Commonly Used Discrete Distributions Notes 03

Associated Reading: Wackerly 7, Chapter 3, Sections 4-8

We start with a motivating example. Let’s assume a s e of n coin flips, and let the probability of
observing a head be p (not necessarily 0.5!). Let tlie r.v. ¥ in¢rease in value by 1 every time we
observe a head, and by 0O if not. What we observe is the followinﬁ:
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This probability distribution is the binomial distribution. The bingmial distribution is used to model
binomial experiments, which havethe following properties: From n tems |
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\/ The number of trials, n, is fixed. ‘ Y ~ BTW (/I/, F
\\//Each trial has two possible outcomes: S (success) o :

e The probability of success remaing p thiroughout the exper
e Each trial is independent of the others.

A The r.v. of interest is Y, the total number of successes in u trials.
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It is the case that statisticians will sometimes apply the binomial distribution in a setting where the
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probability of success changes from trial to trial.
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4Actually, the binomial family of distributions; family members are defined by a unique combination of n and p.
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Now that this is established, let’s look at the interrelationship between the probability distributions
that we’ll be looking at in Sections 4 to 7 of Chapter 3:
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Note that each of the named distributions is the subject of its own section. One that isn’t listed
explicitly is the Bernoulli distribution:
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The Bernoulli distribution, along with one piece of information we haven’t explicitly covered yet
(from Chapter 5, Section 8), allows us to derive the expected number of successes and the variance on
the expected number of successes for a binomial experiment in a much cleaner way than that given in
the proof of Theorem 3.7.
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Let’s wrap this up by combining together the previous information: *
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Nortation: Y ~ Bin(n,p) n: NUMBER OF TRIALS, p: SUCCESS PROBABILITY

PMF: p(y) = (})p*(1-p)">  0<y<n

I:E;ECTED VaLue: E[Y] = u=np  Variance: V[Y] = 02 = np(1 - p)

R FuncTions: Einomsx,n,p) (_1_3_1\_/[-_15/%{9 = Pt ‘f'=—‘3) o
pbinom(y,n,p) (CDF) = pP(Yzy),

rbinom(k,n,p) (SIMULATION OF kK BINOMIAL R.V.’S)
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Referring back to the figure on page 2 of these notes, we see that the geometric distribution-governs
the situation where we want to determine the number of trials before observing the first success.
Starting from the Bernoulli distribution, it is easy to intuitively define the pmf for the geometric

distribution:
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(THE GEOMETRIC DISTRIBUTION >
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ow we generalize the geometric distribution to model how many tria 1 r the
rst success, but for the first r successes. The governing family is theluegative binomial distribution:
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THE NEGATIVE BINOMIAL DISTRIBUTION

Notartion: Y ~ NB(r, p)_r: NUMBER OF SUCCESSES, p: SUCCESS PROBABILITY
e ) = (-l
ExpPecTED VALUE: E[Y] = u=r/p  Variance: V[Y] = o?=r(1-p)/p?
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— EXAMPLE. Wackerly 7, Exercise 3.91 pP=o-4
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The penultimate distribution that we will look at in this set of notes is the hypergeometric

distribution. This distribution takes the place of the binomial distribution if we are randomly
)

sampling without replacement. Assume that we draw n samples from a population of size N, in

which there are r “success" objects and N — r “failure" objects. What is the probability of observing
y successful draws?
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Tue HYPERGEOMETIC DISTRIBUTION
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— EXAMPLE. Wackerly 7, Exercise 3.107
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Poi%om distribution . 9

Let’s say you, for some reason, want to model the number of deaths per year among Prussian soldiers
due to . . . (wait for it) . . . horse kicks. Obviouslmme is discrete (zero deaths, one,
two, etc.), but because there can be more than two possible outcomes per time period, we are not
dealing with a Bernoulli process.

Here’s data compiled by Ladislaus Bortkiewicz, from 10 Prussian army corps over a 20-year period:
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y [(0 1 @) 3 4 200 Corp— yeor.
@N NG) si 23 1

Here@the number of deaths observed, and@is the number of corps-years in which y deaths
were observed. (N(y) sums to 20 x 10 = 200.)

Ong thi could do is take the relevant time period 7 (e.g., one year in this case) and divide it into
n equal subperiods, and treat the number of deaths in each as a Bernoulli random variable (and thus
Thse the binomial distribution to model the total number of deaths). Why is this not an optimal

solution? # onis ficed (eq. m-:w) Hno Hao nwber of desths in sk period

Let the number of subperiod@—» oo such that the probability of observing an eveme 0 and such
that np — A, a constant. UndEr‘fH@adconditions, the binomial distribution transforms into the
Poisson distribution, or what Bortkiewicz called the law of small numbers:*
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4You would not have to recreate this derivation on Test 1. Just rgqmember that one can derive the Poisson pmf given the binomial pmf.
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Not surprisingly, given what you’ve learned up to now, the Poisson distribution can be used to model
the data of the Poisson process, which is a continuous-time analog of the discrete-time Bernoulli
process. We will not go into the details of Poisson processes in this course; simply realize that a
Poisson process is memoryless, like a Bernoulli process.?
THE PoissoN DISTRIBUTION
Notartion: Y ~ Pois(A) /l[EPECTED TOTAL NUMBER OF EVEN”ﬂ(NOT RATE OF EVENTS!)
PMF: p(y) = 4¢ %y € N (iNcLubING 0)
R | I
ExPECTED VALUE: E[Y] = 1 @/V&ANCE: V[Y] = o2 :‘(/1)
R Funcrions: ~dpois(y,lambda) (PMF)
_Epois(y, lambda) (CDF)
£pois (k,lambda) (SmMuLATION OF k POISSON R.V.’S)
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2As an aside, the inability of a typical person to appreciate the memoryless-ness of the Bernoulli and Poisson processes leads to such things as
believing in a “law of averages” or indulging in the “gambler’s fallacy.”
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— EXAMPLE. Wackerly 7, Exercise 3.123
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We will conclude this set of notes by discussing how the Law of Total Probability manifests itself
outside the realm of sample spaces (i.e., the realm of Chapter 2).

To remind you, given an event A and a splitting of the sample space S into n disjoint regions
{B1,Bo,...,By,}, we use the LOTP to express P|A] as the sum of n conditional probabilities, each
weighted by the “size" of the region B;:

P (ANB:D.
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Let’s assume here that instead of events, we are dealing with discrete random variables, so that
instead of P[A], we are interested in computing P[Y y]. We can write
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— EXAMPLE. In your pocket is a random number of coins N wher ;Pmsson(/l) You toss
each coin once each time. Show that the total number of
heads has th€ Poisson distribution with parameter Ap
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