /,.-based sample complexity

Theorem (Li, Wei, Chi, Chen '20)

Forany 0 < e < ﬁ the optimal policy 7}, of perturbed empirical MDP
achieves

[V = V¥l < &

with high prob., with sample complexity at most

o(a-ya)

Optimal /,.-based sample complexity

Theorem (Li, Wei, Chi, Chen '20)

1
Forany 0 < e < T—y

achieves

the optimal policy 7}, of perturbed empirical MDP

[V = V*||oo < €

with high prob., with sample complexity at most

o(a-ya)

® matches minimax lower bound: Q(%) Azar et al., 2013

e full e-range: € € (0, ﬁ] — no burn-in cost

® established upon more refined leave-one-out analysis and a
perturbation argument

sample
complexity

X
N
> //
¢ s
>
éé — Sidford et al.'18a
......... X o

A sketch of the main proof ingredients

1-41

Notation and Bellman equation

Bellman equation: V™ =r, +~yP, V"™

e /™ value function under policy 7
> Bellman equation: V™ = (I —yP;) " lr,

e /™. empirical version value function under policy 7

> Bellman equation: V™ = (I —vP;)"!r,

1-42

Notation and Bellman equation

Bellman equation: V™ =r, +~yP, V"™

V™. value function under policy 7
> Bellman equation: V™ = (I —yP;) " lr,

V™. empirical version value function under policy 7

> Bellman equation: V™ = (I —vP;)"!r,

m*: optimal policy for V™

7*: optimal policy for VT

1-42

Main steps

Elementary decomposition:

VAV = (V- VT 1 (V- V) 4 (V- VT

< (V™ -VT) 40+ (VE -V

143

Main steps

Elementary decomposition:

VAV = (V- VT 1 (V- V) 4 (V- VT

< (V™ -VT) 40+ (VE -V

e Step 1: control V™ — V7 for a fixed 7 (called “policy evaluation”)
(Bernstein inequality + a peeling argument)

143

Main steps

Elementary decomposition:

VAV = (V- VT 1 (V- V) 4 (V- VT

< (V™ V™) 10+ (VE V)

e Step 1: control V™ — V7 for a fixed 7 (called “policy evaluation”)
(Bernstein inequality + a peeling argument)

e Step 2: extend it to control V7' — V7 (7* depends on samples)
(decouple statistical dependency)

143

Key idea 1: a peeling argument (for fixed policy)

First-order expansion

VT VT = v(I - 'yP7r)_1 (ﬁw — P7r)177r [Agarwal et al., 2019]

1-44

Key idea 1: a peeling argument (for fixed policy)

First-order expansion

VT VT = (I - 'yPﬂ)_l (ﬁﬂ - P7r)‘77r [Agarwal et al., 2019]

Ours: higher-order expansion + Bernstein — tighter control

VT — V™ = (I —P;) " (Pr = Pr) V" +
+y(I=vPr) " (Pr = Po) (VT = V7)

Bernstein’s inequality:](P7r — PW)V”| <4/ Va;{,‘/ﬂ + ”V;[”‘”

1-44

Key idea 1: a peeling argument (for fixed policy)

First-order expansion

VT VT = (I - ’wa)_l (]37r — PW)‘/}’r [Agarwal et al., 2019]

Ours: higher-order expansion + Bernstein — tighter control
VT VT = (I —~P;) (Pr — P) V™ +
+~2 ((I —P) Py — PW)>2V”
+ 3 <(I —P,) (P - PW)>3V“

+ ...

. . ~ - VarlV™] | V™|l
Bernstein's inequality: |(Pr — Pr) V™| < 4/ m}{, I N”

1-44

Byproduct: policy evaluation

Theorem (Li, Wei, Chi, Gu, Chen’20)

Fix any policy w. For every 0 < € < plug-in estimator v obeys

1
1—~’

V™ =Vl <&

with sample complexity at most

(=)

1-45

Byproduct: policy evaluation

Theorem (Li, Wei, Chi, Gu, Chen’20)

1

Fix any policy w. For every 0 < € < j— plug-in estimator v obeys

V™ =Vl <&

with sample complexity at most

(=)

® minimax lower bound [Azar et al., 2013, Pananjady and Wainwright, 2019]

1-45

Byproduct: policy evaluation

Theorem (Li, Wei, Chi, Gu, Chen’20)

1
1—~’

Fix any policy w. For every 0 < € < plug-in estimator v obeys
IV = Vleo <&

with sample complexity at most

0=

® minimax lower bound [Azar et al., 2013, Pananjady and Wainwright, 2019]

® tackle sample size barrier: prior work requires sample size > %
[Agarwal et al., 2013, Pananjady and Wainwright, 2019, Khamaru et al,, 2020]

1-45

Step 2: controlling Ve v

A natural idea: apply our policy evaluation theory 4+ union bound

146

Step 2: controlling Ve v

A natural idea: apply our policy evaluation theory 4+ union bound

® highly suboptimall!

146

Step 2: controlling Ve v

A natural idea: apply our policy evaluation theory 4+ union bound

® highly suboptimall!

key idea 2: a leave-one-out argument to decouple stat. dependency btw
7 and samples

— inspired by [Agarwal et al., 2019] but quite different ...

146

Key idea 2: decouple dependency for vy

— inspired by [Agarwal et al., 2019] but quite different . ..

(
— ! H EBN | 1
decouple ==] =“ -. B -=

dependency [|] []

HE B HE B

H EHR H EHR

| | | |
H B H B

H E R H EH B

EE BN EEm N
empirical P T leave-one-out P(*®) (5@

. ~ empirical maximizer =
e define w(*s o) s (Pls:a) p(s:0)

1-47

Key idea 2: decouple dependency for vy

— inspired by [Agarwal et al., 2019] but quite different . ..

p -
—> ! H H N H 1
decouple “i.-] =“ -. B -=

dependency [|] []

HE B HE B

H EHR H EHR

| | | |
H B H B

H E R H EH B

EE BN EEm N
empirical P T leave-one-out P(*®) (5@

. ~ empirical maximizer =
e define w(*s o) s (Pls:a) p(s:0)

» decouple dependency by dropping randomness in 13(| s,a)

» scalar 7(>%) ensures Q* and V* unchanged

1-47

Key idea 2: decouple dependency for vy

— inspired by [Agarwal et al., 2019] but quite different . ..

p -
—> ! H H N H 1
decouple “i.-] =“ -. B -=

dependency [|] []

HE B HE B

H EHR H EHR

| | | |
H B H B

H E R H EH B

EE BN EEm N
empirical P T leave-one-out P(*®) (5@

e define 51'\(o empirical maximizer) (ﬁ(sva) T(S’a))

(S Q) = = 7* can be determined under separation condition

-~

VseS, Q4s,7*(s)) — 'n;zizc()Q*(&a) >0

1-47

Key idea 3: tie-breaking via perturbation

® How to ensure the optimal policy stand out from other policies?

VseS, Q(s,7(s))— max Q*(s,a)>w

a:a#£7T*(s)

148

Key idea 3: tie-breaking via perturbation

® How to ensure the optimal policy stand out from other policies?

VseS, Q(s,7(s))— max Q*(s,a)>w

a:a#£7T*(s)

*

e Solution: slightly perturb rewards r — 7

P
> ensures the uniqueness of 7, » y
> VT VT W
\v \%*/ -)
N B
S
s“‘ 1 — l
—a 1 b
e] ‘ > 3
2 3

1-48

Summary of model-based RL

sample
. 4
complexity

IS|IA|
1-72[=
|S||A] |
(1-y?
|S]IA]
1 1] > 1
@\\ 6‘\\ 6\\/ &'2
7 N
N
> V%

Model-based RL is minimax optimal & does not suffer from a
sample size barrier!

Three approaches

Wy model AL,

< B e~~~ .
&&:{{ (ie. P € RISIAIXIS]) %,19
/ wodel-based \
samples value function
(experience) policy
~ o
“.._model-free .-

Model-based approach (“plug-in”)
® build an empirical estimate P for P

® planning based on the empirical P

Value-based approach
— learning w/o estimating the model explicitly

Policy-based approach
— optimization in the space of policies

Value-based RL (a model-free approach)

Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins & K/Ionro, 1951

TQ) -Q=0
where
T@(s0) = r(sa) +7 E [maxQ,d)].
~—— s'~P(-|s,a) La'€A
immediate reward ————r

next state's value

1-52

Q-learning: a stochastic approximation algorithm

| //

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) —Q =0

Qit1(s,0) = Quls,a) + m(Te(Qi) (s, 0) — Qu(s,a)), >0

-~

sample transition (s,a,s’)

Q-learning: a stochastic approximation algorithm

/

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) —Q =0

Qit1(s,0) = Quls,a) + m(Te(Qi) (s, 0) — Qu(s,a)), >0

-~

sample transition (s,a,s’)

Te(Q)(s,a) =r(s,a) + H}IE}XQ(S', a’)
T(Q)(s,a) =r(s,a) +~ E [mé}x Q(s',a")]

s'~P(:|s,a) = @

A generative model / simulator

— Kearns, Singh '99

gewerative model

Each iteration, draw an independent sample (s, a, s’) for given (s, a)

1-54

Synchronous Q-learning

Chris Watkins Peter Dayan

./{"

fort=0,1,...,7T
for each (s,a) € S x A

draw a sample (s, a,s’), run

Qeei(s.0) = (1= 1)Qi(s,a) + mp{r(s.0) + ymax Qu(s'.a)) |

synchronous: all state-action pairs are updated simultaneously J

e total sample size: T|S||A|

Sample complexity of synchronous Q-learning

Theorem (Li, Cai, Chen, Wei, Chi’21)

For any 0 < e <1, synchronous Q-learning yields H@ — Qoo < € with
high prob. and E[||Q — Q*||«] < €, with sample size at most

O(addl;) iflA > 2

9] % if|Al =1 (TD learning)

Sample complexity of synchronous Q-learning

Theorem (Li, Cai, Chen, Wei, Chi’21)

For any 0 < e <1, synchronous Q-learning yields H@ — Q"o < € with
high prob. and E[||Q — Q*||«] < €, with sample size at most

O(-SIAL) if 4] > 2

(1—7)%e?

