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Successes of deep neural networks
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Figure: training deep neural networks (DNN)
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Training deep neural networks (DNN)

implicit algorithmic benefit by stochastic gradient methods
training data is of enormous size (in # samples and # dimensions)
networks are greatly overparametrized (large depth and width)

networks are trained beyond zero training error
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Empirical evidence: Larger models are better

Classical Regime: Modern Regime:
Bias-Variance Tradeoff Larger Model is Better
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Figure: Nakkiran et al. 2019

See also: Opper (1995, 2001), Neyshabur et al. (2014), Canziani et al. (2016), Advani and
Saxe (2017), Spigler et al. (2018), Novak et al. (2018), Geiger et al. (2019), ...
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See also: Opper (1995, 2001), Neyshabur et al. (2014), Canziani et al. (2016), Advani and
Saxe (2017), Spigler et al. (2018), Novak et al. (2018), Geiger et al. (2019), ...

Question: how do these networks manage to generalize? J
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Classical bias-variance trade-off

testing error

generalization

training error

"The elements of statistical learning” by Hastie, Tibshirani, Friedman
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Reconcile bias—variance trade-off

under-fitting . over-fitting
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Figure: Belkin, Hsu, Ma, Mandal (2019)
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Figure: Belkin, Hsu, Ma, Mandal (2019)

It motivates us to study classical estimators in the modern
interpolating regime when interpolation happens! J
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So far, theoretical understandings are limited...
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Limited theoretical understanding

Minimum {2-norm interpolators
~ 1
6% := argmin {”y - X0|5+ )\]0\3} (A =0, n=9Q(p))
OcRr | 2

p

0*

Belkin et al. (2019), Hastie et al. (2019), Mei and Montanari (2019), Muthukumar et al.

(2020), Liang and Rakhlin (2020), Belkin et al. (2020), Bartlett et al. (2020, 2021), ...
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m— Prediction
& Setting 1
I Setting 2

Setting 3

Figure: (left) ridgeless regression for misspecified model Hastie, Montanari, Rosset, Tibshirani

(2019), (right) random features regression with ReLU activation Mei and Montanari (2019)

— resemble the lazy training regime of 2-layer neural nets
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Question: how about other interpolators?

~ 1
for example: 0% := argmin ~ ||y — X 0|5+ |0l (A = 0,n = Q(p))
6cRP 2 a



Min /;-norm solutions

® /; penalty encourages sparse solution (for interpretability)
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Min /;-norm solutions

Forward Selection

Backward Elimination

{1 penalty encourages sparse solution (for interpretability)

AdaBoost converges to min ¢1-norm solution for linear separable
data Rosset, Zhu, Hastie (2004), Zhang and Yu (2005)

Gradient descent on full matrix factorization converges to min
nuclear norm solution Gunasekar et al. (2017), Li et al. (2019)

empirical successes of dropouts/model-pruning in DL Srivastava,
Hinton, et al. (2014), Ye et al. (2020)
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Basis Pursuit for noiseless observations

0" = in ||6 hthat y; = (z;, 8) 1<i<n.
arggrelﬁgjﬂ 1 such that y; = (x;,0) 1<i<n

X0~

¢1 norm ball

X0*
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Basis Pursuit for noiseless observations

6" := argmin 10|1 such that y; = (x;, 0) 1<i<n.
OcRP

X0*

¢1 norm ball

X0~

Chen et al. 2001, Wojtaszczyk, Candes and Tao 2006, Donoho 2006, Donoho et al. 2005,
Donoho and Tanner 2009, Amelunxen et al. 2014, Ju et al. 2020, Chinot et al. 2020, Wang

et al. 2021, ...
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Basis Pursuit for noiseless observations

6" = argmin |6 hthat y; = (2;,0) 1<i<n.
arggrelﬁgjﬂ 1 such that y; = (x;,0) 1<i<n

X0~

/1 norm ball

X0*

In the noisy and over-parametrized case (p > n), how does
generalization error of min 1 solution depend on p/n?
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A multi-descent phenomenon

Risk behavior of minimum /;-norm interpolators (fixed s/n)

—— fitted risk curve

log(Generalization error+1)

