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Success stories of reinforcement learning
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Reinforcement learning (RL)

In RL, an agent learns by interacting with an environment.

® no training data

trial-and-error

® maximize total rewards

sequential and online

“‘Recalculating ... recalculating ...”
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Sample efficiency
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Sample efficiency
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® prohibitively large state & action space
® collecting data samples can be expensive or time-consuming

Challenge: design & understand sample efficient RL algorithms J
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Statistical foundation of RL
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Statistical foundation of RL

€5 a 6 finite-sample

“w analysis « , |
®8" \ ). E

asymptotic
analysis

Understanding sample efficiency of RL requires a modern suite of
non-asymptotic statistical tools.
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QOutline

® Background
¢ Vignette #1: model-based RL (“plug-in" approach)

e Vignette #2: model-free RL (Q-learning on Markovian samples)

S
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Q(s,a)
model based RL model free RL
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Background: Markov decision processes



Markov decision process (MDP)

state s¢ action a;
agent ——1

environment [« — —J

vY

y S N

® S: state space

e A: action space
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Markov decision process (MDP)

state s; action a;
agent ——1

reward |
;Tt =TS, Q¢ |

A A 4

environment [« — —J

y S N

® S: state space
e A: action space

® r(s,a) € [0,1]: immediate reward
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Markov decision process (MDP)

state s;

action

reward

y W N

S: state space

A: action space

e

re = 1(8¢, at |

environment |« — —J

r(s,a) € [0,1]: immediate reward

m(+|s): policy (or action selection rule)
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Markov decision process (MDP)

action
state s;

{ jat ~ 7(-[s¢)
___________ | agent ——1

reward |
re = 1(8¢, at |

environment [« — -

y W N

next state
st+1 ~ P(|ss, at)

S: state space

A: action space

r(s,a) € [0,1]: immediate reward
m(+|s): policy (or action selection rule)

P(-]s,a): unknown transition probabilities
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Help the mouse!
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Help the mouse!

® state space S: positions in the maze

11/48



Help the mouse!

® state space S: positions in the maze
® action space A: up, down, left, right
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Help the mouse!

® state space S: positions in the maze
® action space A: up, down, left, right

® immediate reward r: cheese, electricity shocks, cats
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Help the mouse!

state space S: positions in the maze
action space A: up, down, left, right
immediate reward 7: cheese, electricity shocks, cats

policy 7(+|s): the way to find cheese
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Value function

state s (.
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Value of policy 7: cumulative discounted reward
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Value function

state s a arsti;)rrz'ls )
= rooom o m
|:> l | l
d S S S
r =l | Coon X SOTYTD
4--- environment — a6 ar as az ay
St ~ P("st1at)
Value of policy 7: cumulative discounted reward
o
VseS: VT(s):=E E V'r(se,ae) | so=s
t=0
® v €[0,1): discount factor
> take v — 1 to approximate long-horizon MDPs
1
1—y
12/48

> effective horizon:



Q-function (action-value function)

To T T2 T3 T4 T5
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Q-function of policy 7:

V(s,a) e SxA: Q7(s,a) :=E Z’ytrt|so =s,a0=a
=0

® (g¢7 s1,a1, S2,a2,- - ): induced by policy
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Q-function (action-value function)
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Q-function of policy 7:

V(s,a) e SxA: Q7(s,a) :=E Z’ytrt|so =s,a0=a

t=0

® (g¢7 s1,a1, S2,a2,- - ): induced by policy
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Optimal policy and optimal value

e optimal policy 7*: maximizing value function max, V™ (s)
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Optimal policy and optimal value

e optimal policy 7*: maximizing value function max, V™ (s)

* optimal value / Q function: V*:=V™, Q*:= Q™
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Optimal policy and optimal value

e optimal policy 7*: maximizing value function max, V™ (s)
* optimal value / Q function: V*:=V™, Q*:= Q™

® How to find this 77

14 /48



Model-based vs. model-free RL

Wt model | AL,
&@@,f (ie. P e RISIAIXIS]) %,19
model-based B

samples value function
(experience) policy

Model-based approach (“plug-in")
1. build empirical estimate P for P

2. planning based on empirical P
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Model-based vs. model-free RL

o™ model A

.M‘Y? """ "(ie. PeRISIxish T 2,

& \:19
/ wodel-based \
samples value function
(experience) policy
”. o
“ee_model-free .

