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Commonly Used Discrete Distributions Notes 03

Associated Reading: Wackerly 7, Chapter 3, Sections 4-8

We start with a motivating example. Let’s assume a sequence of n coin flips, and let the probability of
observing a head be p (not necessarily 0.5!). Let the r.v. Y increase in value by 1 every time we
observe a head, and by 0 if not. What we observe is the following:

What is the probability of observing Yn = y heads, given the probability p?

This probability distribution is the binomial distribution.a The binomial distribution is used to model
binomial experiments, which have the following properties:

• The number of trials, n, is fixed.
• Each trial has two possible outcomes: S (success) or F (failure).
• The probability of success remains p throughout the experiment.
• Each trial is independent of the others.
• The r.v. of interest is Y , the total number of successes in n trials.

⌧
It is the case that statisticians will sometimes apply the binomial distribution in a setting where the
probability of success changes from trial to trial.

aActually, the binomial family of distributions; family members are defined by a unique combination of n and p.
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Now that this is established, let’s look at the interrelationship between the probability distributions
that we’ll be looking at in Sections 4 to 7 of Chapter 3:

Bernoulli Process

Sampling With
Replacement

Binomial Distribution
(number of suc-

cesses in n trials)

Sample Without
Replacement

Hypergeometric
Distribution

(number of successes in n

trials, finite population N)

Negative Binomial
Distribution

(Number of trials

for s successes)

Geometric
Distribution

(Number of trials

for one success)

Note that each of the named distributions is the subject of its own section. One that isn’t listed
explicitly is the Bernoulli distribution:

The Bernoulli distribution, along with one piece of information we haven’t explicitly covered yet
(from Chapter 5, Section 8), allows us to derive the expected number of successes and the variance on
the expected number of successes for a binomial experiment in a much cleaner way than that given in
the proof of Theorem 3.7.
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Let’s wrap this up by combining together the previous information:

The Binomial Distribution

Notation: Y ⇠ Bin(n,p) n: number of trials, p: success probability

PMF: p(y) =
⇣

n
y

⌘
py (1 � p)n�y

0  y  n

Expected Value: E[Y ] = µ = np Variance: V [Y ] = �2 = np(1 � p)

R Functions: dbinom(y,n,p) (PMF)

pbinom(y,n,p) (CDF)

rbinom(k,n,p) (Simulation of k binomial r.v.’s)

! EXAMPLE. Wackerly 7, Exercise 3.51

! EXAMPLE. Wackerly 7, Exercise 3.65
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⌧
Referring back to the figure on page 2 of these notes, we see that the geometric distribution governs
the situation where we want to determine the number of trials before observing the first success.
Starting from the Bernoulli distribution, it is easy to intuitively define the pmf for the geometric
distribution:

Less easy is the derivation of E[Y ]:
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The Geometric Distribution
Notation: Y ⇠ Geom(p) p: success probability
PMF: p(y) = p(1 � p)y�1 1  y < 1
Expected Value: E[Y ] = µ = 1/p
Variance: V [Y ] = �2 = (1 � p)/p2

R Functions: dgeom(y-1,p) (PMF)
pgeom(y-1,p) (CDF)
rgeom(k,p) (Simulation of k geometric r.v.’s)
NOTE: the output will be the number of failures!
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! EXAMPLE. Wackerly 7, Exercise 3.71

! EXAMPLE. Wackerly 7, Exercise 3.77
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Now we generalize the geometric distribution to model how many trials are necessary not just for the
first success, but for the first r successes. The governing family is the negative binomial distribution:

The Negative Binomial Distribution

Notation: Y ⇠ NB(r,p) r: number of successes, p: success probability

PMF: p(y) =
⇣
y�1
r�1
⌘
pr (1 � p)y�r r  y < 1

Expected Value: E[Y ] = µ = r/p Variance: V [Y ] = �2 = r (1 � p)/p2

R Functions: dnbinom(y-r,r,p) (PMF)

pnbinom(y-r,r,p) (CDF)

rnbinom(k,r,p) (Simulation of k negative binomial r.v.’s)

NOTE: the output will be the number of failures!
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! EXAMPLE. Wackerly 7, Exercise 3.91

The penultimate distribution that we will look at in this set of notes is the hypergeometric
distribution. This distribution takes the place of the binomial distribution if we are randomly
sampling without replacement. Assume that we draw n samples from a population of size N , in
which there are r “success" objects and N � r “failure" objects. What is the probability of observing
y successful draws?
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The Hypergeometic Distribution

Notation: Y ⇠ HG(r,N,n) r: number of successes in population

N : population size

n: number of trials

PMF: p(y) =
(ry)(N�rn�y )