Descent 1 l I Descent 2

107! 10° 10! 10%
p/n

Figure: Multiple descent in sparse linear regression. Let the true signal 8* be an
s-sparse vector, where M is the magnitude of non-zero entries. Fix s/n = 0.3 and
s/m - M? =10. Set the sample size as n = 100, and choose 500 values of p/n.
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A multi-descent phenomenon

Risk behavior of minimum /,-norm interpolators (fixed s/p)

—— theoretical limit, n — oo

100 4
J

log(Generalization error+1)

| Descent 2

De;cent 1 I

T
107! 10° 10* 10?
p/n

Figure: Multiple descent in sparse linear regression. Let the true signal * be an

s-sparse vector, where v/ M is the magnitude of non-zero entries. Fix s/p=0.01
and s/p- M? = 2. Set the sample size as n = 100, and choose 500 values of p/n.
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Question:

® How to theoretically characterize these descents ?
——
as a function of p/n

Challenges:
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Question:

® How to theoretically characterize these descents ?
——
as a function of p/n

Challenges:
® no closed-form solutions for min £1-norm interpolators
® o consistent support recovery in high dimensional regime

® no strong convexity in this optimization problem
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Model setup and assumptions

p

0*

® true signal 8* € RP is s-sparse
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Model setup and assumptions

p

0*

® true signal 8* € RP? is s-sparse
® proportional regime: s/p = € (const), n/p = § (const)

® Gaussian design and Gaussian noise

. 1 .
T I’I\c’i N<O) nIp>? Zi I’I\Sj N(Ov 02)

17/37



Exact asymptotics framework

min ¢1-norm interpolator (n < p)

6" = argmin ||0||;  subjectto y; = (x;, 0), 1<i<n
OcRp

® generalization error:

1
Risk(6"™) = E (@48 — new)’] = — 0" — 073 + o

new
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Exact asymptotics framework

min ¢1-norm interpolator (n < p)

o' = in (|0 bject to 3 = (x;, 0), 1<i<
argégerzl)H It subject to y; = (x;, 0), 1<i<n

® generalization error:

1
Risk(0"™) = E[(Zgew0™ — yew)’] = 5\\@“ —0"||3 + 0
® high-dim asymptotics (6 = n/p, € = s/p)

Risk(6'™, ) = lim Risk (") = 777
e}
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Exact asymptotics framework

min ¢1-norm interpolator (n < p)

o' — in (|0 bject to 3 = (x;, 0), 1<i<
argégerzl)H It subject to y; = (x;, 0), 1<i<n

® generalization error:

1
Risk(8'"™) = E (@400 — new)’] = 0" — 073 + o

new
® high-dim asymptotics (6 = n/p, € = s/p)

Risk(6'™, ) = lim Risk (") = 777
e}

® how does Risk(é\'"t,é) vary as a function of §7
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An incomplete literature list on exact asymptotics

Risk(9'",8) = lim Risk(6"™) = 777
n/}fé
n, p—00

® compressed sensing and Lasso estimators
Donoho, Maleki and Montanari (2009), Bayati and Montanari (2011), Stojnic (2013),
Oymak et al. (2013), Miolane and Montanari (2018), Bellec and Zhang (2019),
Celentano, Montanari and Wei (2020)

® robust regression and ridge regreesion
Donoho and Montanari (2016), El Karoui (2013, 2018), Thrampoulidis et al. (2018),
Dobriban and Wager (2018), Hastie et al. (2019), Mei and Montanari (2019), Patil et
al. (2021)

® classification
Sur, Chen and Candés (2017), Montanari et al. (2019), Liang and Sur (2020),
Javanmard and Soltanolkotabi (2020)
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Main result: Risk curve for min /; solution

Suppose 07 "X Py, s+ (1 — )Py (SNR= LE(2]6%)? = 2

o2 o2
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Main result: Risk curve for min /; solution

1

Suppose 07 "X Py, s+ (1 — )Py (SNR= LE(2]6%)? = 2

o o2

Theorem (Li, W’ 21)
e Risk(6'";§) — Risk(0) as p/n tends to co.

