Breaking the sample size barrier in statistical inference and reinforcement learning

Yuting Wei

Carnegie Mellon University

Princeton, Dec 2020

Ubiquity of sample-starved information discovery

The explosive growth of features outpaces the growth of data samples

Example: statistical inference in genomics

More variables (i.e., genetic variants) than observations (i.e., individuals)

Example: statistical inference in genomics

More variables (i.e., genetic variants) than observations (i.e., individuals)

• lessons from modern statistics: exploit signal sparsity

Example: statistical inference in genomics

Leading Edge Perspective	Cell
An Expanded View of Comple From Polygenic to Omnigenic Evan A. Boyle ^{1,+} Yang I. Li ^{1,+} and Jonathan K. Pritchard ^{1,2,4+}	ex Traits: c
² Department of Biology ³ Howard Hughes Medical Institute Stanford University, Stanford, CA 94305, USA	matin regions of immune cells (Maurano et al.; 2012; Farh et al., 2015; Kundaje et al., 2015).
	These observations are generally interpreted in a paradigm in
	which complex disease is driven by an accumulation of weak
	effects on the key genes and regulatory pathways that drive
	disease risk (Furlong, 2013; Chakravarti and Turner, 2016).
	This model has motivated many studies that aim to dissect
	the functional impacts of individual disease-associated variants

True signals might NOT be ultra-sparse

 \longrightarrow we have to deal with the sample-limited regime

Example: reinforcement learning (RL)

In RL, an agent learns by interacting with an environment

- decision making in the face of uncertainty (unknown environments)
- enormous state and action spaces

Example: reinforcement learning (RL)

Collecting data samples might be expensive or time-consuming

clinical trials

online ads

Calls for design of sample-efficient RL algorithms!

A central theme of this talk

Enabling trustworthy inference and learning in sample-starved scenarios

A central theme of this talk

Enabling trustworthy inference and learning in sample-starved scenarios

Two vignettes:

1. Distribution of Lasso with general designs

- sample-efficient inference via a precise distributional theory

A central theme of this talk

Enabling trustworthy inference and learning in sample-starved scenarios

Two vignettes:

1. Distribution of Lasso with general designs

- sample-efficient inference via a precise distributional theory

2. Reinforcement learning with a generative model

- optimal sample efficiency via a model-based approach

The first vignette: Distribution of Lasso with general designs

Michael Celentano Stanford Stat

Andrea Montanari Stanford Stat & EE

"The Lasso with general Gaussian designs with application to hypothesis testing," M. Celentano, A. Montanari, Y. Wei, 2020. https://arxiv.org/abs/2007.13716

Lasso estimator

Lasso estimator

Statistical inference tasks: test $\theta_j^{\star} = 0$, or construct a confidence interval of θ_j^{\star} , based on the Lasso estimate $\hat{\theta}$.

Suppose θ^{\star} is *s*-sparse, $z \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_n)$. Under certain conditions of design matrix X,

$$\|\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star}\|_{2} \leq C \sigma \sqrt{\frac{s \log(p)}{n}}$$

Suppose θ^{\star} is *s*-sparse, $z \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_n)$. Under certain conditions of design matrix X,

$$\|\widehat{oldsymbol{ heta}} - oldsymbol{ heta}^{\star}\|_2 \leq rac{oldsymbol{C}\sigma\sqrt{rac{s\log(p)}{n}}}{n}$$

• unspecified (and possibly enormous) constant

Suppose θ^{\star} is *s*-sparse, $z \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_n)$. Under certain conditions of design matrix X,

$$\|\widehat{oldsymbol{ heta}} - oldsymbol{ heta}^{\star}\|_2 \leq rac{oldsymbol{C}\sigma \sqrt{rac{s\log(p)}{n}}}{n}$$

- unspecified (and possibly enormous) constant
- no distributional characterization of $\widehat{oldsymbol{ heta}}$

- inadequate for inference and uncertainty quantification

e.g., confidence intervals, hypothesis testing

Prior work: inference for Lasso

Construction of confidence intervals via de-biased Lasso

Prior work: inference for Lasso

Tackling the most challenging regime $(n \asymp s)$ via exact asymptotics

Question: can we develop a distributional theory that covers both correlated design & linear sparsity n/s = const?

Settings

- $\theta^{\star} \in \mathbb{R}^p$: *s*-sparse
- proportional regime: p/n = const, s/p = const
- Gaussian noise: $\boldsymbol{z} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_n)$; Gaussian design: $\boldsymbol{x}_i \sim \mathcal{N}(0, \boldsymbol{\Sigma}/n)$

• original model (random design): $y = X\theta^{\star} + z$

• original model (random design): $y = X\theta^{\star} + z$

• (auxiliary) fixed design model: $y^f = \Sigma^{1/2} \theta^{\star} + \tau^{\star} g$, $g \sim \mathcal{N}(0, \mathbf{I}_p)$

• original model (random design): $y = X \theta^{\star} + z$

$$\widehat{oldsymbol{ heta}} := rgmin_{oldsymbol{ heta}} \left\{ rac{1}{2} \|oldsymbol{y} - oldsymbol{X}oldsymbol{ heta}\|_2^2 + \lambda \|oldsymbol{ heta}\|_1
ight\}$$

• (auxiliary) fixed design model: $y^f = \Sigma^{1/2} \theta^\star + \tau^\star g$, $g \sim \mathcal{N}(0, \mathbf{I}_p)$

$$\widehat{\boldsymbol{\theta}}^f := \operatorname*{argmin}_{\boldsymbol{\theta}} \left\{ \frac{1}{2} \| \boldsymbol{y}^f - \boldsymbol{\Sigma}^{1/2} \boldsymbol{\theta} \|_2^2 + \frac{\lambda}{\zeta^\star} \| \boldsymbol{\theta} \|_1 \right\}$$