0 % if|Al =1 (TD learning)

e Covers both constant and rescaled linear learning rates:

1 1
T et T e

log? T log? T

Mt

Sample complexity of synchronous Q-learning

Theorem (Li, Cai, Chen, Wei, Chi’21)

For any 0 < e <1, synchronous Q-learning yields H@ — Q"o < € with
high prob. and E[||Q — Q*||«] < €, with sample size at most

9] (1'flj;‘1L2 iflAl>2 (?)

9 (1,5)'352 if|Al =1 (minimax optimal)

other papers sample complexity

= _ISIIA]
- ! -
Even-Dar & Mansour '03 2 —)%e2
I IS|214]2
Beck & Srikant'12 (1—~)5¢e2
Wainwright '19 (1—~)Be2
Chen, Maguluri, Shakkottai, Shanmugam '20 LSLAl

(a-y)5e2

All this requires sample size at least ;=515 HA‘ s (A >2)...

y\ o)
SR”
\//

sample
complexity
(log scale)

1
log scale
— (log scale)

All this requires sample size at least ;=515 SUAL HA‘ s (A >2)...

B
4 SR
sample (s

complexity
(log scale) S

1
log scale
— (log scale)

Question: /s Q-learning sub-optimal, or is it an analysis artifact?

. S
A numerical example: % samples seem necessary ...

— observed in Wainwright '19

o
>

=)
o

o
>

sample size per state-action: N

10%
4’)/ — 1 ——— Q-learning
e ———— Theory: N < “717),
2
37 10 10 15 20 25 130 35 40
7”‘(0, 1) — 07 ,,,(1, 1) — 7"(1, 2) =1 discount complexity: e

Q-learning is NOT minimax optimal

Theorem (Li, Cai, Chen, Wei, Chi, 2021)

For any 0 < & < 1, there exists an MDP with | A| > 2 such that to
achieve ||Q — Q*|loc < €, synchronous Q-learning needs at least

(A

m) samp/es

Q-learning is NOT minimax optimal

Theorem (Li, Cai, Chen, Wei, Chi, 2021)

For any 0 < & < 1, there exists an MDP with | A| > 2 such that to
achieve ||Q — Q*|loc < €, synchronous Q-learning needs at least

Q (%) samples

® Tight algorithm-dependent lower bound

® Holds for both constant and rescaled linear learning rates

1
2

a
a

Q-learning is NOT minimax optimal

Theorem (Li, Cai, Chen, Wei, Chi, 2021)

For any 0 < & < 1, there exists an MDP with | A| > 2 such that to
achieve ||Q — Q*|loc < €, synchronous Q-learning needs at least

Q ((1‘&—’44'52> samples

N
| 4 \5\\ r\\c
sample T <
complexity
-
(log scale) £
& A
N "’3‘@0 \\5\/\&\‘\&
Q

e

T

1
T (log scale)

Improving sample complexity via variance reduction

— a powerful idea from finite-sum stochastic optimization

Variance-reduced Q-learning updates (Wainwright '19)
— inspired by SVRG (Johnson & Zhang '13)

Qi(s,0) = (1 =n)Qe-1(s5,) +1(Ti(Qi-1) =T(@) + T(@))(s.0)
N———

use Q to help reduce variability

1-61

Variance-reduced Q-learning updates (Wainwright '19)
— inspired by SVRG (Johnson & Zhang '13)

Qi(s,0) = (1 =n)Qe-1(s5,) +1(Ti(Qi-1) =T(@) + T(@))(s.0)
N———

use Q to help reduce variability

® (): some reference Q-estimate

e 7 empirical Bellman operator (using a batch of samples)

Ti(Q)(s,a) = r(s,a) + ymax Q(s', a’)

TQ)(s,0) =r(s,a)+y E [maxQ(s',a)]

s'~P(:|s,a) @

1-61

An epoch-based stochastic algorithm

— inspired by Johnson & Zhang '13

u pdate variance-reduced

Q-learning
)-)‘)-)-
epoch 1 epoch 2 epoch 3

for each epoch
1. update Q and '7‘(@) (which stay fixed in the rest of the epoch)

2. run variance-reduced Q-learning updates iteratively

1-62

Sample complexity of variance-reduced Q-learning

Theorem (Wainwright '19)

For any 0 < € < 1, sample complexity for variance-reduced
synchronous Q-learning to yield ||Q — Q*||c < € is at most

)

® allows for more aggressive learning rates

Sample complexity of variance-reduced Q-learning

Theorem (Wainwright '19)

For any 0 < € < 1, sample complexity for variance-reduced
synchronous Q-learning to yield ||Q — Q*||c < € is at most

)

® allows for more aggressive learning rates

® minimax-optimal for 0 <e <1
> remains suboptimal if 1 < e < ﬁ

Summary of this part

® basics of MDP and DP algorithms
® break the sample size barrier using model-based approach

® obtain tight sample complexity for Q-learning

Wy model | AL,
&M}f/ (ie. P € RISIAIxIS]) \‘3’5‘1@
/ model-based R
samples value function
(experience) policy
S . /X
“ee__model-free -

1-64

Outline (Part 2)

Four variants of our basics settings to illustrate the approaches so far:

Offline / batch RL

RL with Markovian samples

Robust RL

Multi-agent RL

2-1

Outline (Part 2)

Four variants of our basics settings to illustrate the approaches so far:

Offline / batch RL

RL with Markovian samples

Robust RL

Multi-agent RL

2-1

Offline RL / batch RL

e Collecting new data might be expensive or time-consuming

® But we have already stored tons of historical data

THE COMING INAUTONOMOUS VEHICLES

AR - L]
‘ L s e
;ﬂ é : = A\
N> L y
p ~ T PERDAL..EACHDAY
’ < =
medical records data of self-driving clicking times of ads

2-2

Offline RL / batch RL

e Collecting new data might be expensive or time-consuming
® But we have already stored tons of historical data

THE COMING INAUTONOMOUS VEHICLES

o
]

’ NTONGHOLS VERCLES \
5 < S PERDAY.. DAY 2

medical records data of self-driving clicking times of ads

Question: Can we design algorithms based solely on historical J
data?

2-2

Offline RL / batch RL

No longer Transition kernel
arbitrary!

2-3

Offline RL / batch RL

svp ’%\ <s,a

initial distribution behavior 'PDI‘""’H No longer transition kernel
arbitrary!

2-3

Offline RL / batch RL

A historical dataset D = {(s(,a(?, s'D)}: N independent copies of
Sprv aNﬂ-b("S)7 S,NP('|S?G)

for some state distribution p® and behavior policy 7®

2-3

Offline RL / batch RL

A historical dataset D = {(s(,a(?, s'D)}: N independent copies of
Sprv aNﬂ-b("S)7 S,NP('|S?G)

for some state distribution p® and behavior policy 7®

Goal: given some test distribution p and accuracy level ¢, find an
g-optimal policy 7 based on D obeying

V)= Vi(p)= E [V*(s)] — E [V7(s)] <e¢

s~p s~p

— in a sample-efficient manner

2-3

Challenges of offline RL

¢ Distribution shift:

distribution(D) # target distribution under 7*

24

Challenges of offline RL

¢ Distribution shift:
distribution(D) # target distribution under 7*

¢ Partial coverage of state-action space:

R 0
VIS T2]

e
— s

uniform coverage over entire space
(sufficiently explored)

24

Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under 7*

¢ Partial coverage of state-action space:

> /\' samples cover all (s,a) & all policie:
>

\
\
T2)/
-z]
N |
~——\

uniform coverage over entire space

(sufficiently explored)

N -
Practically,
\
) -
s/ A
RN

\
historical dataset D

A
AN
|
< /
1
2
- ! %o
Ny 5 Pan—
SN ,

o

partial coverage
(inadequately explored)

24

How to quantify the distribution shift?

Single-policy concentrability coefficient (Rashidineiad et al.)
C* = max ——————=
sa d™(s,a)

where d” (s,a) = (1 —) Y ;2o v'P((s",a") = (s,a) | w) is the state-action
occupation density of policy .

2-5

How to quantify the distribution shift?

Single-policy concentrability coefficient (Rashidineiad et al.)
C* = max ——————=
sa d™(s,a)

where d” (s,a) = (1 —) Y ;2o v'P((s",a") = (s,a) | w) is the state-action
occupation density of policy .

-~ b ’ N
B ! -

® captures distribution shift

® allows for partial coverage

2-5

How to quantify the distribution shift? — a
refinement

Single-policy clipped concentrability coefficient (Li et al., '22)
. ﬂ-* 1
N min{d b(s,a), /S}
5,0 d™(s,a)

where d™(s,a) = (1 —) Y52 v'P((s*,a") = (s,a) | 7) is the state-action
occupation density of policy x.