Risk behavior of the min-/; interpolators

—— minL; solution, € =0.5
—— min L, solution, ¢ =0.1

—— minL, solution, ¢ =0.01
—— minZ, solution, ¢ =0.001
—— min L, solution

2(Generalization error-+1)

log

1094

20/37



Main result: Risk curve for min /; solution

1

Suppose 07 "X Py, s+ (1 — )Py (SNR= LE(2]6%)? = 2

o o2

Theorem (Li, W’ 21)
e Risk(6'";§) — Risk(0) as p/n tends to co.

e for every given §, there exists €(9) st. Risk(@”t; d) decreases with
p/n at § as long as the sparsity ratio e satisfies € < €(9).

Risk behavior of the min-/; interpolators

—— minL; solution, € =0.5
min Ly solution, € =0.1

—— minL, solution, ¢ =0.01

—— minZ, solution, ¢ =0.001

—— min L, solution

2(Generalization error-+1)

log

1094
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Main result: Risk curve shape (continued)

Suppose 07 "X Py, s+ (1 — )Py (SNR= LE(2]6%)? = 2
Theorem (Li, W '21)

® there exist two constants 1 < n; < 1z < 00 st. Risk(@”t; J)
decreases with p/n within the range p/n € (1,71) U (92, 00).

Risk behavior of the min-/, interpolators

—— minL, solution, € =0.5

—— min L, solution, ¢ =0.1
—— minL, solution, € =0.01
—— minL; solution, € =0.001
—— min L, solution

log(Generalization error+1)

1004
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Main result: Risk curve shape (continued)

Suppose 07 "X Py, s+ (1 — )Py (SNR= LE(2]6%)? = 2

Theorem (Li, W '21)

® there exist two constants 1 < n; < 1z < 00 st. Risk(é'”t; 0)
decreases with p/n within the range p/n € (1,71) U (92, 00).

® fix eM?/0?. There exists €* st. if € < €*, then there exists region
within (n1,m2) st. Risk(é\'”t;é) increases with p/n.

Risk behavior of the min-/, interpolators

—— minL, solution, € =0.5
min Ly solution, € =0.1

—— min L, solution, ¢ =0.01

—— minL; solution, € =0.001

—— min L, solution

¢(Generalization error-+1)

log

1094
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Some heuristic explanations

e Why there is a peak at interpolation (p =n)?
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e Why there is a peak at interpolation (p =n)?
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Figure: condition number of X
Double descent in condition number, Poggio, Kur and Banburski (2020)
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Some heuristic explanations

e Why there is a peak at interpolation (p =n)?
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Some heuristic explanations

e Why there is a peak at interpolation (p =n)?
® Why there exists a second descent (p > n)?

some evidences...

> Bellec, Lecué and Tsybakov (2016) studies optimal-tuned Lasso

1 ~N P 1
Z||@lasse — g* 2<,2. X2*1 -
o I3<co® m(X)?- L clog()

» Su and Candés, (2015) studies SLOPE estimator for ¢ — 0

1 1
~||65EOPE — 0*2 < 267 £ . clog(-)
n n €
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Some heuristic explanations

e Why there is a peak at interpolation (p =n)?
® Why there exists a second descent (p > n)?

o (further increase p/n) wrong support — even worse than the zero
estimator

Risk behavior of the min-/; interpol;

min L; solution, € =0.5
min Ly solution, e =0.1
min Ly solution, € =0.01
min L; solution, ¢ =0.001
min L solution

log(Generalization error+1)

interplay between over-parameterized ratio and sparsity J
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Compare to min />-norm interpolators

Isotropic features

10

7 — SNR=1
— SNR=233
— SNR=366
| — sNR=s

Risk

T T T T T T T
0.1 0.2 0.5 1.0 2.0 5.0 10.0

Figure: Hastie et al. (2019)

%02, ifo=n/p>1

2

lim Risk(@"2)
Kl eM?(1—=06)+ 15502, iféd=n/p<1
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Multi-descent in /5 training

Multi-descent in ¢o training for different reasons Nakkiran et al. (2020), Chen
et al. (2020), d'Ascoli et al. (2020), Adlam and Pennington (2020), Li and Meng (2020)

® design matrix has heterogenous structures

® non-linear kernels for kernel regression

Abundant parameterization Superabundant parameterization

Classical regime

Deterministic
NTK

Loss

y o
~ c 8 B8
g =] =
8 8 <:J:g
- . Iy
p=m p=m*

Figure: Adlam and Pennington (2020)
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Our analysis framework



Risk characterization

Theorem (Li, Wei '21)

The generalization error of the min {1-norm interpolator obeys

lim Risk(6"™) = 2(9).

