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Sample Spaces and (Un)conditional Probability Notes 01

Associated Reading: Wackerly 7, Chapter 2, Sections 1-4 and 7-10

We’ll start with a general question: What is probability?

⌧
To begin our discussion of probability, we start with a review of set notation.

To match the book, we will:

• denote sets with capital letters: A,B,C, · · · ;
• denote the universal set (or the superset of all sets) with S; and
• denote the null or empty set with ;.

Term Notation Intuitive Terminology
superset A � B “encompasses"
subset A ⇢ B “within"
union A [ B “or"

intersection A \ B “and"
complement Ā “not"

Let’s draw Venn diagrams illustrating each of these terms:

Note the international standards for set notation on http://en.wikipedia.org/wiki/ISO_31-11; in
particular, do not use logic notation on homeworks and tests (e.g., use A \ B, not A ^ B).
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A few more important definitions and we are finished:

• A [ Ā = S
• A \ B = ; ) A and B are mutually exclusive or disjoint

• the distributive and associative laws:

• De Morgan’s laws:

! EXAMPLE: Wackerly 7, Exercise 2.5

So: What is an experiment?
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! EXAMPLE: A person tosses two coins. What are the possible outcomes? (Note that we will use
this example to define some terminology.)

! EXAMPLE: What is the sample space if

(a) a player shoots free throws until she misses?

(b) a person reads any two of three books A, B, and C?

In the example above, what are the relative frequencies of each of the listed events?

! EXAMPLE: Rice (2nd edition), Problem 1.8.1:

A coin is tossed three times and the sequence of heads and tails is recorded.

(a) List the sample space.

(b) List the elements that make up the following events: (1) A = at least two heads, (2) B = the first
two tosses are heads, (3) C = the last toss is a tail.

(c) List the elements of the following events. (1) A, (2) A \ B, (3) A [ C.
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So: what do we know about relative frequencies of events?

Let S be a sample space. A probability measure on S is a function P from subsets of S to R that
satisfies the following axioms:

(1)

(2)

(3)

! EXAMPLE: Use the axioms of probability to express P[A] as a function of P[Ā].

! EXAMPLE: Wackerly 7, Problem 2.15
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The book demonstrates two techniques for computing probabilities, the sample-point method and the
event-composition method. The former utilizes counting methods (combinations and permutations)
that do not generally arise in real-life analysis situations (outside of, say, gambling, which are among
the things in life that we Do Not O�cially CondoneTM).a So we will not cover it. We will come back
to event decomposition on a future slide . . . but before that, we will cover conditional probability.

⌧
The probability of an event (e.g., A) may depend on whether other events (e.g., B) occur. If so, we
compute conditional probabilities, with conditions placed to the right of a vertical bar (e.g., P[A|B]).
When parsing word problems, one can easily identify when the probability is conditional: the words
if or given will generally be used. For instance:

• What is the probability of selecting a red ball in the second draw from a jar of m black balls and n

red balls, if a black ball is drawn first? (Sampling here is done without replacement.)
• What is the probability of being a French speaker given that one lives in Brussels?

Important: in conditional probability, causality is not implied! In other words, event A does not have
to follow B. B simply has to occur at some point.

The following will help you to see intuitively how the conditional probability is computed:

! EXAMPLE: Given the following 2 ⇥ 2 table of experimental outcomes, compute P[A|B]. Does it
equal P[B |A]?

B B̄

A 2 6
Ā 1 9

aMy own long-time statement: “Gambling is for those who flunked probability."
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! EXAMPLE: If P[A] = 0.5, P[B] = 0.3, and P[A \ B] = 0.1, what is P[A|A [ B] and P[A|A \ B]?

The events A and B are said to be independent if any of the following conditions hold:

• P[A|B] = P[A];
• P[B |A] = P[B]; and/or
• P[A \ B] = P[A]P[B].

The following is an example of independence as rendered on a Venn diagram:
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Now that we’ve learned the concepts of conditional probabilities and independence, we can write
down two important laws of probability.