* 5
clipped -

>1/8

2-6

How to quantify the distribution shift? — a
refinement

Single-policy clipped concentrability coefficient (Li et al., '22)
. min{d™ (s,a),1/S}
Clipped = E d™ (s, a)

where d™(s,a) = (1 —) Y52 v'P((s*,a") = (s,a) | 7) is the state-action
occupation density of policy x.

>1/8

.y 7 \
B ! Y~

® captures distribution shift
® allows for partial coverage

* *
° C’cIipped < c

2-6

A “plug-in” model-based approach

— (Azar et al. '13, Agarwal et al. '19, Li et al. '20)

[/ empirical MDP

H EH B
|| |
| H B
|| [|) ~x
. . . planning T
| H B oracle
[| [| . .
.. . e.g. dynamic programming
H BB
| [|
r

empirical P

Planning (e.g., value iteration) based on the the empirical MDP P
Q(s,a) « r(s,a) +v(P(-|5,a),V), V(s)=maxQ(s,a).
a

Issue: poor value estimates under partial and poor coverage.)

2-7

Key idea: pessimism in the face of uncertainty

— Jin et al. ‘20, Rashidinejad et al. '21, Xie et al. '21

online

upper confidence bounds
— promote exploration of under-explored (s, a)

2-8

Key idea: pessimism in the face of uncertainty

— Jin et al. ‘20, Rashidinejad et al. '21, Xie et al. '21

online

upper confidence bounds
— promote exploration of under-explored (s, a)

offline

lower confidence bounds
— stay cautious about under-explored (s, a)

2-8

Key idea: pessimism in the face of uncertainty

— Jin et al. ‘20, Rashidinejad et al. '21, Xie et al. '21

A model-based offline algorithm: VI-LCB

1. build empirical model P

2. (value iteration) for ¢ < Tyay:

~

Quls,0) [r(s.0)+7(P(|5.a), Vi)

for all (s,a), where V;(s) = max, Q:(s, a)

2-8

Key idea: pessimism in the face of uncertainty

— Jin et al. ‘20, Rashidinejad et al. '21, Xie et al. '21

A model-based offline algorithm: VI-LCB

1. build empirical model P

2. (pessimistic value iteration) for ¢ < Ty ay:

~

Qus,a) « [r(s,a)+7(P(|s,0) Tia) = bs.aVia) |
N—r +
penalize poorly visited (s,a)

for all (s,a), where V;(s) = max, Q:(s, a)

2-8

Key idea: pessimism in the face of uncertainty

— Jin et al. ‘20, Rashidinejad et al. '21, Xie et al. '21

A model-based offline algorithm: VI-LCB

1. build empirical model P

2. (pessimistic value iteration) for ¢ < Ty ay:

~

Qi(s,a) « [r(s,a)+’y<]3(-|s,a),17t_1> - b(s,a; Vi_1) Lr

penalize poorly visited (s,a)

compared w/ prior works

® no need of variance reduction e variance-aware penalty

2-8

Sample complexity of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)
Forany 0 < e < ﬁ the policy 7 returned by VI-LCB achieves

V*p)—V7(p) <e

with high prob., with sample complexity at most

6 SC:Iipped
(1= 7)3e?

2-9

Sample complexity of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)

1

Forany 0 <e < =,

the policy 7 returned by VI-LCB achieves
V*(p) = V7(p) <e

with high prob., with sample complexity at most

’O" SC:Iipped
(1= 7)3e?

® depends on distribution shift (as reflected by Cj;, .q)

e full e-range (no burn-in cost)

2-9

Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)

For any v € [2/3,1), S > 2, Cfjppeq = 87/, and 0 < e < 42(1 -y, there
exists some MDP and batch dataset such that no algorithm succeeds if

the sample size is below
Q SC4 clipped
=%/
¥)°€

2-10

Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)

For any v € [2/3,1), S > 2, Cfjppeq = 87/, and 0 < e < 42(1 -y, there

exists some MDP and batch dataset such that no algorithm succeeds if

the sample size is below
Q Scéllpped
=)

® verifies the near-minimax optimality of the pessimistic model-based
algorithm

i . . *
® improves upon prior results by allowing C’C“ppe

,=1/S.

2-10

sample

. A
complexity %2,
2
/R
/l‘\
NG

Outline (Part 2)

Four variants of our basics settings to illustrate the approaches so far:

Offline / batch RL

RL with Markovian samples

Robust RL

Multi-agent RL

2-12

Markovian samples and behavior policy

observed: so

N’ \

’
"~ ~— - - '~ -’

aop aq as as aq as

<

_®

oy
So|

m(1s0) m(:|s1) mb(-[s2) mu(-|s3) mo(-[sa) mb(-[s5)

Observed: {s;,at,rt}+>0 induced by behavior policy 7,
—_———

Markovian trajectory

2-13

Markovian samples and behavior policy

observed: (o ——s1—~—82 <8354 —~—85 —
T /’ 1 7 7

o ay ay as iy i

T T T t T
m([s0) mo(-|s1) mo(-[s2) mo(-|s3) mu(-[sa) mu(-[s5)

learn: (sp——81—— 82 ——(83 84 ———55 —
A A G G A D N O

ag ay az ag ayq as

T) T T 1 T
(

T (ls0) 7 (ls1) 7 (|s2) 7 (:[s3) 7w (-[sa) 7*(:|s5)
Observed: {s;,at,rt}+>0 induced by behavior policy 7,
—_———

Markovian trajectory

Goal: learn optimal value V* and Q* based on sample trajectory

2-13

Markovian samples and behavior policy

observed: (o ——s1—~—82 <8354 —~—85 —
T /’ 1 7 7

o ay ay as iy i

T T T t T
m([s0) mo(-|s1) mo(-[s2) mo(-|s3) mu(-[sa) mu(-[s5)

learn: (sp——81—— 82 ——(83 84 ———55 —
A A G G A D N O

ag ay az ag ayq as

T) T T 1 T
(

T (|s0) 7 (|s1) 7 (|s2) 7 (|s3) 7 (|sa) 7 (:|s5)

Key quantities of sample trajectory
® minimum state-action occupancy probability

Pmin = Wi firy (S,CL)
———

.. . stationary distribution
® mixing time: fmix

Model-based vs. model-free RL

W s model P,

#w:’,{/ (ie. P e RISIAIXISH| 7wl %,19
model-based)
samples value function
(experience) policy
< -
~~.._model-free -

Model-free approach (e.g. Q-learning)
— learning w/o modeling & estimating environment explicitly

2-14

Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation Q = 7(Q)

Robbins Keronro '51

2-15

Q-learning: a classical model-free algorithm

R

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation Q = T7(Q)

Quy1(st, ar) = Qi(st, ar) +ne(Ti(Qe) (51, a1) — Qu(s1,a1)), 20

-~

only update (s¢,at)-th entry

2-16

Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation Q = T7(Q)

Quy1(st, ar) = Qi(st, ar) +ne(Ti(Qe) (51, a1) — Qu(s1,a1)), 20

-~

only update (s¢,at)-th entry

Te(Q)(st, ar) = r(se, ar) + max Q(st+1,a")
T(Q)(s,a) =r(s,a)+v E [maxQ(s',a’)]

s'~P(-s,a) a’

2-16

Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation Q = T7(Q)

Quy1(st, ar) = Qi(st, ar) +ne(Ti(Qe) (51, a1) — Qu(s1,a1)), 20

-~

only update (s¢,at)-th entry

— asynchronous: only a single entry is updated each iteration
(resembles Markov-chain coordinate descent)

observed: So—~—81—— 82—~ 83—~ 81—~
L O S (R

an al ao aa as as

Q-learning on Markovian samples

o

observed: so—<—(s1——S2—<—S38—~—B4—~—8—~— S <-|\
N 1 ,I N ,I ’I

‘_—' (_, ‘_—'I (_f (_f ;\ "'
ao ay az as ay as K

Q(s,a)

e asynchronous: only a single entry is updated each iteration

az)

2-17

Q-learning on Markovian samples

observed: (So——>(81——>82—~—>(83——> 84 ——>85 —;
H 1 H H 7 7

H T
LY L

ao ay as az ays as

Kka)

53,

Q(s,a)

e asynchronous: only a single entry is updated each iteration

» resembles Markov-chain coordinate descent

i

az)

2-17

Q-learning on Markovian samples

observed: (so——(81 S2——83—~—B4—~—85—~— S
[[L (i L -
a al a2 as ag as
))) D D 1
m(+[s0) mo([s1) mo(|s2) mo(|s3) mu(-|sa) mu(:|s5)

o

Q(s,a)

e asynchronous: only a single entry is updated each iteration

» resembles Markov-chain coordinate descent

e off-policy: target policy m* # behavior policy

az)

2-17

What is sample complexity of (async) Q-learning?