— τ^* : effective risk level ζ^* : effective non-sparsity

• original model (random design): $y = X \theta^{\star} + z$

$$\widehat{oldsymbol{ heta}} := rgmin_{oldsymbol{ heta}} \left\{ rac{1}{2} \|oldsymbol{y} - oldsymbol{X}oldsymbol{ heta}\|_2^2 + \lambda \|oldsymbol{ heta}\|_1
ight\}$$

• (auxiliary) fixed design model: $y^f = \Sigma^{1/2} \theta^\star + \tau^\star g$, $g \sim \mathcal{N}(0, \mathbf{I}_p)$

$$\widehat{\boldsymbol{\theta}}^f := \operatorname*{argmin}_{\boldsymbol{\theta}} \left\{ \frac{1}{2} \| \boldsymbol{y}^f - \boldsymbol{\Sigma}^{1/2} \boldsymbol{\theta} \|_2^2 + \frac{\lambda}{\zeta^\star} \| \boldsymbol{\theta} \|_1 \right\}$$

— τ^* : effective risk level ζ^* : effective non-sparsity

Random designs behave like fixed design

active coordinates

Histogram of $\{\widehat{\theta}_i\}$ vs. histogram of $\{\widehat{\theta}_i^f\}$

Settings: auto-regressive design with n = 1280, p = 2000, s = 256, active coordinates = 1, λ chosen via cross validation.

Theorem (Celetano, Montanari, Wei '20)

When θ^{\star} is sparse enough, for any 1-Lipschitz function ϕ and $\epsilon > 0$

$$\left|\phi\Big(\frac{\widehat{\boldsymbol{\theta}}_{\lambda}}{\sqrt{p}},\frac{\boldsymbol{\theta}^{\star}}{\sqrt{p}}\Big) - \mathbb{E}\Big[\phi\Big(\frac{\widehat{\boldsymbol{\theta}}_{\lambda}^{f}}{\sqrt{p}},\frac{\boldsymbol{\theta}^{\star}}{\sqrt{p}}\Big)\Big]\right| \leq \epsilon,$$

with probability at least $1 - \frac{C}{\epsilon^4}e^{-cn\epsilon^4}$.

Theorem (Celetano, Montanari, Wei '20)

When θ^{\star} is sparse enough, for any 1-Lipschitz function ϕ and $\epsilon > 0$

$$\left|\phi\Big(\frac{\widehat{\boldsymbol{\theta}}_{\lambda}}{\sqrt{p}},\frac{\boldsymbol{\theta}^{\star}}{\sqrt{p}}\Big) - \mathbb{E}\Big[\phi\Big(\frac{\widehat{\boldsymbol{\theta}}_{\lambda}^{f}}{\sqrt{p}},\frac{\boldsymbol{\theta}^{\star}}{\sqrt{p}}\Big)\Big]\right| \leq \epsilon,$$

with probability at least $1 - \frac{C}{\epsilon^4} e^{-cn\epsilon^4}$.

• informally, empirical-distribution $(\widehat{m{ heta}}_{\lambda})pprox$ empirical-distribution $(\widehat{m{ heta}}_{\lambda}^{f})$

Theorem (Celetano, Montanari, Wei '20)

When $\pmb{\theta}^{\star}$ is sparse enough, for any 1-Lipschitz function ϕ and $\epsilon>0$

$$\left|\phi\Big(\frac{\widehat{\boldsymbol{\theta}}_{\lambda}}{\sqrt{p}},\frac{\boldsymbol{\theta}^{\star}}{\sqrt{p}}\Big) - \mathbb{E}\Big[\phi\Big(\frac{\widehat{\boldsymbol{\theta}}_{\lambda}^{f}}{\sqrt{p}},\frac{\boldsymbol{\theta}^{\star}}{\sqrt{p}}\Big)\Big]\right| \leq \epsilon,$$

with probability at least $1 - \frac{C}{\epsilon^4} e^{-cn\epsilon^4}$.

- informally, empirical-distribution $(\widehat{m{ heta}}_{\lambda})pprox$ empirical-distribution $(\widehat{m{ heta}}_{\lambda}^{f})$
- a direct consequence:

$$\|\widehat{\boldsymbol{ heta}}_{\lambda} - \boldsymbol{ heta}^{\star}\|_{2} pprox \mathbb{E}\Big[\|\widehat{\boldsymbol{ heta}}_{\lambda}^{f} - \boldsymbol{ heta}^{\star}\|_{2}\Big]$$

Theorem (Celetano, Montanari, Wei '20)

When θ^{\star} is sparse enough, for any 1-Lipschitz function ϕ and $\epsilon > 0$

$$\forall \lambda \in [\lambda_{\min}, \lambda_{\max}], \qquad \left| \phi \left(\frac{\theta_{\lambda}}{\sqrt{p}}, \frac{\theta^{\star}}{\sqrt{p}} \right) - \mathbb{E} \left[\phi \left(\frac{\theta_{\lambda}^{f}}{\sqrt{p}}, \frac{\theta^{\star}}{\sqrt{p}} \right) \right] \right| \leq \epsilon,$$
with probability at least $1 - \frac{C}{\epsilon^{4}} e^{-cn\epsilon^{4}}$.

