
Towards a better understanding of early
stopping for boosting algorithms

Yuting Wei

Department of Statistics, Stanford University

University of Cambridge

Nov 2nd, 2018

1 / 36

Fan Yang
ETH Zürich

Martin Wainwright
UC Berkeley

2 / 36

Overfitting and Generalization

3 / 36

Textbook examples

testing error

training error

generalization

From ”The elements of statistical learning” by Hastie, Tibshirani, Friedman

4 / 36

Lessons we learned...

I simpler models generalize better

I regularization is needed

testing error

training error

generalization

5 / 36

Recent observed phenomenon

3-layer neural nets on MNIST (similar results on CIFAR)
Neyshabur, Tomioka, Srebro ICLR’15

6 / 36

Our reactions to technologies:

1. Anything that’s in the world when you’re born is normal and
ordinary and is just a natural part of the way the world works.

2. Anything that’s invented between when you’re 15 and 35 is new
and exciting and revolutionary and you can probably get a career in
it.

3. Anything invented after you’re 35 is against the natural order of
things.

—Douglas Adams, British author

7 / 36

Recent observed phenomenon(continued)

I What is the right complexity measure?

I What is this ”error” here?

8 / 36

Recent observed phenomenon(continued)

I What is the right complexity measure?

I What is this ”error” here?

8 / 36

Recent observed phenomenon(continued)

I What is the right complexity measure?

I What is this ”error” here?

8 / 36

Does neural networks overfit the data?

I Can fit any training data,
given enough time and
large enough network

Zhang et al. ’17

9 / 36

We need some form of regularization!

10 / 36

Empirical risk minimization

I Collect data Dn = {xi , yi}n1 ∼ P

I f ∗ minimizes Loss(f ;P) in function space F
I Find a proper estimator f̂ in F based on Dn

I Construct Ln and f̂ = minf ∈F Ln(f)

For example:

I Squared loss Ln(f) = 1
2

∑n
i=1(yi − f (xi))2

I Function class with norm ‖f ‖22 =
∫
f 2(x)dx

11 / 36

Empirical risk minimization

I Collect data Dn = {xi , yi}n1 ∼ P
I f ∗ minimizes Loss(f ;P) in function space F

I Find a proper estimator f̂ in F based on Dn

I Construct Ln and f̂ = minf ∈F Ln(f)

For example:

I Squared loss Ln(f) = 1
2

∑n
i=1(yi − f (xi))2

I Function class with norm ‖f ‖22 =
∫
f 2(x)dx

11 / 36

Empirical risk minimization

I Collect data Dn = {xi , yi}n1 ∼ P
I f ∗ minimizes Loss(f ;P) in function space F
I Find a proper estimator f̂ in F based on Dn

I Construct Ln and f̂ = minf ∈F Ln(f)

For example:

I Squared loss Ln(f) = 1
2

∑n
i=1(yi − f (xi))2

I Function class with norm ‖f ‖22 =
∫
f 2(x)dx

11 / 36

Empirical risk minimization

I Collect data Dn = {xi , yi}n1 ∼ P
I f ∗ minimizes Loss(f ;P) in function space F
I Find a proper estimator f̂ in F based on Dn

I Construct Ln and f̂ = minf ∈F Ln(f)

For example:

I Squared loss Ln(f) = 1
2

∑n
i=1(yi − f (xi))2

I Function class with norm ‖f ‖22 =
∫
f 2(x)dx

11 / 36

Empirical risk minimization

I Collect data Dn = {xi , yi}n1 ∼ P
I f ∗ minimizes Loss(f ;P) in function space F
I Find a proper estimator f̂ in F based on Dn

I Construct Ln and f̂ = minf ∈F Ln(f)

For example:

I Squared loss Ln(f) = 1
2

∑n
i=1(yi − f (xi))2

I Function class with norm ‖f ‖22 =
∫
f 2(x)dx

11 / 36

Empirical risk minimization

I Collect data Dn = {xi , yi}n1 ∼ P
I f ∗ minimizes Loss(f ;P) in function space F
I Find a proper estimator f̂ in F based on Dn

