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Overfitting and Generalization
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Textbook examples

testing error

training error

generalization

From ”The elements of statistical learning” by Hastie, Tibshirani, Friedman
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Lessons we learned...

I simpler models generalize better

I regularization is needed

testing error

training error

generalization
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Recent observed phenomenon

3-layer neural nets on MNIST (similar results on CIFAR)
Neyshabur, Tomioka, Srebro ICLR’15
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Our reactions to technologies:

1. Anything that’s in the world when you’re born is normal and
ordinary and is just a natural part of the way the world works.

2. Anything that’s invented between when you’re 15 and 35 is new
and exciting and revolutionary and you can probably get a career in
it.

3. Anything invented after you’re 35 is against the natural order of
things.

—Douglas Adams, British author
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Recent observed phenomenon(continued)

I What is the right complexity measure?

I What is this ”error” here?
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Does neural networks overfit the data?

I Can fit any training data,
given enough time and
large enough network

Zhang et al. ’17
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We need some form of regularization!
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Empirical risk minimization

I Collect data Dn = {xi , yi}n1 ∼ P

I f ∗ minimizes Loss(f ;P) in function space F
I Find a proper estimator f̂ in F based on Dn

I Construct Ln and f̂ = minf ∈F Ln(f )

For example:

I Squared loss Ln(f ) = 1
2

∑n
i=1(yi − f (xi ))2

I Function class with norm ‖f ‖22 =
∫
f 2(x)dx
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From penalized to algorithmic regularization

Empirical loss function Function class F
Ln : F → R Norm ‖ · ‖F

Penalized regularization

Risk minimization with constraints

f̂ : = arg min
‖f ‖F≤R

Ln(f ;X n
1 ,Y

n
1 )

Bounds on population loss

L(f ) = EX ,Y Ln(f ;X n
1 ,Y

n
1 )

f ∗ : = argmin
f∈F
L(f )

Excess loss: L(f̂ )− L(f ∗)

depends on complexity of F , f ∗ and
radius R
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early stopped estimator depends on
complexity of F , f ∗, step sizes and
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12 / 36



From penalized to algorithmic regularization

Empirical loss function Function class F
Ln : F → R Norm ‖ · ‖F

Penalized regularization

Risk minimization with constraints

f̂ : = arg min
‖f ‖F≤R

Ln(f ;X n
1 ,Y

n
1 )

Bounds on population loss

L(f ) = EX ,Y Ln(f ;X n
1 ,Y

n
1 )

f ∗ : = argmin
f∈F
L(f )

Excess loss: L(f̂ )− L(f ∗)

depends on complexity of F , f ∗ and
radius R

Algorithmic regularization

Based on unconstrained problem

f → Ln(f ;X n
1 ,Y

n
1 )

Generate a sequence of iterates {f t}∞t=1

f t+1 = f t − αtg t

Regularization by “stopping early”

early stopped estimator depends on
complexity of F , f ∗, step sizes and

algorithm nature

12 / 36



From penalized to algorithmic regularization

Empirical loss function Function class F
Ln : F → R Norm ‖ · ‖F

Penalized regularization

Risk minimization with constraints

f̂ : = arg min
‖f ‖F≤R

Ln(f ;X n
1 ,Y

n
1 )

Bounds on population loss

L(f ) = EX ,Y Ln(f ;X n
1 ,Y

n
1 )

f ∗ : = argmin
f∈F
L(f )

Excess loss: L(f̂ )− L(f ∗)

depends on complexity of F , f ∗ and
radius R

Algorithmic regularization

Based on unconstrained problem

f → Ln(f ;X n
1 ,Y

n
1 )

Generate a sequence of iterates {f t}∞t=1

f t+1 = f t − αtg t

Regularization by “stopping early”

early stopped estimator depends on
complexity of F , f ∗, step sizes and

algorithm nature

12 / 36



Boosting via functional gradient descent

Empirical loss function Function class F
Ln : F → R Norm ‖ · ‖F

Given step size αt > 0,

f t+1 = f t − αtg t where g t : = ΠF (∇Ln(f t))

e.g. f t+1(xn1 ) = f t(xn1 )− αXXT (f t(xn1 )− y)⇒ re-fitting the residual

I `2-boosting: least-squares loss 1
2(y − f (x))2

I LogitBoost: logistic regression loss ln(1 + e−yf (x))

I AdaBoost: exponential loss exp(−yf (x))