- informally, empirical-distribution $(\widehat{m{ heta}}_{\lambda})pprox$ empirical-distribution $(\widehat{m{ heta}}_{\lambda}^{f})$
- a direct consequence:

$$\forall \lambda \in [\lambda_{\min}, \lambda_{\max}], \qquad \|\widehat{\boldsymbol{\theta}}_{\lambda} - \boldsymbol{\theta}^{\star}\|_{2} \approx \mathbb{E}\Big[\|\widehat{\boldsymbol{\theta}}_{\lambda}^{f} - \boldsymbol{\theta}^{\star}\|_{2}\Big]$$

• uniform control over regularization parameter λ

- useful for model selection

Main result: properties for Lasso

Lasso residual

$$\mathbb{P}\left(\left|\frac{\|\boldsymbol{y}-\boldsymbol{X}\widehat{\boldsymbol{\theta}}\|_2}{\sqrt{n}}-\tau^{\star}\zeta^{\star}\right|>\epsilon\right)\leq \frac{C}{\epsilon^2}e^{-cn\epsilon^4}\,.$$

• Lasso sparsity

$$\mathbb{P}\left(\left|\frac{\|\widehat{\boldsymbol{\theta}}\|_{0}}{n} - (1 - \zeta^{\star})\right| > \epsilon\right) \leq \frac{C}{\epsilon^{3}} e^{-cn\epsilon^{6}}.$$

Debiased Lasso for statistical inference

Debiased Lasso for statistical inference

[Zhang and Zhang, 2014, Van de Geer et al., 2014, Javanmard and Montanari, 2014a]

Debiased Lasso for statistical inference

[Javanmard et al., 2018, Bellec and Zhang, 2019a, Bellec and Zhang, 2019b]

Debiased Lasso

• classical debiased Lasso

$$\widehat{oldsymbol{ heta}}_0^{\mathrm{d}} = \widehat{oldsymbol{ heta}} + oldsymbol{M} oldsymbol{X}^ op (oldsymbol{y} - oldsymbol{X} \widehat{oldsymbol{ heta}}), \qquad oldsymbol{M} = oldsymbol{\Sigma}^{-1}$$
Debiased Lasso

• classical debiased Lasso

$$\widehat{\boldsymbol{ heta}}_0^{\mathrm{d}} = \widehat{\boldsymbol{ heta}} + \boldsymbol{M} \boldsymbol{X}^{ op} (\boldsymbol{y} - \boldsymbol{X} \widehat{\boldsymbol{ heta}}), \qquad \boldsymbol{M} = \boldsymbol{\Sigma}^{-1}$$

• debiased Lasso with degrees-of-freedom (DOF) adjustment

$$\widehat{oldsymbol{ heta}}^{\mathrm{d}} := \widehat{oldsymbol{ heta}} + oldsymbol{M}oldsymbol{X}^ op (oldsymbol{y} - oldsymbol{X}\widehat{oldsymbol{ heta}}), \qquad oldsymbol{M} = rac{oldsymbol{\Sigma}^{-1}}{1 - \|\widehat{oldsymbol{ heta}}\|_0/n}$$

[Javanmard and Montanari, 2014b, Miolane and Montanari, 2018, Bellec and Zhang, 2019a, Bellec and Zhang, 2019b]

Our result: distribution of $\hat{\theta}^{d} \approx$ distribution of $\theta^{\star} + \tau^{\star} \Sigma^{-1/2} g$ — generalize prior result to general Σ

Debiased Lasso with DOF adjustment

Settings: p = 100, n = 25, s = 20, $\sum_{ij} = 0.5^{|i-j|}$, $\sigma = 1$

Degree-of-freedom adjustment is successful

Theorem (Celetano, Montanari, Wei '20)

When θ^* is moderately sparse, false coverage proportion (FCP) satisfies

$$\mathbb{P}\left(|\mathsf{FCP} - \alpha| > \epsilon\right) \le C(\epsilon)e^{-c(\epsilon)n}$$

for the target level $\alpha > 0$.

$$\mathsf{FCP} := \frac{1}{p} \sum_{j=1}^{p} \mathbb{1} \left\{ \boldsymbol{\theta}_{j}^{\star} \notin \mathsf{confidence-interval}_{j} \right\}$$

$$\mathsf{confidence}{-}\mathsf{interval}_j := ig[\widehat{oldsymbol{ heta}}_j^d \ \pm \ \Sigma_{j|-j}^{-1/2} \widehat{ au} \cdot z_{1-lpha/2} ig]$$

Degree-of-freedom adjustment is successful

Theorem (Celetano, Montanari, Wei '20)

When θ^* is moderately sparse, false coverage proportion (FCP) satisfies

$$\mathbb{P}\left(|\mathsf{FCP} - \alpha| > \epsilon\right) \le C(\epsilon)e^{-c(\epsilon)n}$$

for the target level $\alpha > 0$.

$$\mathsf{FCP} := \frac{1}{p} \sum_{j=1}^{p} \mathbb{1} \left\{ \boldsymbol{\theta}_{j}^{\star} \notin \mathsf{confidence-interval}_{j} \right\}$$

– coverage only in the average sense!

$$\mathsf{confidence-interval}_j := \big[\widehat{\boldsymbol{\theta}_j^d} \ \pm \ \Sigma_{j|-j}^{-1/2} \widehat{\tau} \cdot z_{1-\alpha/2} \big]$$

• regress
$$oldsymbol{X}_j$$
 on $oldsymbol{X}_{-j}$

• regress X_j on X_{-j}

• regress X_j on $X_{-j} \longrightarrow$ residual X_j^{\perp}

- ullet regress $oldsymbol{X}_j$ on $oldsymbol{X}_{-j}$ \longrightarrow residual $oldsymbol{X}_j^\perp$
- obtain leave- j^{th} -coordinate-out Lasso $\widehat{oldsymbol{ heta}}_{ ext{loo}}$