I Construct Ln and f̂ = minf ∈F Ln(f)

For example:

I Squared loss Ln(f) = 1
2

∑n
i=1(yi − f (xi))2

I Function class with norm ‖f ‖22 =
∫
f 2(x)dx

11 / 36

From penalized to algorithmic regularization

Empirical loss function Function class F
Ln : F → R Norm ‖ · ‖F

Penalized regularization

Risk minimization with constraints

f̂ : = arg min
‖f ‖F≤R

Ln(f ;X n
1 ,Y

n
1)

Bounds on population loss

L(f) = EX ,Y Ln(f ;X n
1 ,Y

n
1)

f ∗ : = argmin
f∈F
L(f)

Excess loss: L(f̂)− L(f ∗)

depends on complexity of F , f ∗ and
radius R

12 / 36

From penalized to algorithmic regularization

Empirical loss function Function class F
Ln : F → R Norm ‖ · ‖F

Penalized regularization

Risk minimization with constraints

f̂ : = arg min
‖f ‖F≤R

Ln(f ;X n
1 ,Y

n
1)

Bounds on population loss

L(f) = EX ,Y Ln(f ;X n
1 ,Y

n
1)

f ∗ : = argmin
f∈F
L(f)

Excess loss: L(f̂)− L(f ∗)

depends on complexity of F , f ∗ and
radius R

12 / 36

From penalized to algorithmic regularization

Empirical loss function Function class F
Ln : F → R Norm ‖ · ‖F

Penalized regularization

Risk minimization with constraints

f̂ : = arg min
‖f ‖F≤R

Ln(f ;X n
1 ,Y

n
1)

Bounds on population loss

L(f) = EX ,Y Ln(f ;X n
1 ,Y

n
1)

f ∗ : = argmin
f∈F
L(f)

Excess loss: L(f̂)− L(f ∗)

depends on complexity of F , f ∗ and
radius R

12 / 36

From penalized to algorithmic regularization

Empirical loss function Function class F
Ln : F → R Norm ‖ · ‖F

Penalized regularization

Risk minimization with constraints

f̂ : = arg min
‖f ‖F≤R

Ln(f ;X n
1 ,Y

n
1)

Bounds on population loss

L(f) = EX ,Y Ln(f ;X n
1 ,Y

n
1)

f ∗ : = argmin
f∈F
L(f)

Excess loss: L(f̂)− L(f ∗)

depends on complexity of F , f ∗ and
radius R

12 / 36

From penalized to algorithmic regularization

Empirical loss function Function class F
Ln : F → R Norm ‖ · ‖F

Penalized regularization

Risk minimization with constraints

f̂ : = arg min
‖f ‖F≤R

Ln(f ;X n
1 ,Y

n
1)

Bounds on population loss

L(f) = EX ,Y Ln(f ;X n
1 ,Y

n
1)

f ∗ : = argmin
f∈F
L(f)

Excess loss: L(f̂)− L(f ∗)

depends on complexity of F , f ∗ and
radius R

Algorithmic regularization

Based on unconstrained problem

f → Ln(f ;X n
1 ,Y

n
1)

Generate a sequence of iterates {f t}∞t=1

f t+1 = f t − αtg t

Regularization by “stopping early”

early stopped estimator depends on
complexity of F , f ∗, step sizes and

algorithm nature

12 / 36

From penalized to algorithmic regularization

Empirical loss function Function class F
Ln : F → R Norm ‖ · ‖F

Penalized regularization

Risk minimization with constraints

f̂ : = arg min
‖f ‖F≤R

Ln(f ;X n
1 ,Y

n
1)

Bounds on population loss

L(f) = EX ,Y Ln(f ;X n
1 ,Y

n
1)

f ∗ : = argmin
f∈F
L(f)

Excess loss: L(f̂)− L(f ∗)

depends on complexity of F , f ∗ and
radius R

Algorithmic regularization

Based on unconstrained problem

f → Ln(f ;X n
1 ,Y

n
1)