(Nn ) 0  y  n, y  r, n � y  N � r

Expected Value: E[Y ] = µ = nr/N Variance: V [Y ] = �2 = n(r/N )[(N � r)/N ][(N � n)/(N � 1)]

R Functions: dhyper(y,r,N-r,n) (PMF)

phyper(y,r,N-r,n) (CDF)

rhyper(k,r,N-r,n) (Simulation of k hypergeometric r.v.’s)

! EXAMPLE. Wackerly 7, Exercise 3.107

! EXAMPLE. Wackerly 7, Exercise 3.113
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Let’s say you, for some reason, want to model the number of deaths per year among Prussian soldiers
due to . . . (wait for it) . . . horse kicks. Obviously, the random variable is discrete (zero deaths, one,
two, etc.), but because there can be more than two possible outcomes per time period, we are not
dealing with a Bernoulli process.

Here’s data compiled by Ladislaus Bortkiewicz, from 10 Prussian army corps over a 20-year period:

y 0 1 2 3 4
N (y) 109 65 22 3 1

Here, y is the number of deaths observed, and N (y) is the number of corps-years in which y deaths
were observed. (N (y) sums to 20 ⇥ 10 = 200.)

One thing we could do is take the relevant time period ⌧ (e.g., one year in this case) and divide it into
n equal subperiods, and treat the number of deaths in each as a Bernoulli random variable (and thus
use the binomial distribution to model the total number of deaths). Why is this not an optimal
solution?

Let the number of subperiods n ! 1 such that the probability of observing an event p! 0 and such
that np! �, a constant. Under these conditions, the binomial distribution transforms into the
Poisson distribution, or what Bortkiewicz called the law of small numbers:a

aYou would not have to recreate this derivation on Test 1. Just remember that one can derive the Poisson pmf given the binomial pmf.
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Not surprisingly, given what you’ve learned up to now, the Poisson distribution can be used to model
the data of the Poisson process, which is a continuous-time analog of the discrete-time Bernoulli
process. We will not go into the details of Poisson processes in this course; simply realize that a
Poisson process is memoryless, like a Bernoulli process.a

The Poisson Distribution

Notation: Y ⇠ Pois(�) �: expected total number of events (not rate of events!)

PMF: p(y) = �
y

y! e�� y 2 N (including 0)

Expected Value: E[Y ] = µ = � Variance: V [Y ] = �2 = �

R Functions: dpois(y,lambda) (PMF)

ppois(y,lambda) (CDF)

rpois(k,lambda) (Simulation of k Poisson r.v.’s)
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We derive the expression E[Y ] = �:

aAs an aside, the inability of a typical person to appreciate the memoryless-ness of the Bernoulli and Poisson processes leads to such things as
believing in a “law of averages” or indulging in the “gambler’s fallacy.”
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! EXAMPLE. Wackerly 7, Exercise 3.123

! EXAMPLE. Wackerly 7, Exercise 3.129

! EXAMPLE. Wackerly 7, Exercise 3.133

36-225 � Introduction to Probability Theory � Fall 2020


































































































































Y n Poison
Plo pa

If
PCD TE

P
91

PCD

or ne
Pla Ee E EI

Y number of cars arriving at toll within one hourex3

Cars arrive at toll

accordingto poisson D Y 80

mom

If

mm mm name
car r x n Pois Fft

hour x CX t

target is to find t Stu PII
s o 4

j

É

te esta
e
43 t 2 0.4

Y
n

during 2 minute

witmean per
2 minute Y n Pois D 1

T Ya Y independent riv Pois i

P at least one of Y Yo that Yi 3

P1Yi 3 1 RIO Phi D PLY D

p Yi 3

I é xe
t E e t é

i e it at E t's
u

o o19

X number of ru that has value 3 X Bin 10 0.019 q
o

j C 97 I



12

We will conclude this set of notes by discussing how the Law of Total Probability manifests itself
outside the realm of sample spaces (i.e., the realm of Chapter 2).

To remind you, given an event A and a splitting of the sample space S into n disjoint regions
{B1,B2, . . . ,Bn}, we use the LoTP to express P[A] as the sum of n conditional probabilities, each
weighted by the “size" of the region Bi:

P[A] =
nX

i=1

P[A|Bi]P[Bi] .

Let’s assume here that instead of events, we are dealing with discrete random variables, so that
instead of P[A], we are interested in computing P[Y = y]. We can write

! EXAMPLE. In your pocket is a random number of coins N , where N ⇠ Poisson(�). You toss
each coin once, with heads showing with probability p each time. Show that the total number of
heads has the Poisson distribution with parameter �p.
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