! THEOREM 2.5. The Multiplicative Law: the probability of the intersection of two events A and
B is given by:

P[A \ B] = P[A]P[B |A] = P[B]P[A|B]
= 0 if A and B are disjoint
= P[A]P[B] if A and B are independent

We can generalize this result to n events {A1, · · · , An}:

! THEOREM 2.6. The Additive Law: the probability of the union of two events A and B is

P[A [ B] = P[A] + P[B] � P[A \ B]

= P[A] + P[B] if A and B are disjoint
= P[A] + P[B] � P[A]P[B] if A and B are independent

Now, after stating one more result, we’ll have su�cient tools at our disposal to extend our
probabilistic modeling abilities beyond the sample-point method:

! THEOREM 2.7. If A is an event, then P[A] = 1 � P[Ā].

However, before we solve problems, I’ll show one more tool for probabilistic modeling, the decision

tree:
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The event-composition method presented in Section 2.9 of Wackerly 7 can be boiled down to:

1. When faced with a problem, define your events (e.g., F = “a crashed plane was found” and B =

“the plane had an emergency locator beacon”).
2. Write down what you know (both unconditional and conditional probabilities). Be careful to

parse the problem correctly, i.e., to write any conditional probabilities in the correct “order” (e.g.,
“if a plane has a locator beacon, there is a 90% chance it will be found after a crash”
) P[F |B] = 0.9 , P[B |F]).

3. Write down what quantity you want to solve for.
4. Link the items in (2) with the desired result in (3) via the laws of probability, in any way possible.

The book itself says “the best way to learn how to solve probability problems is to learn by doing,” so
let’s go ahead and do . . .

! EXAMPLE (courtesy O. Meyer): the information you get with a certain prescription drug states:

• There is a 10% chance of experiencing headaches (denoted H).
• There is a 15% chance of experiencing nausea (denoted N).
• There is a 5% chance of experiencing both side e↵ects (i.e., H \ N).

(a) Are the events H and N disjoint? (b) What is the probability of experiencing at least one of the
two side e↵ects? (c) What is the probability of experiencing exactly one of the side e↵ects? (d) If

you experience nausea, what is the probability that you’ll also experience headaches?
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! EXAMPLE: Wackerly 7, Exercise 2.97.
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! EXAMPLE: Wackerly 7, Exercise 2.101.

A useful thing to have at your fingertips are the probabilities for each outcome of rolling two fair
six-sided dice:

Roll 2 3 4 5 6 7 8 9 10 11 12
Probability 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

! EXAMPLE: Wackerly 7, Exercise 2.119(a).
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Assume that {B1, · · · ,Bk} is a partition of the sample space S, i.e., that

S = B1 [ · · · [ Bk , with Bi \ Bj = ; 8 i , j.

(The Bi’s need not be simple events.) Assuming P[Bi] > 0 8 i, then we can write down . . .

! THEOREM 2.8. Law of Total Probability (LoTP): for any event A

P[A] =
kX

i=1

P[A|Bi]P[Bi] and

! THEOREM 2.9. Bayes’ Rule: the conditional probability of each event in the partition of S is

P[Bj |A] =
P[A|Bj ]P[Bj ]
P

k

i=1 P[A|Bi]P[Bi]
=

P[A|Bj ]P[Bj ]

P[A]

! EXAMPLE: Show P[A \ C |B] + P[A \ C̄ |B] = P[A|B].

! EXAMPLE: You are diagnosed with a disease, which has two types, A and Ā. In the population
at large, the probability of having types A and Ā are 10% and 90%, respectively. You undergo a
test that is 80% accurate (i.e., if you have type X , the test will indicate you have type X 80% of
the time, and the other type 20% of the time). The test indicates that you have type A. Do you
immediately start treatment for type A?
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! The Monty Hall Problem
The Monty Hall Problem is named for the long-time host of the game show Let’s Make a Deal. The
simple version goes as follows: you are shown three doors; behind two of the doors are goats and
behind the other is a car. You choose a door (say Door #1). Monty Hall then opens, say, Door #3 to
reveal a goat, and asks you if you want to switch to Door #2.

So: do you stick with Door #1 or switch to Door #2?
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