Schapire’90, Freund & Schapire’95,’97, Breiman ’95,’96, Mason et al.’99...
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Boosting with a Laplacian kernel
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Boosting with a Laplacian kernel
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Boosting with a Laplacian kernel
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Boosting with a Laplacian kernel
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Mean-squared error ‖f t − f ∗‖2
2 versus iteration
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MSE vs iteration
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Early stopping for boosting

I Boosting algorithm:

f t+1 = f t − αtΠF (∇Ln(f t))

Generate a sequence: f 1, f 2, · · · f T · · · f∞.
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Early stopping for boosting

I Boosting algorithm:

f t+1 = f t − αtΠF (∇Ln(f t))

Generate a sequence:

f 1, f 2, · · · f T · · · f∞.

What we would like:

Data-dependent stopping time T such that

Ln(f T ) ≈ Ln(f ∗) where f ∗ is the population minimizer

‖f T − f ∗‖2 → 0 at the minimax-optimal rate as n→∞
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Related results

I Consistency result of boosting algorithms
[Zhang’04, Zhang and Yu’05, Bartlett and Traskin’06, Bickel et al.’06]

I Optimal rate
I Bühlmann and Yu’03 proves optimality for early stopping of

`2-boosting for spline classes

I Raskutti et al.’13 considers `2-boosting for kernel classes and
establishes connection to the localized Rademacher complexity
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Main results

Theorem (W∗, Yang∗ & Wainwright ’17)

For any kernel class F , any regular loss function and constant step
size α, and any iterate t = 1, 2, . . . , b 1

δ2n
c,

L(f̄ t)− L(f ∗)︸ ︷︷ ︸
Excess loss

.
1

αt︸︷︷︸
Opt error

+ δ2n︸︷︷︸
Stat error

,

with high probability over the randomized realization.

Statistical error is determined by fixed point equation:

1√
n

√√√√ n∑
i=1

min
{

1,
µi
δ2

}
=
δ

σ
,

where µi are the eigenvalues of the kernel operator, and σ is the
noise level.
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Main results
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For any kernel class F , any regular loss function and constant step
size α, and any iterate t = 1, 2, . . . , b 1

δ2n
c,

L(f̄ t)− L(f ∗)︸ ︷︷ ︸
Excess loss

.
1

αt︸︷︷︸
Opt error

+ δ2n︸︷︷︸
Stat error

,

with high probability over the randomized realization.

Function space F :

I Reproducing kernel Hilbert space (RKHS) Wahba’90, Gu’ 02,

Berlinet and Thomas-Agnan’04

I Examples: splines functions, polynomials, Lipschitz functions,
Sobolev functions...

supp
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Main results

Theorem (W∗, Yang∗ & Wainwright ’17)

For any kernel class F , any regular loss function and constant step
size α, and any iterate t = 1, 2, . . . , b 1

δ2n
c,

L(f̄ t)− L(f ∗)︸ ︷︷ ︸
Excess loss

.
1

αt︸︷︷︸
Opt error

+ δ2n︸︷︷︸
Stat error

,

with high probability over the randomized realization.

Loss functions:

I Regression (e.g. least squares)

I Classification (e.g. Logistic, Adaboost)
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Main results

Theorem (W∗, Yang∗ & Wainwright ’17)

For any kernel class F , any regular loss function, constant step size
α, and stopping criteria T = b 1

δ2n
c, the excess loss

L(f̄ t)− L(f ∗) . δ2n.

Statistical error is determined by fixed point equation:
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Main results

Decay of kernel eigenvalues

index

ei
ge

nv
al

ue
s

100 100.5 101 101.5 102

10
−

20
10

−
15

10
−

10
10

−
5

10
0

Polynomials
Gassian
Laplacian
Sobolev One
Sobolev Two
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Main results

Theorem (W∗, Yang∗ & Wainwright ’17)

For any kernel class F , any regular loss function, constant step size
α, and stopping criteria T = b 1

δ2n
c, the excess loss

L(f̄ t)− L(f ∗) . δ2n.