A highly incomplete list of works

Watkins, Dayan '92

Tsitsiklis '94

Jaakkola, Jordan, Singh '94

Szepesvari '98

Borkar, Meyn '00

Even-Dar, Mansour'03

Beck, Srikant'12

Chi, Zhu, Bubeck, Jordan’18

Lee, He'18

Chen, Zhang, Doan, Maguluri, Clarke '19
Du, Lee, Mahajan, Wang '20

Chen, Maguluri, Shakkottai, Shanmugam '20
Qu, Wierman '20

Devraj, Meyn '20

Weng, Gupta, He, Ying, Srikant '20

Li, Wei, Chi, Gu, Chen’20

Li, Cai, Chen, Wei, Chi’'21

Chen, Maguluri, Shakkottai, Shanmugam '21

2-19

Prior art: async Q-learning

Question: how many samples are needed to ensure ||Q — Q*||oc < &7

other papers sample complexity

1
Even-Dar, Mansour '03 %
143w
Even-Dar, Mansour '03 (%) + (tcover) T—w w’ w € (1)
. ' tcover S A
Beck & Srikant'12 %
Qu & Wierman '20 uﬁin(inlix«,)f’a?
. . . . 1 mix
Li, Wei, Chi, Gu, Chen'20 PTRNORY G -2 ey ey
Chen, Maguluri, Shakkottai, Shanmugam '21 W + other-term(tmix)
— cover time: teover < ;’“‘_X

2-20

Prior art: async Q-learning

Question: how many samples are needed to ensure [|Q — Q*[|oo < €7

sample
complexity

>| S| Al

tmix

H - 1 -
if we take Hmin X W' tcover = m

2-20

Prior art: async Q-learning

Question: how many samples are needed to ensure [|Q — Q*||s < 7

sample
complexity

>| S| Al

tmix

; - 1 -
|f we take Hmin X W' tcover = m

All prior results require sample size of at least tmi|S|?|.A|?!

2-20

Main result: /. -based sample complexity

Theorem (Li, Wei, Chi, Gu, Chen ’20)
Fcir any 0 < e < ﬁ sample complexity of async Q-learning to yield
|Q — Q*|lo < € is at most (up to some log factor)
1 + trmix
/Lmin(1 - 7)562 /‘min(1 - 7)

2-21

Main result: /. -based sample complexity

Theorem (Li, Wei, Chi, Gu, Chen’20)
Forany 0 < e < ﬁ sample complexity of async Q-learning to yield
|Q — Q*||so < € is at most (up to some log factor)
1 — + trmix
,Umin(1 - 7) € /‘min(1 - 7)

— prior art: W (Qu & Wierman'20)

® Improves upon prior art by at least |S||.A|!

2-21

Effect of mixing time on sample complexity

Markov Chains
and Mixing Times
Second Edition

1 + tmix
/mein(1 - 7)552 ,umin(1 - 7)

® reflects cost taken to reach steady state

® one-time expense (almost independent of ¢)

— it becomes amortized as algorithm runs

2-22

Effect of mixing time on sample complexity

Markov Chains
and Mixing Times
Second Edition

1 + tmix
/mein(1 - 7)552 ,umin(1 - 7)

® reflects cost taken to reach steady state

® one-time expense (almost independent of ¢)

— it becomes amortized as algorithm runs

— prior art: ﬁ—lxy)%? [Qu & Wierman '20]

min(

2-22

Dependence on effective horizon

minimax lower bound
(Azar et al.'13)

1
Hmin (1 - 7)352

asyn Q-learning
(ignoring dependency on tmix)
1
fmin (1 —)52

2-23

Dependence on effective horizon

minimax lower bound asyn Q-learning
(Azar et al.'13) (ignoring dependency on tmix)
1 1
,umin(1 - '7)352 ,LLmin(1 - '7)552
The dependency on 1+7 can be tightened by variance reduction. J

— inspired by [Johnson & Zhang, 2013], [Wainwright, 2019]

update variance-reduced
Q-learning

)-)-)-)-

epoch 1 epoch 2 epoch 3

2-23

Sample complexity for variance-reduced Q-learning

Theorem (Li, Wei, Chi, Gu, Chen’20)

For any 0 < ¢ <1, sample complexity for (async) variance-reduced
Q-learning to yield ||Q — Q*||c < € is at most on the order of
1 + tmix
Nmin(1 - 7)352 Nmin(1 - 7)

® more aggressive learning rates: 7, = min{

® minimax-optimal for 0 <e <1

2-24

Outline (Part 2)

Four variants of our basics settings to illustrate the approaches so far:

Offline / batch RL

RL with Markovian samples

Robust RL

Multi-agent RL

2-25

Robustness and safety

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment % Test environment

Sim2Real Gap: Can we learn optimal policies that are robust to
model perturbations?

2-26

Uncertainty set of transition kernels: {7 (P?)

Uncertainty set with (s, a)-rectangular (Wiesemann et al. ’13)
The uncertainty set is defined as a ball around the nominal transition
kernel P° (P2, := P°(-|s,a) € R™*):
U°(P°) := U’ (P,),
UU(P;’,(I) o= {P € A(S): p(P I Pf,a) < J}.

® p:A(S) x A(S) — [0, 00]: some distance
functions (Kullback-Leibler (KL)
divergence)

® o > 0: the uncertainty level /radius

® ®: the Cartesian product

Value function: discounted infinite-horizon MDP

%o

=y action

state s eHon.
—”(]‘st) ro T ry ry

1======7

reward :> S0 | S1 So l S3 | S4 l
11 = 7(5, |) 4 Y vy 3 v)

— ag ar as as ay

execute policy 7 to generate sample trajectory {(s¢, at) }+>0

V(s,a) eSxA: VOP(s):=E, p lZ*ytr(st,at))so = s]

t=0

2-28

Value function: discounted infinite-horizon MDP

ay az az ay

execute policy 7 to generate sample trajectory {(s¢, at) }+>0

V(s,a) eSxA: VOP(s):=E, p lZ*ytr(st,at))so = 5]

t=0

® v €[0,1): discount factor; e P: any transition kernel

2-28

Robust value function: infinite-horizon robust
MDP

¢ Classical value-function/Q-function:

o0
thr(st,at) ’so = s]

t=0

oo
Z’Ytr(st,at) ‘ S0 = 5,40 = CL]

t=0

V™P(s) i =R, p

Q”’P(s,a) =E.p

2-29

Robust value function: infinite-horizon robust
MDP

¢ Classical value-function/Q-function:

o0
thr(st,at) ’so = s]

t=0

o0
Z'ytr(st,at) ‘ Sp = s,ap = a]

t=0

V™P(s) i =R, p

Qﬂ',P(87 a) L=]EW,P

® Robust value function/Q-function:

0o - inf m,P T,0 - inf 7, P
VTa(s) PG;{I;(PO)V (s), Q"(s,a) PE;{Q(PO)Q (

2-29

Robust value function: infinite-horizon robust
MDP

Classical value-function/Q-function:

o0
thr(st,at) ’so = s]

V”’P(s) =E;p

t=0
Q’r’P(s7 a):=E;p Z'ytr(st,at) ‘ S0 = 8,09 = a]
t=0
Robust value function/Q-function:
V™o - inf VTI',P T,0 - inf 7, P
()=l V), Qs it Qs

Optimal robust policy 7*: arg max, V™°

- *
Optimal robust values: V*? : = V"™ % = max, V™7

2-29

Classical MDP v.s robust MDP (RMDP)

Classical MDP

Observed samples
{(stya,7(st,a1), 041)}

Goal: learn an optimal policy
for M ={P°r,S, A~}

2

Classical MDP v.s robust MDP (RMDP)

® Robust MDP: M., = {U(P°),r, S, A, v}

» P°: unknown nominal transition kernel

Goal: learn an optimal policy
for M ={P°r,S, A~}

2

Classical MDP

Observed samples
{(stya,7(st,a1), 041)}

Robust MDP

Observed samples
(8¢, a1, (81, 1), S141

Classical MDP v.s robust MDP (RMDP)

® Robust MDP: Mo, = {U(P°),r, S, A, v}
» P°: unknown nominal transition kernel
> U(P°): an uncertainty set around P°

e
0 Goal: learn an optimal policy
(Sl7a‘t) for M =E{PU,T,S,A,7}
Classical MDP | 2
L =

Observed samples
{(st,a,7(51,a0), 041)}

%o

o,
o>

Goal: Learn an optimal policy

Robust MDP agent (50, a0) environment P° f0r Miop = {U(P?),r, S, A~}
]
l sep1~ PO(| se, ar)
at
L = 3

Observed samples
Sty A, T(St, A1), St41 M(])O)

Robust Bellman’s optimality equation

(lyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman’s optimality equation: the optimal robust policy 7*
and optimal robust value V*7 := V™% satisfy

Q*J(s? a) = T(Sa a) + v Inf <PS7¢17 V*70> ’
Pra€ld? (F2a)

V*9(s) = max Q*(s,a)

2-31

Robust Bellman’s optimality equation

(lyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman’s optimality equation: the optimal robust policy 7*
and optimal robust value V*7 := V™% satisfy

Q*J(s? a) = T(Sv a’) + v Inf <PS7¢17 V*7a> ’
Pra€UU (P,)
V*9(s) = max Q*(s,a)

Robust value iteration:

Q(s,a) «+ r(s,a) +~ inf (Psa,V),
Py a€U? (P2,)

where V(s) = max, Q(s,a).

2-31

Learning distributionally robust MDPs

®Q
A
[eY®)
arbitmrg

(s,a)

Nowminal Transition
kernel

2-32

Learning distributionally robust MDPs

arbitra ry

(s,a)

Nowminal Transition
kernel

Goal of robust RL: given D := {(s;,a;, s})}}¥., from the nominal
environment P, find an e-optimal robust policy 7 obeying

V*(p) = VT (p) < e

— in a sample-efficient manner
2-32

A curious question

empirical MDP

Learn the optimal policy of
,/" the nominal MDP?

\~* Learn the robust policy
around the nominal MDP?