Model-based approach (“plug-in")
1. build empirical estimate P for P

2. planning based on empirical P

Model-free approach (e.g. Q-learning)
— learning w/o modeling & estimating environment explicitly
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Vignette #1: Model-based RL (a “plug-in” approach)

“Breaking the sample size barrier in model-based reinforcement learning with a
generative model,” G. Li, Y. Wei, Y. Chi, Y. Gu, Y. Chen, NeurlPS, 2020

16 /48



When the model is known . ..

[ original MDP \

| |
[ |
||
|| : N
B planning T
| oracle
= e.g. dynamic programming
. 1. Policy evaluation. Compute Q™
. . 2. Policy improvement. Update the policy: Tk+1 = T«
truth: P

\_

-

Planning: computing the optimal policy 7* given the MDP specification
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When the model is known . ..

[ original MDP \

| |
[ |
||
|| : N
B planning T
| oracle
= e.g. dynamic programming
. 1. Policy evaluation. Compute Q™
. . 2. Policy improvement. Update the policy: Tk+1 = T«
truth: P

\_

-

Planning: computing the optimal policy 7* given the MDP specification

In practice, do not know transition matrix P! J
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This work: sampling from a generative model

— [Kearns and Singh, 1999]

generative model

e Sampling: for each (s,a), collect N samples {(s,a,s’(i))}lgiSN
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This work: sampling from a generative model

— [Kearns and Singh, 1999]

generative model

e Sampling: for each (s,a), collect N samples {(s,a,s’(i))}lgiSN

e construct 7 based on samples (in total |S||.A| x N)

18/48



(.-sample complexity: how many samples are required to

learn an e-optimal policy ?

-~

Vs: V() >V*(s)—e



An incomplete list of prior art

[Kearns and Singh, 1999]

[Kakade, 2003]

[Kearns et al., 2002]

[Azar et al., 2012]

[Azar et al., 2013]

[Sidford et al., 2018a]

[Sidford et al., 2018b]

[Wang, 2019]

[Agarwal et al., 2019]
[Wainwright, 2019a, Wainwright, 2019b]
[Pananjady and Wainwright, 2019]
[Yang and Wang, 2019]

[Khamaru et al., 2020]

[Mou et al., 2020]
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An even shorter list

of prior art

algorithm sample size range | sample complexity e-range
Empirical QVI [‘3\2\,4\ o0) |S||A]| (0, 1 ]
[Azar et al., 2013] (1—y)2’ (1—v)3e2 V(@=7)[S|
Sublinear randomized VI [ |S||A] ) |S||A] (0 #}
[Sidford et al., 2018b] (1-v)2" (1-y)*e? Ty
Variance-reduced QVI |S||A] |S||A]
[Sidford et al., 2018a] [(1fv>3 ) (1-7)3e? ©1]
Randomized primal-dual |S||A] |S||A] 1
[Wang, 2019] [=52 ) (1—)7e? 0 =]
Empirical MDP + planning [ S|1A] ) ISIIA] (0, 1 ]
[Agarwal et al., 2019] (1-7)2’ (1-7)3e? FViy

important parameters:

® |S|: # states, |A|: # actions

o _1
1—v-

. effective horizon

e cc |0, ﬁ] approximation error
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sample
complexity
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sample
complexity
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sample
complexity

|S1IA]
(1-)?

|sI1A4l
(1-9)?
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>
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& — Sidford et al.'18a
3

~Agarwal ﬂal}
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% 7
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sample
complexity

|S]|-A]
(1-9)3 :

EPRE
(1-7)?

[SIIA|
-7 4 1 1 .

All prior theory requires sample size 2> (‘ﬂ‘j;‘z

Question: is it possible to break this sample size barrier? J
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Our algorithm: model-based RL

Wy model | AL,
&@@f/ (ie. P c RISIMIXISI) ‘%19
model-based )

samples value function
(experience) policy

Model-based approach (“plug-in”)
1. build an empirical estimate Pfor P

2. planning based on empirical P
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Model estimation

Sampling: for each (s, a), collect
N ind. samples {(s, a, S,(Z-))}lgigN

generative model

24/48



Model estimation

Sampling: for each (s, a), collect
N ind. samples {(s, a, S,(Z-))}lgigN

Empirical estimates

!
generative model (s'ls; a) E : 1 {8

TV
empirical frequency
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Model estimation