I Examples:

function class F δ2n

Polynomial with degree D D
n

Gaussian kernel space
√
log n
n

Lipchitz functions n−2/3

β-smooth kernel space, d-dim n−
2β

2β+d
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δ2n
c, the excess loss

L(f̄ t)− L(f ∗) . δ2n.
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Numerical results: Logit-Boost

I Setting: P(yi = 1) = exp(2f ∗(xi ))
1+exp(2f ∗(xi ))

where f ∗(x) = |x − 1
2 | −

1
4

I Stop after ∝ nκ steps

Oracle best!
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Numerical results: L2-Boost (logscale)

I Setting: yi = f ∗(xi ) + wi where f ∗(x) = |x − 1
2 | −

1
4

I Stop after ∝ nκ steps

26 27 28 29 210
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2 n
Good versus bad rules: L2-Boost

Oracle
Stop at =  1.00
Stop at =  0.67
Stop at =  0.33
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Tools for sharp analysis

Gaussian complexity

How much you can align with i.i.d. noise sequence {wi}n1 ∼ N(0, 1)?

Gn( ,F) = Ew sup

f ∈ F

∣∣∣∣∣1n
n∑

i=1

wi (f (xi )− f ∗(xi ))

∣∣∣∣∣
(e.g., van de Geer’00, Bartlett et al.’05, Koltchinski ’06)
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Tools for sharp analysis

Localized Gaussian complexity

How much you can align with i.i.d. noise sequence {wi}n1 ∼ N(0, 1)?

Gn( δ ,F) = Ew sup
f∈F

‖f − f ∗‖ ≤ δ
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Main results

Theorem (W∗, Yang∗ & Wainwright ’17)

For any kernel class F , any regular loss function, constant step size
α, and stopping criteria T = b 1

δ2n
c, the excess loss

L(f̄ t)− L(f ∗) . δ2n.

Statistical error is determined by fixed point equation:

1√
n

√√√√ n∑
i=1

min
{

1,
µi
δ2

}
=
δ

σ
,

where µi are the eigenvalues of the kernel operator, and σ is the
noise level.
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Fixed point equation

I Stopping rule T depends on critical radius δn

noise std

kernel complexity

Gn(δ,F)

δ
=
δ

σ

*van de Geer’00, Bartlett’02, Koltchinskii’07, Raskutti et al.’13
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Fixed point equation

noise std

kernel complexity

Gn(δ,F)

δ
=
δ

σ

I penalized estimator ≡ early-stopped estimator

*van de Geer’00, Bartlett’02, Koltchinskii’07, Raskutti et al.’13
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Geometric intuition in boosting analysis

I Boosted sequence {f t}∞t=1 takes a particular path

I Effective function classes F t explored at iteration t increases

30 / 36



Minimax optimality

Our early stopped estimator:

L(f̄ t)− L(f ∗) . δ2n

Theorem (W∗, Yang∗ & Wainwright ’17)

Given any kernel class F , and i.i.d. samples {yi}ni=1 from a class of
generalized linear model with some function f ∗ then

inf
f̂

sup
‖f ∗‖H≤1

E‖f̂ − f ∗‖2n & δ2n.

(Yang et al.’17)
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Running time v.s. kernel complexity

Belkin et al.’18

Decay of kernel eigenvalues

index
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Theoretically predicted running times to statistical precision:

Kernel Laplacian Gaussian

Time ( n
σ2 )2/3 n

σ2
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From kernels to neural networks
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Conclusion

I An effective way of early-stopping for boosting algorithms

I Connection between regularization through penalization and
regularization through early-stopping over RKHS
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Open questions

I Generalization X
I f̄ t → f t

I kernel class → broader function classes

I Boosting trees

I Non-convex loss functions
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Supplementary: RKHS

I Symmetric kernel function K : X × X → R

I RKHS is the closure of f (·) =
∑

j≥1 αjK(·, xj)

I Reproducing relation

〈f , K(·, x)〉F = f (x) for all f ∈ F

I Inner product

〈f1, f2〉F =

`1∑
i=1

`2∑
j=1

αiβjK(xi , xj)

for f1(·) =
∑`1

i=1 αiK(·, xi ) and f2(·) =
∑`2

j=1 βjK(·, xj)
back
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Supplementary: Proof idea

Key lemma 1

For any stepsize and any iteration t we have

m

2
‖∆t+1‖2n ≤

1

2α

{
‖∆t‖2F − ‖∆t+1‖2F

}
+ 〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉.

Key lemma 2

With high probability, we have

〈∇L(θ∗ + ∆̃)−∇Ln(θ∗ + ∆̃), ∆〉

≤ 2δn‖∆‖n+2δ2n‖∆‖F +
m

c
‖∆‖2n
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