A curious question

. N . Learn the optimal policy of
.. . = ,/" the nominal MDP?
’/

- - /”’ R
HE B =
H E R o

| | N

.- . ~‘~~ . -
- . - ~4 Learn the robust policy

. - around the nominal MDP?

empirical MDP

Robustness-statistical trade-off? Is there a statistical premium that
one needs to pay in quest of additional robustness?

When the uncertainty set is TV

Sample complexity“
54 bound [CI; 1]
T a5 U Clavier et al.] ==
(1 - 7)482 [~ Upper bound [Clavier et a
|
1
|
SA J Standard MDPs
— =5 1 1 upper & minimax lower bound =~~~
(1 =) PP
Upper & minimax lower bound
SA (this work)
=
SA(] _ ’Y) Lower bound [Yang et al.]
e? . > 5
0 1

2-34

When the uncertainty set is TV

Sample complexity“
SA
W -1 Upper bound [Clavier et al.] =
|
1
|
SA L J____ &Sta@ard l\lllDPs bound ==+
— upper & minimax lower boun
(1 =)
Upper & minimax lower bound
SA (this work)
(1—7)2e?
SA(] _ ’}/) . Lower bound [Yang et al.]
2 >
0 o1-4) 0Q) 19

RMDPs are easier to learn than standard MDPs.

2-34

When the uncertainty set is y? divergence

. 3
Sample complexity)
Upper bound S? Ao
S2A [Panaganti and Kalathil] (1 —n7)e?
Lower bound
(1 —)te? (this work)
Upper bound SAg
(this work) (1—v)te?
SA -
(1 =v)te?
SAo SAc
(1=y)*1+0)* €2
SA Standard MDPs
(1—)32 N N upper & minimax lower bound ™
SA . Lower bound [Yang et al.]
(1 —)e?

o1-7) 0@y 0@/1-9)

When the uncertainty set is y? divergence

Sample complexity“

S2A

[Panaganti and Kalathil]

(1 —)te?

SA
(1 =)t

(1 —7)%?

S? Ao
1—)2
(= Lower bound
(this work)
SAc
(1 =7)te?
SAc
=2

Standard MDPs
upper & minimax lower bound =

Lower bound [Yang et al.]

\4

o(1/(1-)

RMDPs can be harder to learn than standard MDPs.

Outline (Part 2)

Four variants of our basics settings to illustrate the approaches so far:

Offline / batch RL

RL with Markovian samples

Robust RL

Multi-agent RL

Background: two-player zero-sum Markov games

0 -1 1

Scissors
@ beats paper @
%,

K
%
S
b, a{?ﬁ@ -
o
[y
()
1
[y

Two-player zero-sum Markov games

ﬂ; | action ay,
max-player —_——
mm————— piays —I

state Sn action by,

|

Li _
e S =[5]: state space e A = [A]: action space of max-player
® H: horizon e 3 = [B]: action space of min-player

Two-player zero-sum Markov games

ﬂ; | action ay,
max-player —_——
mm————— piays —I

reward 7,

state sp

[min-player

1

1

i

! action by,
1

! reward -1y, I
1

1

1

L

-
e S =[5]: state space e A = [A]: action space of max-player
® H: horizon e 3 = [B]: action space of min-player

® immediate reward: max-player r(s,a,b) € [0, 1]
min-player —r(s, a,b)

Two-player zero-sum Markov games

actlon

max-player —_——
mm— LS
reward 7, _I
action |
state sp, b ~ vn(- | sn)

[min-player

1

1

1

1

1

1

H -
! reward -1y,
1

1

1

L

-
S = [S]: state space e A = [A]: action space of max-player
H': horizon e 3 = [B]: action space of min-player

immediate reward: max-player 7(s,a,b) € [0, 1]
min-player —r(s, a,b)

w:S x [H] — A(A): policy of max-player

v:S x [H|] — A(B): policy of min-player

Two-player zero-sum Markov games

reward 7,

state sp

“hext state
sn1 ~ Pu(- | snyan, br)

o A=
.B:

immediate reward: max-player r(s,a,b) €

S = [5]: state space

H: horizon

min-player —r

[min-player

environment

actlon

state sh an ~ (- | 5n)
max- layer —_—
—— n

action |
bn ~vn(- | sn)

|
-

[A]: action space of max-player
[B]: action space of min-player

[0, 1]
(s,a,b)

w:S x [H] — A(A): policy of max-player
v:S x [H|] — A(B): policy of min-player

Py(-|s,a,b): unknown transition probabilities

Value function & Q-function

max—player
l'““a"
! reward 7 rh Thil Th+2
I state sy | action th T ? IS
e L N I
! reward -1, I ,’\L_,“| {t\,/‘\ |'t'~_) 1
i G/ it N
: —o VRE
Sh1 ~ Pa(- | sn, an, bn)
Value function of policy pair (u, v):
H
[a2ld — —
VI""(s) ==F g (8¢, at, by) ’ s1=s
t=1

Value function & Q-function

state Sh action ah
m———— max—player
! reward 7}, T That Thao T
! state sy I action th [| I ‘
s et o g led el . g
! reward -1, I ,'l'_,“| i ,/“| |'t'~_) 1 i/
I san) \ah+1, \dita) \aw !
: : th_ o o2 ;
k: —— oo '
Sha1 ~ Pr(- | s, an, br)
Value function of policy pair (u, v):
H
214 R —
VI""(s) ==F g (8¢, at, by) ’ s1=s
t=1

® (ay,by,s2,---): generated when max-player and min-player execute

policies . and v independently (i.e., no coordination) .

Value function & Q-function

state Sh action ah
m———— max—player

: Th Th+1 Th+2 rH
I state sy - | action bh I I I I

1 », min-player — s 1 erl
[bviete e WA P

1 reward -7y, I gl I e B Lty in_s)

1 an J \aht1, At H

i -
I . by, b b b
Li----4=— environment |{ — —J " i -

Sht1 ~ Pu(- | sn,an, bn)

Value function and Q function of policy pair (u,v):
H

VI (s) =E ZT(Staatybt) ’ 51=5

t=1
H

Q1" (s,a,b) =K Zr(st,at,bt) ’ s1=8,a1 =a,by =0
t=1

® (aj,by,s2,--): generated when max-player and min-player execute

policies u and v independently (i.e., no coordination) .

Optimal policy?

® Each agent seeks optimal policy maximizing her own value

2-40

Optimal policy?

JN

A\

s
TS

X
which action b which action a
j to take? to take? -"'">
~
*‘Hr’ ~

state s

® Each agent seeks optimal policy maximizing her own value

® But two agents have conflicting goals ...

2-40

Compromise: Nash equilibrium (NE)

John von Neumann John Nash
An NE policy pair (u*, v*) obeys

* * % . *
max VH*Y =VH* Y =minVH* ¥
n v

2.41

Compromise: Nash equilibrium (NE)

John von Neumann John Nash
An NE policy pair (u*, v*) obeys

* * % . *
max VH*Y =VH* Y =minVH* ¥
n v

® no unilateral deviation is beneficial

2.41

Compromise: Nash equilibrium (NE)

John von Neumann John Nash
An NE policy pair (u*, v*) obeys

* * % . *
max VH*Y =VH* Y =minVH* ¥
n v

® no unilateral deviation is beneficial

® no coordination between two agents (they act independently)

2-41

Compromise: Nash equilibrium (NE)

John von Neumann John Nash

An e-NE policy pair (i,) obeys

® no unilateral deviation is beneficial

® no coordination between two agents (they act independently)

2.41

Sampling mechanism: a generative
model / simulator

— Kearns, Singh '99

simulator

One can query generative model w/ state-action-step tuple (s,a,b, h),
query g
and obtain s' 7% Pu(s'|s,a,b)

2-42

Question: how many samples are sufficient to
learn an £-Nash policy pair?

Multi-agent reinforcement learning (MARL)

2-44

Challenges

In MARL, agents learn by probing the (shared) environment

® unknown or changing environment
e delayed feedback

® explosion of dimensionality

2-45

Challenges

In MARL, agents learn by probing the (shared) environment

® unknown or changing environment
delayed feedback

explosion of dimensionality

curse of multiple agents

Model-based approach w/ non-adaptive sampling

— Zhang, Kakade, Basar, Yang '20

B”

hﬂ !;

for any (s, h)

1. for each (s,a,b, h), call generative models N times

2-46

Model-based approach w/ non-adaptive sampling

— Zhang, Kakade, Basar, Yang '20

for each (a,b)

’_’ _____________________ , call generative model
N times
for any (s, h)

1. for each (s,a,b, h), call generative models N times

2-46

Model-based approach w/ non-adaptive sampling

— Zhang, Kakade, Basar, Yang '20

for each (a,b)

empirical
model P

’_’ _____________________ , call generative model
N times
for any (s, h)

1. for each (s,a,b, h), call generative models N times
2. build empirical model p

2-46

Model-based approach w/ non-adaptive sampling

— Zhang, Kakade, Basar, Yang '20

for each (a, b)

planning
oracle

empirical
model P

’_‘ _____________________ , call generative model
N times
for any (s, h)

1. for each (s,a,b, h), call generative models N times
2. build empirical model ﬁ and run classical planning algorithms

. 4
sample complexity: H—fﬁ J

246

Curse of multiple agents

PE€ T

1 player: A

2-47

Curse of multiple agents

1 player: A

2-47

Curse of multiple agents

.
‘ g.‘ !!!!
Wi e

,
o e
S (2%

1 player: A 2 players: AB 3 players: A1 AzA3

2-47

Curse of multiple agents

.
‘ g.‘ !!!!
Wi e

,
o e
S (2%

1 player: A 2 players: AB 3 players: A1 AzA3

2-47

Breaking curse of multi-agents?