Sampling: for each (s, a) collect
N ind. samples {(s,a, s )}1<1<N

Empirical estimates

/ — E :
generative model (s'ls, a) = ]1{5

empirical frequency

Hoeffding’s inequality

With probability 1 — &, we have |P(s'|s,a) — P(s|s,a)| < 1/ W

24/48



Model estimation

Sampling: for each (s, a) collect
N ind. samples {(s, a, s )}1<1<N

Empirical estimates

N
generative model (s']s,a) Z 1 {3

J/

empirical frequency

If sample size < |S|?|.A|, then we cannot recover P faithfully. )

24/48



Model-based (plug-in) estimator

—[Azar et al., 2013, Agarwal et al., 2019, Pananjady and Wainwright, 2019]

/" empirical MDP

H EN
| [ |
| - | =
H B [ | planning =%
le
| BB orac
| [ | _ :
|| | B e.g. dynamic programming
H_ ER
| |
r

empirical P

Find policy based on the empirical MDP (empirical maximizer)
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Our method: plug-in estimator + perturbation

/ empirical MDP

|
H B
|
|
H BN
o ]

empirical P

perturb
rewards

—

|

planning
oracle

\Qj_e:ynamic programming

b
<

empirical

*

Tp

Find policy based on the empirical MDP with slightly perturbed rewards
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Our method: plug-in estimator + perturbation

/ empirical MDP

|

H E N | N
| [ | | B
[ | B o | perturb | HE
] [0 | rewards || B _
B B B H B B planning ;
[ BB |:> || B E oracle
[ | [ | | -]
.... = .... = e.g. dynamic programming
[ | [ | H &
T P 1

empirical P empirical

Find policy based on the empirical MDP with slightly perturbed rewards

Question: Can we trust our ™ when P is not accurate? J
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Main result: /. -based sample complexity

Theorem (Li, Wei, Chi, Gu, Chen’20)

For any 0 < ¢ < 1=, the optimal policy 7 7y, of perturbed empirical MDP
achieves

[V — V¥ <€

with sample complexity at most

(a-a)
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Main result: /,-based sample complexity

Theorem (Li, Wei, Chi, Gu, Chen’20)

For any 0 < ¢ < 1=, the optimal policy 7 7y, of perturbed empirical MDP
achieves

[V — V¥ <€

with sample complexity at most
5 (ISIIA]
O ——==
((1 —7)%€?

® minimax lower bound: ﬁ(%)

[Azar et al., 2013]
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Main result: /,-based sample complexity

Theorem (Li, Wei, Chi, Gu, Chen’20)

For any 0 < ¢ < 1=, the optimal policy 7 7y, of perturbed empirical MDP
achieves

[V — V¥ <€

with sample complexity at most
5 (ISIIA]
O ——==
((1 —7)%€?

® minimax lower bound: ﬁ(%)

[Azar et al., 2013]

® cc (O, ﬁ] — sample size range [‘

SIIA|

I— °

o)
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sample

complexity
F
%"N //
X
M ‘\b?“ P |,1874//
1—7)3 [ -0 — Sidford et al. '18a
( 7) ////;ap —
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A glimpse of the key analysis ideas



Notation and Bellman equation

Bellman equation: V™ =r + yP, V"™

e V/™: value function under policy 7
> Bellman equation: V™ = (I —vP,;)"1r

® V/™: empirical version value function under policy 7

> Bellman equation: V™ = (I - Wﬁw)_lr

29/48



Notation and Bellman equation

Bellman equation: V™ =r + yP, V"™

V™ value function under policy 7
> Bellman equation: V™ = (I —vP,;)"1r

V™. empirical version value function under policy 7
> Bellman equation: V™ = (I —vP,)"'r

m*: optimal policy for V™

7*: optimal policy for VT

29/48



Main steps

Elementary decomposition:
VIV = (V- VT) (VT V) + (V- VT

A~

< (V™ V™) 40+ (VF V)
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Main steps

Elementary decomposition:

VIV = (V- VT) (VT V) + (V- VT

<V V") 40+ (VF —VT)

e Step 1: control V™ — V7 for a fixed 7 (called “policy evaluation”)
(Bernstein inequality + a peeling argument)
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Main steps

Elementary decomposition:

VIV = (V- VT) (VT V) + (V- VT

<V V") 40+ (VF —VT)

e Step 1: control V™ — V7 for a fixed 7 (called “policy evaluation”)
(Bernstein inequality + a peeling argument)

e Step 2: extend it to control V7" — V7 (7* depends on samples)
(decouple statistical dependency)