Generate a sequence of iterates {f t}∞t=1

f t+1 = f t − αtg t

Regularization by “stopping early”

early stopped estimator depends on
complexity of F , f ∗, step sizes and

algorithm nature

12 / 36

From penalized to algorithmic regularization

Empirical loss function Function class F
Ln : F → R Norm ‖ · ‖F

Penalized regularization

Risk minimization with constraints

f̂ : = arg min
‖f ‖F≤R

Ln(f ;X n
1 ,Y

n
1)

Bounds on population loss

L(f) = EX ,Y Ln(f ;X n
1 ,Y

n
1)

f ∗ : = argmin
f∈F
L(f)

Excess loss: L(f̂)− L(f ∗)

depends on complexity of F , f ∗ and
radius R

Algorithmic regularization

Based on unconstrained problem

f → Ln(f ;X n
1 ,Y

n
1)

Generate a sequence of iterates {f t}∞t=1

f t+1 = f t − αtg t

Regularization by “stopping early”

early stopped estimator depends on
complexity of F , f ∗, step sizes and

algorithm nature

12 / 36

Boosting via functional gradient descent

Empirical loss function Function class F
Ln : F → R Norm ‖ · ‖F

Given step size αt > 0,

f t+1 = f t − αtg t where g t : = ΠF (∇Ln(f t))

e.g. f t+1(xn1) = f t(xn1)− αXXT (f t(xn1)− y)⇒ re-fitting the residual

I `2-boosting: least-squares loss 1
2(y − f (x))2

I LogitBoost: logistic regression loss ln(1 + e−yf (x))

I AdaBoost: exponential loss exp(−yf (x))

Schapire’90, Freund & Schapire’95,’97, Breiman ’95,’96, Mason et al.’99...
13 / 36

Boosting via functional gradient descent

Empirical loss function Function class F
Ln : F → R Norm ‖ · ‖F

Given step size αt > 0,

f t+1 = f t − αtg t where g t : = ΠF (∇Ln(f t))

e.g. f t+1(xn1) = f t(xn1)− αXXT (f t(xn1)− y)⇒ re-fitting the residual

I `2-boosting: least-squares loss 1
2(y − f (x))2

I LogitBoost: logistic regression loss ln(1 + e−yf (x))

I AdaBoost: exponential loss exp(−yf (x))

Schapire’90, Freund & Schapire’95,’97, Breiman ’95,’96, Mason et al.’99...
13 / 36

Boosting via functional gradient descent

Empirical loss function Function class F
Ln : F → R Norm ‖ · ‖F

Given step size αt > 0,

f t+1 = f t − αtg t where g t : = ΠF (∇Ln(f t))

e.g. f t+1(xn1) = f t(xn1)− αXXT (f t(xn1)− y)⇒ re-fitting the residual

I `2-boosting: least-squares loss 1
2(y − f (x))2

I LogitBoost: logistic regression loss ln(1 + e−yf (x))

I AdaBoost: exponential loss exp(−yf (x))

Schapire’90, Freund & Schapire’95,’97, Breiman ’95,’96, Mason et al.’99...
13 / 36

Boosting via functional gradient descent

Empirical loss function Function class F
Ln : F → R Norm ‖ · ‖F

Given step size αt > 0,

f t+1 = f t − αtg t where g t : = ΠF (∇Ln(f t))

e.g. f t+1(xn1) = f t(xn1)− αXXT (f t(xn1)− y)⇒ re-fitting the residual

I `2-boosting: least-squares loss 1
2(y − f (x))2

I LogitBoost: logistic regression loss ln(1 + e−yf (x))

I AdaBoost: exponential loss exp(−yf (x))

Schapire’90, Freund & Schapire’95,’97, Breiman ’95,’96, Mason et al.’99...
13 / 36