— Song, Mei, Bai 21, Jin, Liu, Wang, Yu 21, ...

V-learning: overcomes curse of multi-agents in online RL

® estimate V-function only (much lower-dimensional than Q)

2-48

Breaking curse of multi-agents?

— Song, Mei, Bai 21, Jin, Liu, Wang, Yu 21, ...

V-learning: overcomes curse of multi-agents in online RL

® estimate V-function only (much lower-dimensional than Q)

® adaptive sampling: take sample based on current policy iterates

2-48

Breaking curse of multi-agents?

— Song, Mei, Bai 21, Jin, Liu, Wang, Yu 21, ...

V-learning: overcomes curse of multi-agents in online RL

® estimate V-function only (much lower-dimensional than Q)
® adaptive sampling: take sample based on current policy iterates

® adversarial learning subroutine: Follow-the-Regularized-Leader

2-48

Breaking curse of multi-agents?

— Song, Mei, Bai 21, Jin, Liu, Wang, Yu 21, ...

V-learning: overcomes curse of multi-agents in online RL

® estimate V-function only (much lower-dimensional than Q)
® adaptive sampling: take sample based on current policy iterates

® adversarial learning subroutine: Follow-the-Regularized-Leader

H5S(A+B)

sample complexity: 2

HSS(A+B
&

episodes J

2-48

horizon

A
V-learning
H6
model-based
4
H Y .
. i : >

A+ B AB dfactions

horizon

A
V-learning
H6 ‘
\? model-based

H* ... ﬁ. .. ®

3
O H H . :

A+ B AB dfactions

Can we simultaneously overcome
curse of multi-agents & barrier of long horizon?

Our algorithm

Key ingredients:

® for each player, estimate only one-sided objects
> e.g. Q(s,a) as opposed to Q(s,a,b)

Our algorithm

Key ingredients:
® for each player, estimate only one-sided objects
> e.g. Q(s,a) as opposed to Q(s,a,b)

e adaptive sampling
> sampling based on current policy iterates

Our algorithm

Key ingredients:
® for each player, estimate only one-sided objects
> e.g. Q(s,a) as opposed to Q(s,a,b)
e adaptive sampling
> sampling based on current policy iterates

¢ adversarial learning subroutine for policy updates
> e.g. Follow-the-Regularized-Leader (FTRL)

Our algorithm

Key ingredients:
® for each player, estimate only one-sided objects
> e.g. Q(s,a) as opposed to Q(s,a,b)
e adaptive sampling
> sampling based on current policy iterates

¢ adversarial learning subroutine for policy updates
> e.g. Follow-the-Regularized-Leader (FTRL)

® optimism principle in value estimation
» upper confidence bounds (UCB)

Main result (two-player zero-sum Markov games)

Theorem (Li, Chi, Wei, Chen '22)

For any 0 < ¢ < H, the policy pair (ji,V) returned by the proposed
algorithm is e-Nash, with sample complexity at most

5(H4S(A + B))

£2

2-51

Main result (two-player zero-sum Markov games)

Theorem (Li, Chi, Wei, Chen '22)

For any 0 < ¢ < H, the policy pair (ji,V) returned by the proposed
algorithm is e-Nash, with sample complexity at most

5(H4S(A + B))

g2

® minimax lower bound: ﬁ(%)

® breaks curse of multi-agents & long-horizon barrier at once!

2-51

Main result (two-player zero-sum Markov games)

Theorem (Li, Chi, Wei, Chen '22)

For any 0 < ¢ < H, the policy pair (ji,V) returned by the proposed
algorithm is e-Nash, with sample complexity at most

5(H4S(A + B))

g2

~ 4
* minimax lower bound: Q(W)
® breaks curse of multi-agents & long-horizon barrier at once!

e full e-range (no burn-in cost)

2-51

Main result (two-player zero-sum Markov games)

Theorem (Li, Chi, Wei, Chen '22)

For any 0 < ¢ < H, the policy pair (ji,V) returned by the proposed
algorithm is e-Nash, with sample complexity at most

5(H4S(A + B)>

c2

minimax lower bound: ﬁ(%)

breaks curse of multi-agents & long-horizon barrier at once!

full e-range (no burn-in cost)

other features: Markov policy, decentralized, ...

2-51

horizon

HG

H4

y

A
V-learning

model-based
our algorithm
... ’
A+ B AB >

##actions

Extension: m-player general-sum Markov games

Theorem (Li, Chi, Wei, Chen '22)

For any 0 < ¢ < H, the joint policy T returned by the proposed
algorithm is e-CCE, with sample complexity at most

5(}14522. A,.>

2

Extension: m-player general-sum Markov games

Theorem (Li, Chi, Wei, Chen '22)

For any 0 < ¢ < H, the joint policy T returned by the proposed
algorithm is e-CCE, with sample complexity at most

5(}14522. A,.>

g2

H4S max; A;)

* minimax lower bound: Q(=

® near-optimal when number of players m is fixed

Overcomes curse of multi-agents and long-horizon barrier simultaneously
in the presence of generative model!
horizon

V-learning
.

H[:i

g model-based
4 our algorithm
H ... i

A+ B AB #actions

254

Overcomes curse of multi-agents and long-horizon barrier simultaneously
in the presence of generative model!
horizon

V-learning
.

Hb

A+ B AB #tactions

Future directions:
® optimal sample complexity for CCE when # players is large

® optimal sample complexity for online RL

254

Summary of this part

Scissors
beats paper @

78 . 'Y
) . % D >
8, 2 RS
/=% 1% R 4
observations, ") =~ /)/ y @

d e
Agent "™ Environment

Four variants of our basics settings:

offline RL / RL with Markovian samples / robust RL / multi-agent RL

2-55

Recall: three approaches

o model | AL,
&@w’f/’ *l (i.e. P € RISIMAIXIS]) ‘\ft‘ft;s
model-based B

samples value function
(experience) policy
P s 4

~

P

T _model-free .~

Model-based approach (“plug-in”)
® build an empirical estimate P for P

® planning based on the empirical P

Value-based approach
— learning w/o estimating the model explicitly

Policy-based approach
— optimization in the space of policies

3-1

Policy optimization in practice

maximizey value(policy(6))

e directly optimize the policy, which is the quantity of interest
® allow flexible differentiable parameterizations of the policy

® work with both continuous and discrete problems

2P 2.
o N T W /7/1

A P A 7 S
. \ Y N 4N
OO g9

N T

__’.63,4 ? z é))e N Z\ﬁ 9 %}\7\‘\/* i

| £

. CN@ETTC /£§ TEN)-
7 ~ . SN

Y i Y .

input layer output layer

3-2

Theoretical challenges: non-concavity

Little understanding on the global convergence of policy gradient
methods until very recently, e.g. (Fazel et al., 2018; Bhandari and Russo, 2019;
Agarwal et al., 2019; Mei et al. 2020), and many more.

3-3

Theoretical challenges: non-concavity

Little understanding on the global convergence of policy gradient
methods until very recently, e.g. (Fazel et al., 2018; Bhandari and Russo, 2019;
Agarwal et al., 2019; Mei et al. 2020), and many more.

Our goal:
e understand finite-time convergence rates of popular heuristics

® design fast-convergent algorithms that scale for finding policies with
desirable properties
3-3

QOutline

® Backgrounds and basics
> policy gradient method

® Convergence guarantees of single-agent policy optimization

» (natural) policy gradient methods
> finite-time rate of global convergence
> entropy regularization and beyond

® Concluding remarks

34

Backgrounds: policy optimization in tabular
Markov decision processes

Searching for the optimal policy

Reinforcement
Learning

An Introduction
second edition

Dynamic Programming
and Optimal Control

DIMITRI P. BERTSEKAS

|
Richard S. Sutton and Andrew G. Barto / /7 (1

-

Goal: find the optimal policy 7* that maximize V™ (s)

e optimal value / Q function: V* := VT Qr = Q"

3-6

Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Esup [V (5)]

3-7

Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Esup [V (5)]

Parameterization:
™= Ty J

3-7

Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Esup [V (5)]

Parameterization:
™= Ty J

maximizeg V7 (p) 1= Eqsu, [V7(5)]

3-7

Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Esup [V (5)]

Parameterization:
™ 1= Tg J

maximizeg V7 (p) 1= Eqsu, [V7(5)]

Policy gradient method (Sutton et al., 2000)
Fort=0,1,- -
0D — 9O 4w,V ()

where 1) is the learning rate.

3-7

Softmax policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Esup [V (5)]
softmax parameterization:
e sente) |

maximizeg V7 (p) 1= Eqsu, [V7(5)]

Policy gradient method (Sutton et al., 2000)
Fort=0,1,- -
0D — 9O 4w,V ()

where 1) is the learning rate.

3-8

Finite-time global convergence guarantees

Global convergence of the PG method?

¢ (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

3-10

Global convergence of the PG method?

Loading...

///

¢ (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

® (Mei et al., 2020) Softmax PG converges to global opt in

0] (%) iterations

3-10

Global convergence of the PG method?

Loading...

///

¢ (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

® (Mei et al., 2020) Softmax PG converges to global opt in
c(|S], |A]) O(2) iterations

y 1= ,yu'

Global convergence of the PG method?

Loading...