30/48



Key idea 1: a peeling argument (for fixed policy)

[Agarwal et al., 2019] and prior work: first-order expansion

VT VT = (I —~4P;)  (Pr — P)VT™
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Key idea 1: a peeling argument (for fixed policy)

[Agarwal et al., 2019] and prior work: first-order expansion

VT — V™ = (I —yP;)  (Pr = Po) V™

Ours: higher-order expansion + Bernstein — tighter control

VT — V™ = (I —vP;) " (Pr — Pr) V™ +
+y (I =vPr) " (Pr = P) (VT = V7)
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Key idea 1: a peeling argument (for fixed policy)

[Agarwal et al., 2019] and prior work: first-order expansion

~

VT — VT = (I —~P;) (Pr — P)VT™

Ours: higher-order expansion 4+ Bernstein — tighter control

~

VT — VT = (I =~P;)  (Pr — P) V™ +
~ 2
+92(( = Pr) " (Pr = P)) VT
—~ 3
++? ((I - VPW)_I(PW — PM) VT
+...

31/48



Key idea 2: decouple dependency for vy

P -

—> ! _.l H =
decouple

dependency .. o =

HE B

H E R

H N [ |

I |

H BB

EE B

empirical P T

empirical maximizer

leave-one-out P(&>®) p(+a)

® define %E*s,a)

(Pls) p(s0)

— inspired by [Agarwal et al., 2019] but quite different . ..
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Key idea 2: decouple dependency for vy

( -
—> | H BN [ | J
decouple = --= -“i. ----- i “=

dependency [ | ] [ ]

HE B HE B

H EHR H EHR

| | | |
H B H B

H E R H EH B

EE B EEm B
empirical P r leave-one-out P(*@) (s

empirical maximizer

(Pls) p(s0)

® define %E*s,a)

» decouple dependency by dropping randomness in 13( | 5,a)

> scalar 7(*%) ensures Q* and V* unchanged

— inspired by [Agarwal et al., 2019] but quite different . ..
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Key idea 2: decouple dependency for vy

— inspired by [Agarwal et al., 2019] but quite different . ..

( -
—> | H BN [ | J
decouple = --= ““i. ----- i “-

dependency [ | ] [ ]

HE B HE B

H EHR H EHR

| | | |
H B H B

H E R H EH B

EE B EEm B
empirical P r leave-one-out P(*@) (s

empirical maximizer

(Pls) p(s0)

® define %E*s,a)

° %(*S Q) = T* can be determined under separation condition
b

VseS, Q(s,7(s)) - H;aic()@*(s,abo

32/48



Key idea 3: tie-breaking via reward perturbation

® How to ensure separation btw the optimal policy and others?

VseS, Q4s,7(s)) — .n;zi;;(( )@*(s,a) >0
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Key idea 3: tie-breaking via reward perturbation

® How to ensure separation btw the optimal policy and others?

VseS, Q4s,7(s)) — .n;zi;;(( )@*(s,a) >0

*
P

> ensures %}‘; can be differentiated from others

e Solution: slightly perturb rewards r = 7

> VT o VE ’ y e
\-r ‘\::/ \
vk &
[ -
VL
R
2 K
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Summary of this part

sample
complexity

IS|IA|
1-m3-
|S|IA] |2
(1=7)?
S]IA]
1 ] ] > 1
é‘\\ é\\\ L 52

Model-based RL is minimax optimal & does not suffer from a
sample size barrier! J
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Vignette #2: Model-free approach

“Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and Variance
Reduction,” G. Li, Y. Wei, Y. Chi, Y. Gu, Y. Chen, IEEE Transactions on Information
Theory, 2021



Markovian samples and behavior policy

observed: (So——*$1——82 83 ——>(S4——85 —
b ] }

H T T v H T T H
‘L L ‘o Nt L o

ap ay az as Gy as

Observed: {s;,a:,r:}+>0 induced by behavior policy 7,
—_———

Markovian trajectory

36/48



Markovian samples and behavior policy

observed: (8o —~—>s$1——>82 83 ——>(S4——S5
T 1 1

ao ay az asz ay as
T T 0 0
m([s0) mo(-s1) b(-[s2) mu(|s3) mb(-|sa) mH(-[s5)