Boosting with a Laplacian kernel

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

Residues: kernel boosting at round 1

● Noisy residue
Truth

14 / 36

Boosting with a Laplacian kernel

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

Fit at round 1 of boosting

● Noisy residue
Truth
Current residue fit

14 / 36

Boosting with a Laplacian kernel

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4

Residues: kernel boosting at round 2

● Noisy residue
Current residue fit

14 / 36

Boosting with a Laplacian kernel

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

Residues: kernel boosting at round 3

● Noisy residue
Current residue fit

14 / 36

Boosting with a Laplacian kernel

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

Fit at round 3 of boosting

● Noisy residue
Truth
Current residue fit

14 / 36

Boosting with a Laplacian kernel

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

Fit at round 6 of boosting

● Noisy residue
Truth
Current residue fit

14 / 36

Boosting with a Laplacian kernel

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

Fit at round 100 of boosting

● Noisy residue
Truth
Current residue fit

14 / 36

Mean-squared error ‖f t − f ∗‖2
2 versus iteration

0 20 40 60 80 100

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

MSE vs iteration

iterations

sq
ua

re
d

er
ro

r

15 / 36

Early stopping for boosting

I Boosting algorithm:

f t+1 = f t − αtΠF (∇Ln(f t))

Generate a sequence: f 1, f 2, · · · f T · · · f∞.

16 / 36

Early stopping for boosting

I Boosting algorithm:

f t+1 = f t − αtΠF (∇Ln(f t))

Generate a sequence:

f 1, f 2, · · · f T · · · f∞.

What we would like:

Data-dependent stopping time T such that

Ln(f T) ≈ Ln(f ∗) where f ∗ is the population minimizer

‖f T − f ∗‖2 → 0 at the minimax-optimal rate as n→∞

17 / 36

Related results

I Consistency result of boosting algorithms
[Zhang’04, Zhang and Yu’05, Bartlett and Traskin’06, Bickel et al.’06]

I Optimal rate
I Bühlmann and Yu’03 proves optimality for early stopping of

`2-boosting for spline classes

I Raskutti et al.’13 considers `2-boosting for kernel classes and
establishes connection to the localized Rademacher complexity

18 / 36

Related results

I Consistency result of boosting algorithms
[Zhang’04, Zhang and Yu’05, Bartlett and Traskin’06, Bickel et al.’06]

I Optimal rate
I Bühlmann and Yu’03 proves optimality for early stopping of

`2-boosting for spline classes

I Raskutti et al.’13 considers `2-boosting for kernel classes and
establishes connection to the localized Rademacher complexity

18 / 36

Main results

Theorem (W∗, Yang∗ & Wainwright ’17)

For any kernel class F , any regular loss function and constant step
size α, and any iterate t = 1, 2, . . . , b 1

δ2n
c,

L(f̄ t)− L(f ∗)︸ ︷︷ ︸
Excess loss

.
1

αt︸︷︷︸
Opt error

+ δ2n︸︷︷︸
Stat error

,

with high probability over the randomized realization.

Statistical error is determined by fixed point equation:

1√
n

√√√√ n∑
i=1

min
{

1,
µi
δ2

}
=
δ

σ
,

where µi are the eigenvalues of the kernel operator, and σ is the
noise level.

19 / 36

Main results

Theorem (W∗, Yang∗ & Wainwright ’17)

For any kernel class F , any regular loss function and constant step
size α, and any iterate t = 1, 2, . . . , b 1

δ2n
c,

L(f̄ t)− L(f ∗)︸ ︷︷ ︸
Excess loss

.
1

αt︸︷︷︸
Opt error

+ δ2n︸︷︷︸
Stat error

,

with high probability over the randomized realization.

Statistical error is determined by fixed point equation:

1√
n

√√√√ n∑
i=1

min
{

1,
µi
δ2

}
=
δ

σ
,

where µi are the eigenvalues of the kernel operator, and σ is the
noise level.

19 / 36

Main results

Theorem (W∗, Yang∗ & Wainwright ’17)

For any kernel class F , any regular loss function and constant step
size α, and any iterate t = 1, 2, . . . , b 1

δ2n
c,

L(f̄ t)− L(f ∗)︸ ︷︷ ︸
Excess loss

.
1

αt︸︷︷︸
Opt error

+ δ2n︸︷︷︸
Stat error

,

with high probability over the randomized realization.