7/ /{

¢ (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

® (Mei et al., 2020) Softmax PG converges to global opt in
c(IS],JA[, 1=, -+) O(2) iterations

» T—y>

Is the rate of PG good, bad or ugly? J

A negative message

Theorem (Li, Wei, Chi, Chen, 2021)
There exists an MDP s.t. it takes softmax PG at least

1
1—

1 O()
=rE iterations
Ui

to achieve ||[V®) — V*||o < 0.15.

A negative message

Theorem (Li, Wei, Chi, Chen, 2021)
There exists an MDP s.t. it takes softmax PG at least

1
1—

1 O()
=rE iterations
n

to achieve ||[V®) — V*||o < 0.15.

e Softmax PG can take (super)-exponential time to converge
(in problems w/ large state space & long effective horizon)!

® Also hold for average sub-opt gap ﬁ Sses [VO(s) = V*(s)].

3-11

MDP construction for our lower bound

S S, Su
00000 00000 00000 00000 00000 0000 00000
G > 2 5 9 .
aj ai ai / / / /
¢ —_— z, 7 A— 4 — —— /7
I A iy 17 i 17 b
apg ay: ap ajqr Q] :: :, 11
D 4 T 4 H H v | H
v eo§p0e o) eeo o
- I'S A A1 / / 4
, \ ag s s o o o
ao ap ay - ,alat/"/ ?/"/ ?,/'/ ? ?
S~wa - < i Ot et Ot H H
N)
Al o! ! «! «
/S ap /ao I s / i / i / i
P Y A Y A WY 00 N A Y e
ay ap / { i { /
1 1 1 1 1 1 1
00000 00000 00000 00000 00000 00000 00000
St S5 Su

3-12

MDP construction for our lower bound

S S, Su
00000 00000 00000 00000 00000 0000 00000
ai al ay / / / ’
(3 [R— 4 /. 4 Vi
S A s 177 T H AR i v
ap ayr ap aps ag 1 1 1 1
N A i v v 4 iy
Si Sy 3 4 5 6 eeo o H
. 4 S A A S ST ST
s \ \ a9 ral * S * R * S * 4
ag ay ay o Wlg, oS 0 oS S H
A &% AN et]’;/’ i P H H
<_,— gt gt gty
o TOEé o
Al o! ! ! A
/S ap /ao Fd : F : / : /7 : J/ :
/o A A VA | P PR
L 1 Y S S, 1 Y SR R A e Sy |
ax ap / { i { /
1 1 1 1 1 1 1
00000 00000 00000 00000 00000 00000 00000
St Sz Su
1

Key ingredients: for 3 < s < H < T

3-12

MDP construction for our lower bound

-

N
~V A

Key ingredients: for 3 < s < H <

S S Su
00000 00000 00000 00000 00000 0000 00000
ai ar ai /s i g s
¢ - o e rs /. 7 ’
S A s 177 T H AR i v
ag ayi ag ayi ag 1 1 i Vi
A A i v v 4 iy
Sl Sy 3 4 5 6 X H
‘\ A as ,';’ ,1:1 * ,/:I * ,/;l * 4
\
ai R s S I |
NPl g e il :
S A)
A o! ! «! A
/ dp / ao K K a K a
/] ’) 7 1 Vi 1 ’ 1 7 1 7 1
L 1 Y S S, 1 Y YR E Y AU R S i —— Sy |
ay ay / { i { i
1 1 1 1 1 1 1
00000 00000 00000 00000 00000 00000 00000
St Sz Su
1

—

o 7 (agpt | 5) keeps decreasing until () (agpt |5 —2) = 1

3-12

What is happening in our constructed MDP?

(a1 1)

v

What is happening in our constructed MDP?

-
-
-

v

What is happening in our constructed MDP?

-
-
-~ -

-

Y

Convergence time for state s grows geometrically as s increases

What is happening in our constructed MDP?