Y

learn: 50— S1 82— 83— $4—; 85—
H 7 1

<

7 H i ! ' H
N’ Nt Nt N Nt S

ag ay az ag Qg as
T t ) T )

7 (Iso) 7 ([s1) 7 ([s2) 7 ([ss) 7 (|sa) 7(]ss5)
Observed: {s;,a:,r:}+>0 induced by behavior policy 7,
—_———

Markovian trajectory

Goal: learn optimal value V* and Q* based on sample trajectory
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Markovian samples and behavior policy

observed: (S0 ——>81——82 83 —— (84 ——>85
T 1 1

i H T T 7
A Ny A ‘A \

az 21-3‘ Qay as
Is1) mo(-ls2) m(-[s3) mu(|sa) Tb(-|s5)

Y

S2— S3— S4—; S5
H I

m(:|$0) b

learn:  (s9g——51

<

' ’ ' i i v v
‘\_f, ‘\_a' ‘\_—, ‘\_a’ \\_f’ ‘\

ag ay az ag Qg as
T t ) T )

7 (o) 7 (-[s1) 7 ([s2) 7 (|ss) 7 (|sa) 7*(]s5)

Key quantities of sample trajectory

® minimum state-action occupancy probability

Hmin = min  pr (s, a)
——

o . stationary distribution
® mixing time: fmix
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Model-based vs. model-free RL

oV model Pl
Mﬁ‘ff """ | Ge. e RistAIISH[ T \ft‘uz,s
(? // \\
/ model-based )

samples value function
(experience) policy
- -

Model-free approach (e.g. Q-learning)
— learning w/o modeling & estimating environment explicitly

37/48



Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation Q = 7(Q)

Robbins & Monro '51
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Aside: Bellman optimality principle

Bellman operator

T(@)(s,a):= 7r(s;,a) +v E |maxQ(s,d)
~—— s'~P(-]s,a) acA
immediate reward
next state's value

® one-step look-ahead

38/48



Aside: Bellman optimality principle

Bellman operator

T(Q)(s,a):= r(s,a) +~v E [max Q(s, a')}
~—— s'~P(-]s,a) acA
immediate reward
next state's value

® one-step look-ahead

Bellman equation: Q* is unique solution to

T@) ="

Richard Bellman
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Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation @ = 7(Q)

Quy1(st, ar) = Qu(se, ar) +me(Ti(Qe) (51, a0) — Qu(sy,a1)), 20

~
only update (s¢,at)-th entry

39/48



Q-learning: a classical model-free algorithm

i

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation @ = 7(Q)

Quy1(st, ar) = Qu(se, ar) +me(Ti(Qe) (51, a0) — Qu(sy,a1)), 20

~
only update (s¢,at)-th entry

Te(Q)(se, ar) :=r(sp,a¢) + Y max Q(st+41,0a")
T(@Q)(s,a) =r(s,a) +~y B [maxQ(s',a’)]

s/~P(ls,a) - @
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Q-learning on Markovian samples

observed:

@(s, a)

e asynchronous: only a single entry is updated each iteration

(s0 (lo.)\\\
(s1}a1 R

as)
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Q-learning on Markovian samples

observed: (so——*(51
¥ ;
/

(s0 ao.)\\\
(s1}a1 R

N Kf’%m

@(s, a)

e asynchronous: only a single entry is updated each iteration

> resembles Markov-chain coordinate descent

as)

40/48



What is sample complexity of (async) Q-learning?



A highly incomplete list of prior work

[Watkins and Dayan, 1992]
[Tsitsiklis, 1994]

[Jaakkola et al., 1994]
[Szepesvdri, 1998]

[Kearns and Singh, 1999]
[Borkar and Meyn, 2000]
[Even-Dar and Mansour, 2003]
[Beck and Srikant, 2012]
[Jin et al., 2018]

[Shah and Xie, 2018]
[Wainwright, 2019a]

[Chen et al., 2019]

[Yang and Wang, 2019]
[Du et al., 2020]

[Chen et al., 2020]

[Qu and Wierman, 2020]
[Devraj and Meyn, 2020]
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Prior art: sample complexity

Question: how many samples are needed to ensure ||Q — Q*||oc < &7

paper ‘ sample complexity ‘ learning rate
[Even-Dar and Mansour, 2003] % linear: %
[Even-Dar and Mansour, 2003] (%)% + tf"fvfy')ﬁ poly: t% L wE (%, 1)
[Beck and Srikant, 2012] % constant
[Qu and Wierman, 2020] W rescaled linear