Function space F :

I Reproducing kernel Hilbert space (RKHS) Wahba’90, Gu’ 02,

Berlinet and Thomas-Agnan’04

I Examples: splines functions, polynomials, Lipschitz functions,
Sobolev functions...

supp

20 / 36

Main results

Theorem (W∗, Yang∗ & Wainwright ’17)

For any kernel class F , any regular loss function and constant step
size α, and any iterate t = 1, 2, . . . , b 1

δ2n
c,

L(f̄ t)− L(f ∗)︸ ︷︷ ︸
Excess loss

.
1

αt︸︷︷︸
Opt error

+ δ2n︸︷︷︸
Stat error

,

with high probability over the randomized realization.

Loss functions:

I Regression (e.g. least squares)

I Classification (e.g. Logistic, Adaboost)

21 / 36

Main results

Theorem (W∗, Yang∗ & Wainwright ’17)

For any kernel class F , any regular loss function, constant step size
α, and stopping criteria T = b 1

δ2n
c, the excess loss

L(f̄ t)− L(f ∗) . δ2n.

Statistical error is determined by fixed point equation:

1√
n

√√√√ n∑
i=1

min
{

1,
µi
δ2

}
=

δ

σ
,

where µi are the eigenvalues of the kernel operator, and σ is the
noise level.

21 / 36

Main results

Decay of kernel eigenvalues

index

ei
ge

nv
al

ue
s

100 100.5 101 101.5 102

10
−

20
10

−
15

10
−

10
10

−
5

10
0

Polynomials
Gassian
Laplacian
Sobolev One
Sobolev Two

22 / 36

Main results

Theorem (W∗, Yang∗ & Wainwright ’17)

For any kernel class F , any regular loss function, constant step size
α, and stopping criteria T = b 1

δ2n
c, the excess loss

L(f̄ t)− L(f ∗) . δ2n.

I Examples:

function class F δ2n

Polynomial with degree D D
n

Gaussian kernel space
√
log n
n

Lipchitz functions n−2/3

β-smooth kernel space, d-dim n−
2β

2β+d

23 / 36

Main results

Theorem (W∗, Yang∗ & Wainwright ’17)

For any kernel class F , any regular loss function, constant step size
α, and stopping criteria T = b 1

δ2n
c, the excess loss

L(f̄ t)− L(f ∗) . δ2n.

I Examples:

function class F δ2n T

Polynomial with degree D D
n

n
D

Gaussian kernel space
√
log n
n

n√
log n

Lipchitz functions n−2/3 n2/3

β-smooth kernel space, d-dim n−
2β

2β+d n
2β

2β+d

24 / 36

Main results

Theorem (W∗, Yang∗ & Wainwright ’17)

For any kernel class F , any regular loss function, constant step size
α, and stopping criteria T = b 1

δ2n
c, the excess loss

L(f̄ t)− L(f ∗) . δ2n.

I Examples:

function class F δ2n T

Polynomial with degree D D
n

n
D

Gaussian kernel space
√
log n
n

n√
log n

Lipchitz functions n−2/3 n2/3

β-smooth kernel space, d-dim n−
2β

2β+d n
2β

2β+d

25 / 36

Numerical results: Logit-Boost

I Setting: P(yi = 1) = exp(2f ∗(xi))
1+exp(2f ∗(xi))

where f ∗(x) = |x − 1
2 | −

1
4

I Stop after ∝ nκ steps

Oracle best!

26 / 36

Numerical results: Logit-Boost

I Setting: P(yi = 1) = exp(2f ∗(xi))
1+exp(2f ∗(xi))

where f ∗(x) = |x − 1
2 | −

1
4

I Stop after ∝ nκ steps

Oracle best!