-
-
-~ -
~~~~~~
-
__________

Y

Convergence time for state s grows geometrically as s increases

convergence-time(s) 2> (convergence-time(s — 2))1'5



JIJLJUUUU,J%eﬁH
1ﬂﬂﬂﬂﬂﬂﬂﬂﬂ’(9h"/

“Seriously, lady, at this hour you'd make a
lot better time taking the subway.”



Booster #1: natural policy gradient

Natural Gradient

Natural policy gradient (NPG) method (Kakade, 2002)
Fort=0,1,---

6D = 60 1 (7)) 1YV (p)
where 1 is the learning rate and ]-'g is the Fisher information matrix

0 ._
Fo =

E [(Vg log mg(als)) (Vg log 7r9(a|s))T]




Connection with TRPO/PPO

TRPO/PPO (Schulman et al., 2015; 2017) are popular heuristics in training RL
algorithms, with KL regularization

KL(ri! ) ~ 56— 60O)TF2(6 — 0)
via constrained or proximal terms:
00+ = argmax V™5 (p) + (6 — 6) TV, V™ () — yKL(r )
~ 0+ n(F) VoV (p),

leading to exactly NPG!



Connection with TRPO/PPO

TRPO/PPO (Schulman et al., 2015; 2017) are popular heuristics in training RL
algorithms, with KL regularization

KL(ri! ) ~ 56— 60O)TF2(6 — 0)
via constrained or proximal terms:
0+ = argmax VT (p) + (0 — 0O) TV (p) — nKL(7”|[mg)
~ 0+ n(F) VoV (p),

leading to exactly NPG!

NPG ~ TRPO/PPO! J




NPG in the tabular setting

Natural policy gradient (NPG) method (Tabular setting)
Fort=0,1,---, NPG updates the policy via
®)(s. -
A0 s) o« 7O (]s) exp (77@ (s, ))
N—_—— 1-— Y

soft greedy

current policy

where Q) := Q’T(t) is the Q-function of #®), and n > 0.

® invariant with the choice of p

® Reduces to policy iteration (Pl) when 1 = co.




Global convergence of NPG

Theorem (Agarwal et al., 2019)

Set (9 as a uniform policy. For all t > 0, we have

VO (p) > V*(p) - (loglAl . )%

n (1—7)2




Global convergence of NPG

Theorem (Agarwal et al., 2019)

Set (9 as a uniform policy. For all t > 0, we have

ogld] , 1 )1
7 (1—7)?

VW (p) > V*(p) - ( .

Implication: set > (1 — v)2log|.A|, we find an e-optimal policy within

at most
2

———  iterations.
(1—7)%



Global convergence of NPG

Theorem (Agarwal et al., 2019)

Set (9 as a uniform policy. For all t > 0, we have

ogld] , 1 )1
7 (1—7)?

VO 2 Vi) - ( -

Implication: set > (1 — v)2log|.A|, we find an e-optimal policy within

at most
2

———  iterations.
(1—7)%

Global convergence at a sublinear rate independent of |S|, |A|! J




Booster #2: entropy regularization

state s action 70 T1 T2 T3 T4
!- ______ 1 80— 81— 8= 8 B
! reward | :> (— (\_/' (N (\_," (s_—’l
127 =TS, 4t ap ay as as ay
L — b ¢ P e 2

environment

'/\

beem-

' m([so)  w(ls1)  w(fs2)  w([ss) w(lsa)
si1 ~ P(se,ar)

To encourage exploration, promote the stochasticity of the policy using
the “soft” value function (Williams and Peng, 1991):

VseS: Vi(s):=E Z’yt(m +7H(7(|s¢)) | so = s
=0

where H is the Shannon entropy, and 7 > 0 is the reg. parameter.



Booster #2: entropy regularization

action To 1 T2 3 T4

state s
ap ~ m(-|st)
...... agent f— —) o leo lala | o |
X 1= 27 3T 4
agp ai as as ag

reward

1= ====7

'/\

E’f't:T Sty At |
+=4--1 environment —J 2 2 2 2 ¢

' m([so)  w(ls1)  w(fs2)  w([ss) w(lsa)
si1 ~ P(se,ar)

To encourage exploration, promote the stochasticity of the policy using
the “soft” value function (Williams and Peng, 1991):

VseS: Vi(s):=E Z’yt(m + 7H(7(|s1)) | so = s]
=0

where H is the Shannon entropy, and 7 > 0 is the reg. parameter.

maximizeg V% (p) := Eqnp [V(5)] J




Entropy-regularized natural gradient helps!

Toy example: a bandit with 3 arms of rewards 1, 0.9 and 0.1.

Policy Gradient 0 Natural Policy Gradient

UOT)RZIIRNEDI 9SBAIOUL

logm(ax) log m(a1)

3-20



Entropy-regularized natural gradient helps!

Toy example: a bandit with 3 arms of rewards 1, 0.9 and 0.1.

Policy Gradient 0 Natural Policy Gradient

?7)/&%
: / ‘\

UOT)RZIIRNEDI 9SBAIOUL

logm(ax) log m(a1)

Can we justify the efficacy of entropy-regularized NPG? s0 |




V)

v

How to characterize the efficiency of

entropy-regularized NPG in tabular settings?



Entropy-regularized NPG in the tabular setting

GO R () 7o

*
T

Entropy-regularized NPG (Tabular setting)
Fort=0,1,---, the policy is updated via

D s) o« 7O (]s) 17157 exp(QW(s, ) /) =7
—— —_—

current policy soft greedy

where Q(Tt) = Qim is the soft Q-function of T®, and 0 < n < 1777

® invariant with the choice of p
* Reduces to soft policy iteration (SPI) when = =2,

T

3-22




Linear convergence with exact gradient

Exact oracle: perfect evaluation of Q™" given 7(®);

3-23



Linear convergence with exact gradient

Exact oracle: perfect evaluation of QZM given 7(1);

Theorem (Cen, Cheng, Chen, Wei, Chi, 2020)

For any learning rate 0 < n < (1 — )/, the entropy-regularized NPG
updates satisfy

® Linear convergence of soft Q-functions:

1Q% — Q¥ < Cry (1 —nr)*

for all t > 0, where Q7 is the optimal soft Q-function, and

C1 = 1Q% — Q0o + 27 (1 - 1’77> 1 log 7% — log 7] |oc.

3-23



Implications

To reach ||QF — (1) Hoo < ¢, the iteration complexity is at most

® General learning rates (0 <7 < 1%7):

1 (Cw)
nt €

¢ Soft policy iteration (n = —’7)

L (n@:—cz&“)uoov)
0g
1—7 €

3-24



Implications

To reach ||QF — (1) Hoo < ¢, the iteration complexity is at most

® General learning rates (0 <7 < 1%7):

1 (Cw)
nT €

* Soft policy iteration (1 = =2):

L (n@:—cz&“)uoov)
0g
1—7 €

Global linear convergence of entropy-regularized NPG
at a rate independent of |S|, |Al!

3-24



Comparisons with entropy-regularized PG

Policy Gradient

TSN

DYV —
p //V, E
SN =
————

Natural Policy Gradient Log Policy Difference

"""" Natural Policy Gradient
—— Policy Gradient

41 -3 2 -1 0 4 -3 -2 —1 0 0 1000 2000 3000 4000 5000
log (a;) log m(a;) #iterations

(Mei et al., 2020) showed entropy-regularized PG achieves

Vi) = Vi) < (Vo) = Vi ()

w =1
1—)% dp” 2
-exp | — (=) - min p(s) ( inf minﬂ(k)(a|s))
(8/7+4+8log|A]|S] || p o 0<k<t—1 s,a

can be exponential in |S| and

1
T—v

Much faster convergence of entropy-regularized NPG
at a dimension-free rate!

3-25



Comparison with unregularized NPG

S

Q-

Regularized NPG
7 =0.001

0 1000 2000 3000 4000 5000
#iterations

; .1 1
Linear rate: P log (E)
Ours

e - eI,

Vanilla NPG

T=0
1024 —— 7 =0.01
1004 n=0.1
—— =1
1072
104
107¢
10°®
“)710
10—12
0 1000 2000 3000 4000 5000
#iterations

. P S
Sublinear rate: min{n,(1—7)2}e
(Agarwal et al. 2019)

3-26




Comparison with unregularized NPG

S

Q-QY

Regularized NPG

Vanilla NPG

7 =0.001 T7=0
10%4 —%— 7 =10.01
1004 n=0.1
—— =1
g 1072
% 10t
| .
g 1076
1078
10710
10712
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
#iterations #iterations
. .1 1 . ) 1
Linear rate: ;- log (%) Sublinear rate:
Ours (Agarwal et al. 2019)
Entropy regularization enables fast convergence! J




So far, we assume complete knowledge of Q-function for each ...



Entropy-regularized NPG with inexact gradients

Inexact oracle: inexact evaluation of Qg), which returns @@ s.t.

108 - @ <5,

e.g. using sample-based estimators

3-28



Entropy-regularized NPG with inexact gradients

Inexact oracle: inexact evaluation of Qg), which returns @S’*) s.t.

108 - @ <5,

e.g. using sample-based estimators

Inexact entropy-regularized NPG:

7 (als) o (ﬂ(t)(a]s))l_% exp (M)

3-28



Entropy-regularized NPG with inexact gradients

. At
Inexact oracle: inexact evaluation of QT , which returns Qg) s.t.

108 - @ <5,

e.g. using sample-based estimators

Inexact entropy-regularized NPG:

71—(”1)(@]8) - (ﬂ-(t) (a’S)) = exp (77@17_( )>

Question: stability vis-a-vis inexact gradient evaluation?

3-28



Linear convergence with inexact gradients

QY — Q| <

Theorem (Cen, Cheng, Chen, Wei, Chi ’'22)
For any stepsize 0 < n < (1 — v)/7, entropy-regularized NPG attains

Qs — QY| < (1 —nr)iCy+ Cy

o C1=Q7 — QP +2r(1 - {7 ) llog s — log oo

B 2v(1+ nlr)

b = 6 : error floor
(1—=9)?

® converges linearly at the same rate until an error floor is hit

3-29



Linear convergence with inexact gradients

QY — Q| <

Theorem (Cen, Cheng, Chen, Wei, Chi ’'22)
For any stepsize 0 < n < (1 — v)/7, entropy-regularized NPG attains

Qs — QY| < (1 —nr)iCy+ Cy

Cr=11@7 = Qoo +27(1 — £ ) og 7 — log ¥

2v(1+ X
b = M(? : error floor

(1—=9)2

® converges linearly at the same rate until an error floor is hit

® sample complexity O(JSH“L;‘Se ) (sub-optimal)

3-29



Returning to the original MDP?

How to employ entropy-regularized NPG to find an e-optimal policy for
the original (unregularized) MDP?

3-30



Returning to the original MDP?

How to employ entropy-regularized NPG to find an e-optimal policy for
the original (unregularized) MDP?

* suffices to find an §-optimal policy of regularized MDP

(I—v)e
4log | Al

w/ regularization parameter 7 =

® jteration complexity is the same as before (up to log factor)

3-30



A warm-up analysis when n = 1*77



A key lemma: monotonic performance
improvement

V(t+1)

Dy @y — 1 T (). or
VI (p) = v (p) Sﬁm[(n 1_7>KL( $) | 7 1s))
g KL divergence
1 2. (t+1) .
+77KL( s) ||~ (|s)):|

KL divergence

3-32



A key lemma: monotonic performance
improvement

V(t+1)

1 T
VD) D) = E ( )KL( (t+1). 70y )
o -vo= kG s) || Cls)
KL divergence
T Hw““)«ls)ﬂ
KL divergence

. 1—v
>0 (|f0<n§T) s



A key operator: soft Bellman operator

Soft Bellman operator

7;—(@)(3761) = ’I"(S,CL)

immediate reward

+v E max [ Q(s',a') —rlog ﬂ(a/\s/)] ,
s'~P(cs,a) | 7(18") a/~m(-]s) ——— —_————
next state's value entropy

3-33



A key operator: soft Bellman operator

Soft Bellman operator

7;—(@)(3761) = ’I"(S,CL)

immediate reward

+v E max [ Q(s',a') —rlog W(a/\s/)] ,
s'~P(cs,a) | 7(18") a/~m(-]s) ——— —_————
next state's value entropy

Soft Bellman equation: @)} is unique solution to

Q) = @ g@ 2

~v-contraction of soft Bellman operator: \ﬁ

[77(Q1) — T (Q2)[loo < 7[IQ1 — Q2] Richard Bellman

3-33



Analysis of soft policy iteration (1 =

1—
.

)

Policy iteration

Bellman operator

3-34



Analysis of soft policy iteration (1 = 1*_7)

T

Policy iteration Soft policy iteration

71—(0) -(0)

Bellman operator Soft Bellman operator
3-34



A key linear system: general learning rates

107 =@l | g, o [0~ 1080 ]
lQ7 — rlog €W, 0

where £ o 7() is an auxiliary sequence, then

Let z; := [

3-35



A key linear system: general learning rates

10 =@l | g, [0 — 1080
@~ rloa€®], 0 |
where £ o 7() is an auxiliary sequence, then

T t+1
<A 1-—
Tyl < 513t+7< 1_7> Y,

Let z; := [

where
a= (1] [ 1o ]

is a rank-1 matrix with a non-zero eigenvalue 1 —nr7
N——

contraction rate!

3-35



Beyond entropy regularization

Leverage regularization to promote structural properties of the learned
policy.

cost-sensitive RL sparse exploration constrained and safe RL

weighted 1-norm Tsallis entropy log-barrier

For further details, see: (Lan, PMD 2021) and (Zhan et al, GPMD 2021)

3-36



Summary of this part

10° —— 7 =0.01
=01
100 K N
—— =
E 4 1072
® 1 / . B
7 (ay - e
\ @l o s - —
., e ) <
. e 7 7P (ar ] 5) ‘
S P
o " [«
Sl 1078
hhhhh Peomomm 10-10
3 Lo

0 1000 2000 3000 4000 5000
#iterations

e Softmax policy gradient can take exponential time to converge

® Entropy regularization & natural gradients help!

3-37



Summary of this part

10° —— 7 =0.01
10 n=01
1 —— =1
E 4 1072
o / ¥
™ a 1) . _8
N o (ay | 3) e = 10!
., ot el W(t](ul | 5) "“f
A L1000
S~ e =
I 1078
hhh omoem 10-10
t 1012
0 1000 2000 3000 4000 5000
#iterations

e Softmax policy gradient can take exponential time to converge

® Entropy regularization & natural gradients help!

Future directions:
® optimal sample complexity bound

® function approximation

3-37



Concluding Remarks



-
Concluding remarks
:\ o I state . FiRsT-ORDER METHODS

\ actio IN OPTIMIZATION

W G o o o ] e ——— agent
Reinforcement | ‘\*\\ Dynamic Programming
Learning 1% and Optimal Control
o=y V1

i=—¢—— environment

Amir Beck
inext state

i

Understanding non-asymptotic performances of RL algorithms is a
fruitful playground! J
Promising directions:

® function approximation ® hybrid RL
® multi-agent/federated RL

® many more...

Thank you for your attention! https://yutingwei.github.io/

3-39