- ullet regress $oldsymbol{X}_j$ on $oldsymbol{X}_{-j}$ \longrightarrow residual $oldsymbol{X}_j^ot$
- obtain leave- j^{th} -coordinate-out Lasso $\widehat{oldsymbol{ heta}}_{ ext{loo}}$
- construct confidence interval $\mathsf{Cl}_{j}^{\mathrm{loo}} := \begin{bmatrix} \xi_{j} \pm \widehat{\mathsf{sd}} \cdot z_{1-\alpha/2} \end{bmatrix}$

 $m{\xi}_j =$ scaled correlation between $m{X}_j^\perp$ and $m{y} - m{X}_{-j} \widehat{m{ heta}}_{
m loo}$

- regress X_j on $X_{-j} \longrightarrow$ residual X_j^{\perp}
- obtain leave- j^{th} -coordinate-out Lasso $\widehat{oldsymbol{ heta}}_{ ext{loo}}$
- construct confidence interval $Cl_j^{loo} := \begin{bmatrix} \xi_j \pm \widehat{sd} \cdot z_{1-\alpha/2} \end{bmatrix}$

Our theory:
$$\mathbb{P}_{\theta_j^*}(\theta_j^* \notin \mathsf{Cl}_j^{\mathrm{loo}}) \approx \alpha$$

Summary of this part

- distributional theory of Lasso & debiased Lasso
 - general designs
 - sample-limited regime
- fine-grained confidence intervals with mis-coverage rate control

"The Lasso with general Gaussian designs with application to hypothesis testing," M. Celentano, A. Montanari, Y. Wei, 2020. https://arxiv.org/abs/2007.13716

The second vignette: RL with a generative model

Gen Li Tsinghua EE

Yuejie Chi CMU ECE

Yuantao Gu Tsinghua EE

Yuxin Chen Princeton EE

"Breaking the sample size barrier in model-based reinforcement learning with a generative model," G. Li, Y. Wei, Y. Chi, Y. Gu, Y. Chen, NeurIPS 2020

Statistical foundation of reinforcement learning

Statistical foundation of reinforcement learning

Understanding sample efficiency of modern RL requires a modern suite of non-asymptotic statistical framework

Background: Markov decision processes

- S: state space
- \mathcal{A} : action space

- S: state space
- \mathcal{A} : action space
- $r(s,a) \in [0,1]$: immediate reward

- S: state space
- \mathcal{A} : action space
- $r(s,a) \in [0,1]$: immediate reward
- $\pi(\cdot|s)$: policy (or action selection rule)

- S: state space
- \mathcal{A} : action space
- $r(s,a) \in [0,1]$: immediate reward
- $\pi(\cdot|s)$: policy (or action selection rule)
- $P(\cdot|s,a)$: unknown transition probabilities

Value function

Value of policy π : cumulative discounted reward

$$\forall s \in \mathcal{S}: \quad V^{\pi}(s) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s\right]$$

Value function

Value of policy π : cumulative discounted reward

$$\forall s \in \mathcal{S}: \quad V^{\pi}(s) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s\right]$$

- $\gamma \in [0, 1)$: discount factor
 - \blacktriangleright take $\gamma \rightarrow 1$ to approximate long-horizon MDPs
 - effective horizon: $\frac{1}{1-\gamma}$

Optimal policy

- optimal policy π^* : maximizing value function $\max_{\pi} V^{\pi}(s)$
- How to find this π^* ?

When the model is known ...

Planning: computing the optimal policy π^* given the MDP specification

When the model is known ...

Planning: computing the optimal policy π^* given the MDP specification

In practice, do not know transition matrix P!

This work: sampling from a generative model

• Sampling: for each (s, a), collect N samples $\{(s, a, s'_{(i)})\}_{1 \le i \le N}$

This work: sampling from a generative model

- Sampling: for each (s, a), collect N samples $\{(s, a, s'_{(i)})\}_{1 \le i \le N}$
- construct $\widehat{\pi}$ depending on samples (in total $|\mathcal{S}||\mathcal{A}| \times N$)

Sample complexity: how many samples are required to learn an ε -optimal policy ? $\forall s: V^{\hat{\pi}}(s) \ge V^{\star}(s) - \varepsilon$

An incomplete list of prior art

- [Kearns and Singh, 1999]
- [Kakade, 2003]
- [Kearns et al., 2002]
- [Azar et al., 2012]
- [Azar et al., 2013]
- [Sidford et al., 2018a]
- [Sidford et al., 2018b]
- [Wang, 2019]
- [Agarwal et al., 2019]
- [Wainwright, 2019a]
- [Wainwright, 2019b]
- [Pananjady and Wainwright, 2019]
- [Yang and Wang, 2019]
- [Khamaru et al., 2020]
- [Mou et al., 2020]
- . . .

An even shorter list of prior art

algorithm	sample size range	sample complexity	ε -range
Empirical QVI [Azar et al., 2013]	$\left[rac{ \mathcal{S} ^2 \mathcal{A} }{(1-\gamma)^2},\infty ight)$	$\frac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^3\varepsilon^2}$	$(0, \frac{1}{\sqrt{(1-\gamma) \mathcal{S} }}]$
Sublinear randomized VI [Sidford et al., 2018b]	$\left[rac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^2},\infty ight)$	$\frac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^4\varepsilon^2}$	$\left(0, \frac{1}{1-\gamma}\right]$
Variance-reduced QVI [Sidford et al., 2018a]	$ig[rac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^3},\inftyig)$	$\frac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^3\varepsilon^2}$	(0, 1]
Randomized primal-dual [Wang, 2019]	$\left[rac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^2},\infty ight)$	$\frac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^4\varepsilon^2}$	$(0, \frac{1}{1-\gamma}]$
Empirical MDP + planning [Agarwal et al., 2019]	$ig[rac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^2},\inftyig)$	$rac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^3arepsilon^2}$	$(0,rac{1}{\sqrt{1-\gamma}}]$

important parameters:

- $|\mathcal{S}|$: # states , $|\mathcal{A}|$: # actions
- $\frac{1}{1-\gamma}$: effective horizon
- $\varepsilon \in [0, \frac{1}{1-\gamma}]$: approximation error

Our algorithm: Model based RL

Model-based approach ("plug-in")

- 1. build an empirical estimate \widehat{P} for P
- 2. planning based on empirical \widehat{P}

Model estimation

Sampling: for each (s, a), collect N ind. samples $\{(s, a, s'_{(i)})\}_{1 \le i \le N}$

Model estimation

Sampling: for each (s, a), collect N ind. samples $\{(s, a, s'_{(i)})\}_{1 \le i \le N}$

Empirical estimates: estimate $\widehat{P}(s'|s,a)$ by $\frac{1}{N}\sum_{i=1}^{N}\mathbb{1}\{s'_{(i)}=s'\}$

empirical frequency

Model-based (plug-in) estimator

- [Azar et al., 2013, Agarwal et al., 2019, Pananjady and Wainwright, 2019]

Run planning algorithms based on the empirical MDP

Our method: plug-in estimator + perturbation

— [Li et al., 2020a]

Planning based on the empirical MDP with slightly perturbed rewards

Challenges in the sample-starved regime

• If sample size $\ll |\mathcal{S}|^2 |\mathcal{A}|$, then we cannot recover P faithfully.

Challenges in the sample-starved regime

- If sample size $\ll |\mathcal{S}|^2 |\mathcal{A}|$, then we cannot recover P faithfully.
- Can we trust our $\widehat{\pi}$ when \widehat{P} is not accurate?

Main result: ℓ_{∞} -based sample complexity

Theorem (Li, Wei, Chi, Gu, Chen'20)

For any $0 < \varepsilon \leq \frac{1}{1-\gamma}$, the optimal policy $\widehat{\pi}_p^{\star}$ of perturbed empirical MDP achieves

$$\|V^{\widehat{\pi}_{p}^{\star}} - V^{\star}\|_{\infty} \le \varepsilon$$

with sample complexity at most

$$\widetilde{O}\left(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^3\varepsilon^2}\right)$$

Main result: ℓ_{∞} -based sample complexity

Theorem (Li, Wei, Chi, Gu, Chen'20)

For any $0 < \varepsilon \leq \frac{1}{1-\gamma}$, the optimal policy $\widehat{\pi}_p^{\star}$ of perturbed empirical MDP achieves

$$\|V^{\widehat{\pi}_{\mathbf{p}}^{\star}} - V^{\star}\|_{\infty} \le \varepsilon$$

with sample complexity at most

$$\widetilde{O}\left(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^3\varepsilon^2}\right)$$

•
$$\varepsilon \in \left(0, \frac{1}{1-\gamma}\right] \rightarrow \text{ sample size range } \left[\frac{|\mathcal{S}||\mathcal{A}|}{1-\gamma}, \infty\right)$$

Main result: ℓ_{∞} -based sample complexity

Theorem (Li, Wei, Chi, Gu, Chen'20)

For any $0 < \varepsilon \leq \frac{1}{1-\gamma}$, the optimal policy $\widehat{\pi}_p^{\star}$ of perturbed empirical MDP achieves

$$\|V^{\widehat{\pi}_{\mathbf{p}}^{\star}} - V^{\star}\|_{\infty} \le \varepsilon$$

with sample complexity at most

$$\widetilde{O}\left(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^3\varepsilon^2}\right)$$

- $\varepsilon \in \left(0, \frac{1}{1-\gamma}\right] \rightarrow \text{ sample size range } \left[\frac{|\mathcal{S}||\mathcal{A}|}{1-\gamma}, \infty\right)$
- minimax lower bound: $\widetilde{\Omega}(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^{3}\varepsilon^{2}})$ [Azar et al., 2013]

A glimpse of the key analysis ideas

Notation and Bellman equation

- V^{π} : value function under policy π
 - Bellman equation: $V^{\pi} = (I P_{\pi})^{-1}r$
- $\widehat{V}^{\pi}:$ empirical version value function under policy π
 - Bellman equation: $\widehat{V}^{\pi} = (I \widehat{P}_{\pi})^{-1}r$

Notation and Bellman equation

- V^{π} : value function under policy π
 - Bellman equation: $V^{\pi} = (I P_{\pi})^{-1}r$
- $\widehat{V}^{\pi}:$ empirical version value function under policy π
 - ▶ Bellman equation: $\widehat{V}^{\pi} = (I \widehat{P}_{\pi})^{-1}r$
- π^{\star} : optimal policy for V^{π}
- $\widehat{\pi}^{\star}$: optimal policy for \widehat{V}^{π}

Main steps

Elementary decomposition:

$$V^{\star} - V^{\widehat{\pi}^{\star}} = \left(V^{\star} - \widehat{V}^{\pi^{\star}}\right) + \left(\widehat{V}^{\pi^{\star}} - \widehat{V}^{\widehat{\pi}^{\star}}\right) + \left(\widehat{V}^{\widehat{\pi}^{\star}} - V^{\widehat{\pi}^{\star}}\right)$$
$$\leq \left(V^{\pi^{\star}} - \widehat{V}^{\pi^{\star}}\right) + \mathbf{0} + \left(\widehat{V}^{\widehat{\pi}^{\star}} - V^{\widehat{\pi}^{\star}}\right)$$