— informally coordinates of @' behave like n(© + 7*Z; o’ 7*)

Here n(z:¢) = (|| — ¢) sign()
(7*, a*) stands for the unique solution to
1
= S]E {(77(@ +7Z;a1) — @)2} + 02,
§=P(n(©+7Z071)=0),
where © ~ Pg, Z ~ N(0, 1) independent of ©
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Descent analysis

(7*, a*) stands for the unique solution to

2 = %E [(17(@ +7Z;a1) — @)2] + 02,
§=P(n(®+71Z;a7)=0),

Suppose © ~ ¢P,, 5+ (1 —€)Py

v? € —€
1= WJ2 + EE [(77(\/51/+ Zia) — \/51/)2} + ! 5 E [n*(Z; )]

§=eP(vVo+ 27 >a)+ (1 —eP(Z] > a)

where v = M /T
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Descent analysis

log(Generalization error+1)

Risk behavior of the min-/; interpolators

100 4

—— min L; solution, € =0.5
——— min L; solution, € =0.1
——— min L; solution, ¢ =0.01
—— min L; solution, € =0.001

—— min Ly solution

Fix SNR =

eM?
0.2

and plot 7* as a function of

33
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Main tool: Approximate message passing (AMP)

Theorem (Li, W '21)
The generalization error of the min £1-norm interpolator obeys
lim Risk(6"™) % 7%(3).

n/p=4
n,p—)oo
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Main tool: Approximate message passing (AMP)

® AMP is an efficient iterative algorithm that has been applied to a
broad range of statistical estimation problems Donoho Maleki, Montanari,
(2009, 2010a, 2011b), Bayati and Montanari (2011)
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NMSE

Main tool: Approximate message passing (AMP)

® AMP is an efficient iterative algorithm that has been applied to a
broad range of statistical estimation problems Donoho Maleki, Montanari,
(2009, 2010a, 2011b), Bayati and Montanari (2011)

Example: Solving for Lasso (argminger» 3 |ly — X 0|3 + A[|6]]1)

e ——ISTA

—rnsta | AMP iterates

——AMP

o't = (X Tz 4+ 6% ¢)

1

20 zt:yixgt+5zt—1 <77/(Xth_1+0t_l§<t71)>
25

\ Onsager term
30 3
-35 \
P ! [ — = =
i - e e e n = 250, p =500, e = 0.1

iterations

Figure credit: Borgerding and Schniter
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Applications of AMP

® AMP is successfully applicable in variety of applications

> imaging Fletcher, Rangan (2014), Vila, Schniter, Meola (2015), Metzler,
Mousavi, Baraniuk (2017)

P communications Schniter (2011), Jeon et al. (2015), Barbier, Krzakala
(2017), Rush, Greig, Venkataramanan (2017)
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Applications of AMP

® AMP is successfully applicable in variety of applications
> imaging Fletcher, Rangan (2014), Vila, Schniter, Meola (2015), Metzler,
Mousavi, Baraniuk (2017)
P communications Schniter (2011), Jeon et al. (2015), Barbier, Krzakala
(2017), Rush, Greig, Venkataramanan (2017)
® in regression and low rank matrix estimation
> information-theoretically optimal v.s. computationally feasible
estimators Reeves, Pfister (2019), Barbier et al. (2019), Lelarge and Miolane
(2019)

> conjectured to have optimal asymptotic estimation error among all
polynomial-time algorithms Celentano and Montanari (2019)

— tutorial, Feng, Venkataramanan, Rush, Samworth (2021)
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Recipe: AMP for statistical procedures

® dynamics of AMP can be accurately tracked by a simple
small-dimensional recursive formula called the state evolution

state evolution: Ter1 =F (1¢, a*13)

(O, 097_, & (O + mZ; 0*7), ©)
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Recipe: AMP for statistical procedures

® dynamics of AMP can be accurately tracked by a simple
small-dimensional recursive formula called the state evolution

state evolution: Ter1 =F (1¢, a*13)

(O, 097_, & (O + mZ; 0*7), ©)

® construct AMP algorithms that converge to ...