26 / 36

Numerical results: Logit-Boost

I Setting: P(yi = 1) = exp(2f ∗(xi))
1+exp(2f ∗(xi))

where f ∗(x) = |x − 1
2 | −

1
4

I Stop after ∝ nκ steps

26 / 36

Numerical results: Logit-Boost

I Setting: P(yi = 1) = exp(2f ∗(xi))
1+exp(2f ∗(xi))

where f ∗(x) = |x − 1
2 | −

1
4

I Stop after ∝ nκ steps

Oracle best!

26 / 36

Numerical results: Logit-Boost

I Setting: P(yi = 1) = exp(2f ∗(xi))
1+exp(2f ∗(xi))

where f ∗(x) = |x − 1
2 | −

1
4

I Stop after ∝ nκ steps

Oracle best!

Too early!

26 / 36

Numerical results: Logit-Boost

I Setting: P(yi = 1) = exp(2f ∗(xi))
1+exp(2f ∗(xi))

where f ∗(x) = |x − 1
2 | −

1
4

I Stop after ∝ nκ steps

Oracle best!

Too early!

Too late!

26 / 36

Numerical results: Logit-Boost

I Setting: P(yi = 1) = exp(2f ∗(xi))
1+exp(2f ∗(xi))

where f ∗(x) = |x − 1
2 | −

1
4

I Stop after ∝ nκ steps

Oracle best!

Too early!

Too late!

Ours

26 / 36

Numerical results: Logit-Boost

I Setting: P(yi = 1) = exp(2f ∗(xi))
1+exp(2f ∗(xi))

where f ∗(x) = |x − 1
2 | −

1
4

I Stop after ∝ nκ steps

Oracle best!

Too early!

Too late!

Ours

26 / 36

Numerical results: L2-Boost (logscale)

I Setting: yi = f ∗(xi) + wi where f ∗(x) = |x − 1
2 | −

1
4

I Stop after ∝ nκ steps

26 27 28 29 210

Sample size n

10 2

M
ea

n
sq

ua
re

d
er

ro
r |

fT
f* |

2 n
Good versus bad rules: L2-Boost

Oracle
Stop at = 1.00
Stop at = 0.67
Stop at = 0.33

27 / 36

Tools for sharp analysis

Gaussian complexity

How much you can align with i.i.d. noise sequence {wi}n1 ∼ N(0, 1)?

Gn(,F) = Ew sup

f ∈ F

∣∣∣∣∣1n
n∑

i=1

wi (f (xi)− f ∗(xi))

∣∣∣∣∣
(e.g., van de Geer’00, Bartlett et al.’05, Koltchinski ’06)

28 / 36

Tools for sharp analysis

Localized Gaussian complexity

How much you can align with i.i.d. noise sequence {wi}n1 ∼ N(0, 1)?

Gn(δ ,F) = Ew sup
f∈F

‖f − f ∗‖ ≤ δ

∣∣∣∣∣1n
n∑

i=1

wi (f (xi)− f ∗(xi))

∣∣∣∣∣

(e.g., van de Geer’00, Bartlett et al.’05, Koltchinski ’06)
28 / 36

Main results

Theorem (W∗, Yang∗ & Wainwright ’17)

For any kernel class F , any regular loss function, constant step size
α, and stopping criteria T = b 1

δ2n
c, the excess loss

L(f̄ t)− L(f ∗) . δ2n.

Statistical error is determined by fixed point equation:

1√
n

√√√√ n∑
i=1

min
{

1,
µi
δ2

}
=
δ

σ
,

where µi are the eigenvalues of the kernel operator, and σ is the
noise level.

28 / 36

Fixed point equation

I Stopping rule T depends on critical radius δn

noise std

kernel complexity

Gn(δ,F)

δ
=
δ

σ

*van de Geer’00, Bartlett’02, Koltchinskii’07, Raskutti et al.’13
29 / 36

Fixed point equation

noise std

kernel complexity

Gn(δ,F)

δ
=
δ

σ

I penalized estimator ≡ early-stopped estimator

*van de Geer’00, Bartlett’02, Koltchinskii’07, Raskutti et al.’13
29 / 36

Geometric intuition in boosting analysis

I Boosted sequence {f t}∞t=1 takes a particular path

I Effective function classes F t explored at iteration t increases

30 / 36

Minimax optimality

Our early stopped estimator:

L(f̄ t)− L(f ∗) . δ2n

Theorem (W∗, Yang∗ & Wainwright ’17)

Given any kernel class F , and i.i.d. samples {yi}ni=1 from a class of
generalized linear model with some function f ∗ then

inf
f̂

sup
‖f ∗‖H≤1

E‖f̂ − f ∗‖2n & δ2n.