Main steps

Elementary decomposition:

$$V^{\star} - V^{\widehat{\pi}^{\star}} = \left(V^{\star} - \widehat{V}^{\pi^{\star}}\right) + \left(\widehat{V}^{\pi^{\star}} - \widehat{V}^{\widehat{\pi}^{\star}}\right) + \left(\widehat{V}^{\widehat{\pi}^{\star}} - V^{\widehat{\pi}^{\star}}\right)$$
$$\leq \left(V^{\pi^{\star}} - \widehat{V}^{\pi^{\star}}\right) + 0 + \left(\widehat{V}^{\widehat{\pi}^{\star}} - V^{\widehat{\pi}^{\star}}\right)$$

• Step 1: control $V^{\pi} - \hat{V}^{\pi}$ for a <u>fixed</u> π (called "policy evaluation") (high-order decomposition + Bernstein inequality)

Main steps

Elementary decomposition:

$$V^{\star} - V^{\widehat{\pi}^{\star}} = \left(V^{\star} - \widehat{V}^{\pi^{\star}}\right) + \left(\widehat{V}^{\pi^{\star}} - \widehat{V}^{\widehat{\pi}^{\star}}\right) + \left(\widehat{V}^{\widehat{\pi}^{\star}} - V^{\widehat{\pi}^{\star}}\right)$$
$$\leq \left(V^{\pi^{\star}} - \widehat{V}^{\pi^{\star}}\right) + 0 + \left(\widehat{V}^{\widehat{\pi}^{\star}} - V^{\widehat{\pi}^{\star}}\right)$$

- Step 1: control $V^{\pi} \hat{V}^{\pi}$ for a <u>fixed</u> π (called "policy evaluation") (high-order decomposition + Bernstein inequality)
- Step 2: extend it to control $\widehat{V}^{\widehat{\pi}^{\star}} V^{\widehat{\pi}^{\star}}$ ($\widehat{\pi}^{\star}$ depends on samples) (decouple statistical dependency)

Key idea 1: a peeling argument (for fixed policy)

[Agarwal et al., 2019] first-order expansion

$$\widehat{V}^{\pi} - V^{\pi} = \gamma \left(I - \gamma P_{\pi} \right)^{-1} \left(\widehat{P}_{\pi} - P_{\pi} \right) \widehat{V}^{\pi}$$

Key idea 1: a peeling argument (for fixed policy)

[Agarwal et al., 2019] first-order expansion

$$\widehat{V}^{\pi} - V^{\pi} = \gamma \left(I - \gamma P_{\pi} \right)^{-1} \left(\widehat{P}_{\pi} - P_{\pi} \right) \widehat{V}^{\pi}$$

Ours: higher-order expansion + Bernstein \longrightarrow tighter control

$$\widehat{V}^{\pi} - V^{\pi} = \gamma \left(I - \gamma P_{\pi} \right)^{-1} \left(\widehat{P}_{\pi} - P_{\pi} \right) V^{\pi} + \gamma \left(I - \gamma P_{\pi} \right)^{-1} \left(\widehat{P}_{\pi} - P_{\pi} \right) \left(\widehat{V}^{\pi} - V^{\pi} \right)^{-1}$$

Key idea 1: a peeling argument (for fixed policy)

[Agarwal et al., 2019] first-order expansion

$$\widehat{V}^{\pi} - V^{\pi} = \gamma \left(I - \gamma P_{\pi} \right)^{-1} \left(\widehat{P}_{\pi} - P_{\pi} \right) \widehat{V}^{\pi}$$

Ours: higher-order expansion + Bernstein \longrightarrow tighter control

$$\widehat{V}^{\pi} - V^{\pi} = \gamma \left(I - \gamma P_{\pi} \right)^{-1} \left(\widehat{P}_{\pi} - P_{\pi} \right) V^{\pi} + \gamma^{2} \left(\left(I - \gamma P_{\pi} \right)^{-1} \left(\widehat{P}_{\pi} - P_{\pi} \right) \right)^{2} V^{\pi} + \gamma^{3} \left(\left(I - \gamma P_{\pi} \right)^{-1} \left(\widehat{P}_{\pi} - P_{\pi} \right) \right)^{3} V^{\pi} + \dots$$

Key idea 2: leave-one-out analysis for $(\widehat{V}^{\widehat{\pi}^{\star}} - V^{\widehat{\pi}^{\star}})_{s,a}$

- inspired by [Agarwal et al., 2019] but quite different ...

• define $\widehat{\pi}^{\star}_{(s,a)} \longrightarrow (\widehat{P}^{(s,a)}, r^{(s,a)})$ — decouple dependency by dropping randomness for each (s,a)

Key idea 2: leave-one-out analysis for $(\widehat{V}^{\widehat{\pi}^{\star}} - V^{\widehat{\pi}^{\star}})_{s,a}$

- inspired by [Agarwal et al., 2019] but quite different ...