M-estimators Donoho and Montanari (2013), Lasso Bayati and Montanari
(2011), SLOPE estimator Su and Candés. (2015), MLE for generalized
linear model Sur, Chen, Candés (2017), lower-rank matrix estimation
Montanari, Venkataramanan (2021), ...
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AMP for min /; interpolator

Illustration of the AMP updates for the minimum ¢;-norm interpolator.

1 .
51y = X1 + Aol o'

1
3 ly = X015+ Asa 0]

1 .
5y = X0

\ il
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AMP for min /; interpolator

Illustration of the AMP updates for the minimum ¢;-norm interpolator.

62

1 ;
51y = X1 + Aol

6ﬁ+1

1 2
5 [y = X015+ Ara0lh

1 .
5y = X0

® structural property when restricted strongly convexity is lacking
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AMP for min /; interpolator

Illustration of the AMP updates for the minimum ¢;-norm interpolator.

1 .
5 1y = X0+ M6

1 2
5 [y = X015+ Ara0lh

1 .
5y = X0

® structural property when restricted strongly convexity is lacking

® proper choice of A\; sequence
dist(6'1,0') < exp(—\;) - dist(6%, 8 71) + ¢|\; — A1
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Several extensions and questions...
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Experiments for non-Gaussian designs

Random Bernoulli entries

—— theoretical limit, n — oo

log(Generalization error-+1)

Random t3-distributed entries

10-2 10°! 10° 10! 10%

—— theoretical limit, n — oo

1072

107!

10°

10! 10

Figure: The entries of the design matrix /nX are i.i.d. sampled from the

Bernoulli(0.5) distribution for the left, and from t(3)/+/3 distribution for the right.
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— universality phenomenon Bayati et al. (2015), Oymak and Tropp (2018),
Montanari and Nguyen (2017), Chen and Lam (2021)
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Experiments for non-Gaussian designs

Random Bernoulli entries Random #;-distributed entries

—— theoretical limit, n — oo —— theoretical limit, n — oo

log(Generalization error-+1)

10-2 107! 10° 10! 10% 1072 107! 10° 10! 102

Figure: The entries of the design matrix /nX are i.i.d. sampled from the
Bernoulli(0.5) distribution for the left, and from t(3)/+/3 distribution for the right.

— universality phenomenon Bayati et al. (2015), Oymak and Tropp (2018),
Montanari and Nguyen (2017), Chen and Lam (2021)
— beyond i.i.d design Celentano, Montanari and Wei (2020), Fan (2020)
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Mitigate multiple descent via cross-validation

Risk behavior of the min-/; interpolators

——— min L; solution, ¢ =0.5
——— min L; solution, ¢ =0.1

——— min L; solution, ¢ =0.01
—— min L; solution, ¢ =0.001
—— min Ly solution

log(Generalization error+1)

100 4
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Mitigate multiple descent via cross-validation

Risk behavior of the min-/; interpolators

——— min L; solution, € =0.5
——— min L; solution, € =0.1
——— min L; solution, ¢ =0.01
——— min L; solution, ¢ =0.001

—— min Ly solution
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Mitigate multiple descent via cross-validation

log(Generalization error+1)

100 4

Risk behavior of the min-/; interpolators

——— min L; solution,
——— min Ly solution,
——— min L; solution,

——— min L; solution,

—— min Ly solution

e=0.5
e=0.1

€ =0.01
€ =0.001
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Mitigate multiple descent via cross-validation

Risk behavior of the min-/; interpolators

——— min Ly solution

min Ly solution

——— min L; solution,

——— min L; solution,
——— min L solution,

€=0.5

,e=0.1

€=0.01
€ =0.001

log(Generalization error+1)

Mitigating multiple descents: Model-agnostic risk monotonization in high-dimensional

learning — ongoing work with Pratik Patil, Arun Kuchibhotla, Alessandro Rinaldo
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Concluding remarks

Risk behavior of minimum ¢,-norm interpolators (fixed s/p)

—— theoretical limit, n — oc

100

log(Generalization error-+1)

10-!