(Yang et al.’17)

31 / 36

Minimax optimality

Our early stopped estimator:

L(f̄ t)− L(f ∗) . δ2n

Theorem (W∗, Yang∗ & Wainwright ’17)

Given any kernel class F , and i.i.d. samples {yi}ni=1 from a class of
generalized linear model with some function f ∗ then

inf
f̂

sup
‖f ∗‖H≤1

E‖f̂ − f ∗‖2n & δ2n.

(Yang et al.’17)

31 / 36

Running time v.s. kernel complexity

Belkin et al.’18

Decay of kernel eigenvalues

index

ei
ge

nv
al

ue
s

100 100.5 101 101.5 102

10
−

20
10

−
15

10
−

10
10

−
5

10
0

Polynomials
Gassian
Laplacian
Sobolev One
Sobolev Two

Theoretically predicted running times to statistical precision:

Kernel Laplacian Gaussian

Time (n
σ2)2/3 n

σ2

32 / 36

Running time v.s. kernel complexity

Belkin et al.’18

Decay of kernel eigenvalues

index

ei
ge

nv
al

ue
s

100 100.5 101 101.5 102

10
−

20
10

−
15

10
−

10
10

−
5

10
0

Polynomials
Gassian
Laplacian
Sobolev One
Sobolev Two

Theoretically predicted running times to statistical precision:

Kernel Laplacian Gaussian

Time (n
σ2)2/3 n

σ2

32 / 36

From kernels to neural networks

33 / 36

Conclusion

I An effective way of early-stopping for boosting algorithms

I Connection between regularization through penalization and
regularization through early-stopping over RKHS

34 / 36

Conclusion

I An effective way of early-stopping for boosting algorithms

I Connection between regularization through penalization and
regularization through early-stopping over RKHS

34 / 36

Open questions

I Generalization X
I f̄ t → f t

I kernel class → broader function classes

I Boosting trees

I Non-convex loss functions

35 / 36

Open questions

I Generalization X
I f̄ t → f t

I kernel class → broader function classes

I Boosting trees

I Non-convex loss functions

35 / 36

Open questions

I Generalization X
I f̄ t → f t

I kernel class → broader function classes

I Boosting trees

I Non-convex loss functions

35 / 36

References

I Y. Wei, F. Yang, and M. J. Wainwright. (2017) Early stopping for kernel
boosting algorithms: A general analysis with localized complexities.
NIPS’17 and arXiv (https://arxiv.org/abs/1707.01543)

Thanks! Questions?

36 / 36

Supplementary: RKHS

I Symmetric kernel function K : X × X → R

I RKHS is the closure of f (·) =
∑

j≥1 αjK(·, xj)

I Reproducing relation

〈f , K(·, x)〉F = f (x) for all f ∈ F

I Inner product

〈f1, f2〉F =

`1∑
i=1

`2∑
j=1

αiβjK(xi , xj)

for f1(·) =
∑`1

i=1 αiK(·, xi) and f2(·) =
∑`2

j=1 βjK(·, xj)
back

36 / 36

Supplementary: Proof idea

Key lemma 1

For any stepsize and any iteration t we have

m

2
‖∆t+1‖2n ≤

1

2α

{
‖∆t‖2F − ‖∆t+1‖2F

}
+ 〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉.

Key lemma 2

With high probability, we have

〈∇L(θ∗ + ∆̃)−∇Ln(θ∗ + ∆̃), ∆〉

≤ 2δn‖∆‖n+2δ2n‖∆‖F +
m

c
‖∆‖2n

36 / 36