. tmi
— cover time: tcoyer X —MX
Hmin

43 /48



Prior art: sample complexity

Question: how many samples are needed to ensure H@ — QMoo < &7

X
2y
sample &
complexity g
T D
i Qo
& <&
o SRS
(7] N
Q B N
o N
\3\\A\
>|S||Al
if we take Hmin = ﬁy tcover = :L:uxn

43 /48



Prior art: sample complexity

Question: how many samples are needed to ensure ||Q — Q*||oc < &7

sample
complexity

>| S| Al

i e 1 - tmix
if we take fmin < SIAT teover < i

All prior results require sample size of at least tmix|S|?|.A|?! J
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i e 1 - tmix
if we take fmin < SIAT teover < i

All prior results require sample size of at least tmix|S|?|.A|?! J
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Main result: /. -based sample complexity

Theorem (Li, Wei, Chi, Gu, Chen '20)
Forany 0 < e < ﬁ sample complexity of async Q-learning to yield
|Q — Q*|lo < € is at most (up to some log factor)
1 n Uiz
fmin(1 = 7)%€2  pimin(1 =)
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Main result: /. -based sample complexity

Theorem (Li, Wei, Chi, Gu, Chen’20)
Forany 0 < e < ﬁ sample complexity of async Q-learning to yield
|Q — Q*|lo < € is at most (up to some log factor)
1 n Uiz
,Umin(1 - 7)552 Mmin(1 - 'Y)

— prior art: 2%7"( Qu and Wierman, 2020
p Yoez

By (1=

® Improves upon prior art by at least |S||.A|!
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Effect of mixing time on sample complexity

Markov Chains
and Mixing Times
Second Edition

1 + tmix
/ﬁmin(1 - 7)552 /~Lmin(1 - 7)

® reflects cost taken to reach steady state

® one-time expense (almost independent of ¢)

— it becomes amortized as algorithm runs
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Effect of mixing time on sample complexity

Markov Chains
and Mixing Times
Second Edition

David A Levin

1 tmix Nesliae

+
Mmin(1 - 7)552 /~Lmin(1 - 7)

® reflects cost taken to reach steady state

® one-time expense (almost independent of ¢)

— it becomes amortized as algorithm runs

— prior art: W ( [Qu and Wierman, 2020])
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Dependence on effective horizon

minimax lower bound
(Azar et al.'13)

1
Hmin (1 - ’7)352

asyn Q-learning
(ignoring dependency on tmix)
1
fomin(1 — 7)€2
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Dependence on effective horizon

minimax lower bound asyn Q-learning
(Azar et al.'13) (ignoring dependency on tmix)
1 1
,Umin(1 - '7)352 ,U/min(1 - 7)552
The dependency on ﬁ can be tightened by variance reduction. J

— inspired by [Johnson and Zhang, 2013], [Wainwright, 2019b]

update variance-reduced

Q-learning
)-)-)-)-
epoch 1 epoch 2 epoch 3
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Summary of this part

sample
complexity

Sharper sample complexity for asyn Q-learning
in terms of |S||A| and tmix! J
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Concluding remarks

FiRsT-ORDER METHODS
IN OPTIMIZATION

Reinforcement | |\\
Learning

Amir Beck

inext state

Y

Understanding non-asymptotic performances of RL algorithms is a
fruitful playground! J

Future directions:

® function approximation e offline RL
® multi-agent RL ® many more...

Thanks for your attention!
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Other details
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Improved theory for policy evaluation

Model-based policy evaluation:

— given a fixed policy m, estimate V™ via the plug-in estimate VT
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Improved theory for policy evaluation

Model-based policy evaluation:

— given a fixed policy m, estimate V™ via the plug-in estimate VT

sample +
complexity
&
RS
,,,,,,,,, Q«\
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, S
S
IS| | “000
(T=7)? W
’ %*\o
&
s <
JI | 1 1 > l
< N < \/ 3 2
NG J
IS

® A sample size barrier T2 already appeared in prior work
(Agarwal et al.'19, Pananjady & Wainwright '19, Khamaru et al. '20)
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Improved theory for policy evaluation

Model-based policy evaluation:

— given a fixed policy m, estimate V™ via the plug-in estimate VT

Theorem (Li, Wei, Chi, Gu, Chen’20)

1
17", !