10! 100 10t 10%

Future directions

log(Generalization error-+1)

o

Simulation with Lasso and /,-minimization (n = 100, \; o i)

10! 10° 10! 102

e features with general covariance structure — even more oscillations

in risk curve
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Concluding remarks

Risk behavior of minimum (,-norm interpolators (fixed s/p) Simulation with Lasso and /,-minimization (n = 100, \; o i~')

—— theoretical limit, n — o

100

o

log(Generalization error-+1)
Jog(Generalization error-+1)

o] [oocend]

10-!

10! 100 10t 10% 10! 10° 10! 102

Future directions

e features with general covariance structure — even more oscillations
in risk curve

® generalize to more complex model — towards understanding dnn
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Thanks for your attention! Questions?

Paper:
“Minimum {¢1-norm interpolators: Precise asymptotics and multiple descent,”
Y. Li, Y. Wei, 2021

“The Lasso with general Gaussian designs with applications to hypothesis testing,”
M. Celentano, A. Montanari, Y. Wei, 2020
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Li

near sparsity

Example: Genome-wide association studies (GWAS): genetic variants — disease

Leading Edge

An Expanded View of Complex Traits:

From Polygenic to Omnigenic

Evan A. Boyle,* Yang I. Li,'* and Jonathan K. Pritchard23*
"Department of Genetics

2Department of Biology

SHoward Hughes Medical Institute

Stanford University, Stanford, CA 94305, USA

Challenge: True signals

matin regions of immune cells (Maurano et al.; 2012; Farh et al.,
2015; Kundaje et al., 2015).

These observations are generally interpreted in a paradigm in
which complex disease is driven by an accumulation of weak
effects on the key genes and regulatory pathways that drive
disease risk (Furlong, 2013; Chakravarti and Turner, 2016).
This model has motivated many studies that aim to dissect
the functional impacts of individual disease-associated variants

might NOT be ultra-sparse

— important features may scale proportionally to the feature

dimension
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Connections to two-layer network training

Fion = {f(@,a, W) Zaz (wi, @) | a; € R,w; € RV, Vi < N}



Connections to two-layer network training

]:2NN—{fwaW Zaz (w;, ) | a; € R,w; € RP V2<N}
Lazy regime: model estimation stays close to initialization

1
—f(z,a0 + ea, Wy + eW)
€

%%f(w, Qo, WO) + <O., Vaf(a"7 Qao, W0)> + <W7 VW.f(wa ao, WO))

N N
%%f(%am Wo) + ZGzU(<wo,z‘7 x;)) +Za0,z‘<wi7 z)yo((wo,i, i)

i=1 i=1

random feature model neural tangent kernel model
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Connections to two-layer network training

FQI\;VN:{f("Baa7W Zaz wz, )\aZGszER VZ<N}
Lazy regime: model estimation stays close to initialization

1
—f(z,a0 + ea, Wy + eW)
€

%%f(w, Qo, WO) + <O., Vaf(a"7 Qao, W0)> + <W7 VW.f(wa ao, WO))

N N
%%f(%am Wo) + ZGzU(<wo,z‘7 x;)) +Za0,z‘<wi7 z)yo((wo,i, i)

i=1 i=1

random feature model neural tangent kernel model

— transform into kernel ridge regression with random kernels!
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Connections to two-layer network training

N

Fon = {f(w,a, W) = Zaia((wi, x)) | a; € Ryw; € RP Vi < N}
i=1

Lazy regime: model estimation stays close to initialization

1
—f(z,a0 + ea, Wy + eW)
€

z%f(w, ao, Wo) + (a, Vaf(z, a0, Wo)) + (W, Vw f(x, a0, Wo))

N N
%%f(a%ao, Wo) + ZGzU(<wo,z‘7 xi)) +Za0,z‘<wi7 z)yo((wo,i, i)

i=1 i=1

random feature model neural tangent kernel model

— transform into kernel ridge regression with random kernels!

Jacob, Gabriel, Hongler (2018), Chizat, Bach (2019), Du et al. (2018), Arora, et al. (2019),
Ghorbani, Mei, Misiakiewicz, Montanari (2019), Montanari, Zhong (2020), Allen-Zhu, Li and

Liang (2019)...
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