- define $\widehat{\pi}^{\star}_{(s,a)} \longrightarrow (\widehat{P}^{(s,a)}, r^{(s,a)})$ — decouple dependency by dropping randomness for each (s, a)
- works under the separation condition

$$\forall s \in \mathcal{S}, \quad \widehat{Q}^{\star}(s, \widehat{\pi}^{\star}(s)) - \max_{a: a \neq \widehat{\pi}^{\star}(s)} \widehat{Q}^{\star}(s, a) > 0$$

Key idea 3: tie-breaking via reward perturbation

• How to ensure separation between the optimal policy and others?

$$\forall s \in \mathcal{S}, \quad \widehat{Q}^{\star}(s, \widehat{\pi}^{\star}(s)) - \max_{a: a \neq \widehat{\pi}^{\star}(s)} \widehat{Q}^{\star}(s, a) > 0$$

Key idea 3: tie-breaking via reward perturbation

• How to ensure separation between the optimal policy and others?

$$\forall s \in \mathcal{S}, \quad \widehat{Q}^{\star}(s, \widehat{\pi}^{\star}(s)) - \max_{a: a \neq \widehat{\pi}^{\star}(s)} \widehat{Q}^{\star}(s, a) > 0$$

- Solution: slightly perturb rewards $r \implies \hat{\pi}_{p}^{\star}$
 - \blacktriangleright ensures $\widehat{\pi}_{\mathbf{p}}^{\star}$ can be differentiated from others

$$\blacktriangleright V^{\widehat{\pi}_{\mathrm{p}}^{\star}} \approx V^{\widehat{\pi}^{\star}}$$

Summary of this part

Model-based RL is minimax optimal and does not suffer from a sample size barrier!

Summary of this part

Other directions we have explored:

• Model-free approach: [Li et al., 2020b]

- sharpened sample complexity of Q-learning on Markovian data

Summary of this part

Other directions we have explored:

- Model-free approach: [Li et al., 2020b]
 - sharpened sample complexity of Q-learning on Markovian data
- Policy-based approach: [Cen et al., 2020]
 - linear convergence of entropy-regularized NPG methods

Modern statistical thinking plays a major role in breaking the sample complexity barrier in big-data applications

Thanks for your attention!

Other technical details

Key parameters via fixed point equations

$$\begin{aligned} (\boldsymbol{\tau}^{\star}, \boldsymbol{\zeta}^{\star}) & \stackrel{\text{solution}}{\longrightarrow} & \boldsymbol{\tau}^{2} = \boldsymbol{\sigma}^{2} + \mathsf{R}(\boldsymbol{\tau}^{2}, \boldsymbol{\zeta}) \\ \boldsymbol{\zeta} = 1 - \mathsf{df}(\boldsymbol{\tau}^{2}, \boldsymbol{\zeta}) \end{aligned}$$
$$\mathsf{R}(\boldsymbol{\tau}^{2}, \boldsymbol{\zeta}) := \underbrace{\frac{1}{n} \mathbb{E}\left[\|\boldsymbol{\Sigma}^{1/2}(\boldsymbol{\widehat{\theta}}^{f}(\boldsymbol{\tau}, \boldsymbol{\zeta}) - \boldsymbol{\theta}^{\star})\|_{2}^{2} \right]}_{\text{in-sample prediction risk}} \\ \mathsf{df}(\boldsymbol{\tau}^{2}, \boldsymbol{\zeta}) := \underbrace{\frac{1}{n} \mathbb{E}\left[\|\boldsymbol{\widehat{\theta}}^{f}(\boldsymbol{\tau}, \boldsymbol{\zeta})\|_{0} \right]}_{\mathsf{degrees of freedom}} \end{aligned}$$

Property: solution is unique and bounded for moderately sparse θ^* (Gaussian width < $\sqrt{n/p}$)

Theorem (Celetano, Montanari, Wei '20)

There exist constants C, c, c' > 0 such that for all $\epsilon < c'$,

$$\begin{split} \left| \mathbb{P}_{\theta_{j}^{*}} \left(\boldsymbol{\theta} \not\in \mathsf{Cl}_{j}^{\mathrm{loo}} \right) - \mathbb{P}_{\theta_{j}^{*}} \left(|\theta_{j}^{*} + \tau_{\mathrm{loo}}^{*} \boldsymbol{G} - \boldsymbol{\theta}| > \tau_{\mathrm{loo}}^{*} \boldsymbol{z}_{1-\alpha/2} \right) \right| \leq \\ C \left((1 + |\theta_{j}^{*}|) \boldsymbol{\epsilon} + \frac{1}{\epsilon^{3}} e^{-cn\epsilon^{6}} + \frac{1}{n\epsilon^{2}} \right), \end{split}$$

where $G \sim \mathsf{N}(0, 1)$.

$$egin{aligned} \mathsf{Cl}_j^{\mathrm{loo}} &:= ig[m{\xi}_j \ \pm \ \widehat{\mathsf{sd}} \cdot z_{1-lpha/2}ig] \ &m{\xi}_j = \mathsf{scaled} \ \mathsf{correlation} \ \mathsf{between} \ m{X}_j^\perp \ \mathsf{and} \ m{y} - m{X}_{-j}\widehat{m{ heta}}_{\mathrm{loo}} \end{aligned}$$

Universality

Settings: auto-regressive design with n = 1280, p = 2000, s = .128p, active coordinates = 1, fixed λ_{cv} , plot histogram of $\hat{\theta}_j$ vs. $\hat{\theta}_j^f$

• original model: $y = X\theta + z$

$$\widehat{oldsymbol{ heta}} := rgmin_{oldsymbol{ heta}} \left\{ rac{1}{2} \|oldsymbol{y} - oldsymbol{X}oldsymbol{ heta}\|_2^2 + \lambda \|oldsymbol{ heta}\|_1
ight\}$$

$$\widehat{oldsymbol{ heta}}^f := rgmin_{oldsymbol{ heta}\in\mathbb{R}^p} \left\{ rac{\zeta^{\star}}{2} \|oldsymbol{y}^f - oldsymbol{\Sigma}^{1/2}oldsymbol{ heta}\|_2^2 + \lambda \|oldsymbol{ heta}\|_1
ight\}$$