IV = V7lo < ¢

Fix any policy m. For ) < e < the plug-in estimator v obeys

with sample complexity at most

(=)

® Minimax optimal for all € (Azar et al.'13, Pananjady & Wainwright '19)
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Key idea 2: leave-one-out analysis for V7" — V7

e m————
- -~

~
-

pmm——————— Tamy A
i H BB [ [l
s el ey [ | | :
| | | | | |
|| | | |
HE B HE B
i EHBR H EHR
HE | Hn |
| |

H BN H BN
EEm B EE B
empirical P r leave-one-out P(#9) p(s:@)

1. embed all randomness from ﬁ( | 5,a) into a single scalar (i.e. (%)
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e m————
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~
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pmm——————— Tamy A
: H NN [ | { JJUITIIi
= = ] m -0 L
| | | | | |
|| | | |
HE B HE B
i EHBR H EHR
HE | Hn |
| |
H BN H BN
EEm B EE B
empirical P r leave-one-out P(#9) p(s:@)

1. embed all randomness from ﬁ( | s,a) into a single scalar (i.e. 'r(s’“))

2. build an e-net for this scalar
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Key idea 2: leave-one-out analysis for V7" — V7

- -
~
-

pmm——————— Tamy A
: H NN [ | { JJUITIIi
= = ] m -0 L
| | | | | |
|| | | |
HE B HE B
i EHBR H EHR
HE | Hn |
| |
H BN H BN
EEm B EE B
empirical P r leave-one-out P(#9) p(s:@)

1. embed all randomness from ﬁ( | 5,a) into a single scalar (i.e. (%)
2. build an e-net for this scalar

3. %(*5 Q) = T* can be determined under separation condition

~

VseS, Q(s,7*(s)) — .H;@\i(( )Q*(s,a) >0
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Key idea 2: leave-one-out analysis for V7" — V7

e m————
- -~

~
-

pmm——————— Tamy A
: H NN [ | { JJUITIIi
= = ] m -0 L
| | | | | |
|| | | |
HE B HE B
i EHBR H EHR
HE | Hn |
| |
H BN H BN
EEm B EE B
empirical P r leave-one-out P(#9) p(s:@)

Compared to [Agarwal et al., 2019]
® [Agarwal et al., 2019]: dependency btw value V& samples
® Qurs: dependency btw policy T & samples
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Key decomposition for asyn Q-learning

Error decomposition

Ar=(T—-A)A1 + A (P, — P)V* + YA P (Vo — V)

Applying this relation recursively gives

t t

Ar=7> [] T-A)A(P—P)V*
i=1 j=i+1
t t

—i—fyzt:H(I—Aj)AiP Via-VH+][(

i=1 j=i+1 j=1
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Learning rates

. . 1—~)4e?
constant stepsize 7; = min {7( 72) T
vy Emix
1
) . (1=
® [Qu and Wierman, 2020]: rescaled linear N = t+max}{w Y
Pomin (T—7) 77MX

® [Beck and Srikant, 2012] constant 7y = %
|S||A|tcover
—_—

too conservative

® [Even-Dar and Mansour, 2003]: polynomial n, = t~* (w € (3,1])
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Adaptive learning rates

i {1 cexp (| log =80 )}
=min< 1,cex —
1t P & /-/Jmin,t(1 - 7)721:

1 . _ 0N

STAT min; o Ki(s,a) = 0;
~ ~ 1 minsq Ki(s,a)/t :
Hmint = Mmin,t—1, 7 < Hmin,t—1 <2

min, o Kt(s,a)/t, otherwise.
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One strategy: variance reduction

— inspired by [Johnson and Zhang, 2013], [Wainwright, 2019b]

Variance-reduced Q-learning updates

Qi(st,a) = (1 —1)Q¢—1(s¢, ar) + 77(’7?(@75—1) Ti(Q) + %(@) )(St, at)

[\

use Q to help reduce variability

® (): some reference Q-estimate

e 7 empirical Bellman operator (using a batch of samples)
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Variance-reduced Q-learning

— inspired by [Johnson and Zhang, 2013], [Wainwright, 2019b]

update variance-reduced

Q-learning
)-)-)-)-
epoch 1 epoch 2 epoch 3

for each epoch
1. update @ and T(Q)

2. run variance-reduced Q-learning updates

48/48