• original model: $y = X\theta + z$

$$\widehat{oldsymbol{ heta}} := rgmin_{oldsymbol{ heta}} igg\{rac{1}{2} \|oldsymbol{y} - oldsymbol{X}oldsymbol{ heta}\|_2^2 + \lambda \|oldsymbol{ heta}\|_1igg\}$$

$$\widehat{oldsymbol{ heta}}^f := rgmin_{oldsymbol{ heta}\in\mathbb{R}^p} \left\{ rac{\zeta^\star}{2} \|oldsymbol{y}^f - oldsymbol{\Sigma}^{1/2}oldsymbol{ heta}\|_2^2 + \lambda \|oldsymbol{ heta}\|_1
ight\}$$

• original model: $y = X\theta + z$

$$\widehat{oldsymbol{ heta}} := rgmin_{oldsymbol{ heta}} igg\{rac{1}{2} \|oldsymbol{y} - oldsymbol{X}oldsymbol{ heta}\|_2^2 + \lambda \|oldsymbol{ heta}\|_1igg\}$$

$$\widehat{oldsymbol{ heta}}^f := rgmin_{oldsymbol{ heta}\in\mathbb{R}^p} \left\{ rac{\zeta^{\star}}{2} \|oldsymbol{y}^f - oldsymbol{\Sigma}^{1/2}oldsymbol{ heta}\|_2^2 + \lambda \|oldsymbol{ heta}\|_1
ight\}$$

• original model: $y = X\theta + z$

$$\widehat{oldsymbol{ heta}} := rgmin_{oldsymbol{ heta}} igg\{rac{1}{2} \|oldsymbol{y} - oldsymbol{X}oldsymbol{ heta}\|_2^2 + \lambda \|oldsymbol{ heta}\|_1igg\}$$

$$\widehat{oldsymbol{ heta}}^f := rgmin_{oldsymbol{ heta}\in\mathbb{R}^p} \left\{ rac{\zeta^\star}{2} \|oldsymbol{y}^f - oldsymbol{\Sigma}^{1/2}oldsymbol{ heta}\|_2^2 + \lambda \|oldsymbol{ heta}\|_1
ight\}$$

$$\widehat{\boldsymbol{\theta}}^{\mathrm{d}} := \left(\widehat{\widehat{\boldsymbol{\theta}}}\right) + \left(\underbrace{\sum_{i=1}^{-1} \mathbf{X}^{\top} (\mathbf{y} - \mathbf{X}\widehat{\widehat{\boldsymbol{\theta}}}^{f})}_{\left(\widehat{1} - \|\widehat{\boldsymbol{\theta}}\|_{0}/n\right)} \right)$$
Intuition for DOF adjustment

• original model: $y = X\theta + z$

$$\widehat{oldsymbol{ heta}} := rgmin_{oldsymbol{ heta}} igg\{rac{1}{2} \|oldsymbol{y} - oldsymbol{X}oldsymbol{ heta}\|_2^2 + \lambda \|oldsymbol{ heta}\|_1igg\}$$

• fixed design model: $m{y}^f = m{\Sigma}^{1/2} m{ heta}^\star + au^\star m{g}$

$$\widehat{oldsymbol{ heta}}^f := rgmin_{oldsymbol{ heta}\in\mathbb{R}^p} \left\{ rac{\zeta^\star}{2} \|oldsymbol{y}^f - oldsymbol{\Sigma}^{1/2}oldsymbol{ heta}\|_2^2 + \lambda \|oldsymbol{ heta}\|_1
ight\}$$

Analysis for model-based RL

Step 1: improved theory for policy evaluation

Model-based policy evaluation:

— given a fixed policy $\pi,$ estimate V^{π} via the plug-in estimate \widehat{V}^{π}

Step 1: improved theory for policy evaluation

Model-based policy evaluation:

— given a fixed policy π , estimate V^{π} via the plug-in estimate \widehat{V}^{π}

• A sample size barrier $\frac{|S|}{(1-\gamma)^2}$ already appeared in prior work (Agarwal et al. '19, Pananjady & Wainwright '19, Khamaru et al. '20)

Step 1: improved theory for policy evaluation

Model-based policy evaluation:

— given a fixed policy π , estimate V^{π} via the plug-in estimate \widehat{V}^{π}

Theorem (Li, Wei, Chi, Gu, Chen'20)

Fix any policy π . For $0 < \varepsilon \leq \frac{1}{1-\gamma}$, the plug-in estimator \widehat{V}^{π} obeys $\|\widehat{V}^{\pi} - V^{\pi}\|_{\infty} \leq \varepsilon$

with sample complexity at most

$$\widetilde{O}\left(\frac{|\mathcal{S}|}{(1-\gamma)^3\varepsilon^2}\right)$$

• Minimax optimal for all arepsilon (Azar et al. '13, Pananjady & Wainwright '19)

1. embed all randomness from $\widehat{P}_{s,a}$ into a single scalar (i.e. $r_{s,a}^{(s,a)}$)

- 1. embed all randomness from $\widehat{P}_{s,a}$ into a single scalar (i.e. $r_{s,a}^{(s,a)}$)
- 2. build an ϵ -net for this scalar

- 1. embed all randomness from $\widehat{P}_{s,a}$ into a single scalar (i.e. $r_{s,a}^{(s,a)}$)
- 2. build an ϵ -net for this scalar
- 3. $\widehat{\pi}^{\star}$ can be determined by this $\epsilon\text{-net}$ under separation condition

$$\forall s \in \mathcal{S}, \quad \widehat{Q}^{\star}(s, \widehat{\pi}^{\star}(s)) - \max_{a: a \neq \widehat{\pi}^{\star}(s)} \widehat{Q}^{\star}(s, a) > 0$$

Our decoupling argument vs. [Agarwal et al., 2019]

- [Agarwal et al., 2019]: dependency btw value \widehat{V} & samples
- **Ours:** dependency btw policy $\hat{\pi}$ & samples