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Commonly Used Continuous Distributions Notes 04

Associated Reading: Wackerly 7, Chapter 4, Sections 4-8

In these notes, we shift from talking about discrete distributions to continuous distributions,
highlighting the uniform, normal, gamma, and beta families. Roughly speaking, the di↵erence
between using discrete and continuous distributions is that theoretical considerations motivate the use
of the former more than they do the use of the latter. For instance, tossing a coin is a Bernoulli
process, and thus the number of successes in n trials is a binomial random variable. On the other
hand, we can probably model the distribution of student heights at CMU well using the normal
distribution, but there is no theory that says that the true underlying distribution has to be normal.

This leads naturally to the question: how do we choose between families of continuous distributions
when modelling phenomena? The fullest answer is that it is not necessarily easy, and to make any
choice we have to know something about parameter estimation and hypothesis testing, topics for
36-226. So at this stage in the course, we are pretty much limited to simply introducing various
distributions and their properties. Which we’ll do now.

⌧
The simplest continuous distribution is the uniform distribution, in which all values between y = a
and y = b have equal probability density. In practice, the uniform distribution is used as much or
more for simulating data (or generating random numbers) than for actual modeling.

The Uniform Distribution
Notation: Y ⇠ Uniform(a,b) a: lower bound, b: upper bound

PDF: f (y) =
8><>:

1
b�a a  y  b
0 otherwise

Expected Value: E[Y ] = µ = see below
Variance: V [Y ] = �2 = see below
R Functions: dunif(y, a, b) (PDF)

punif(y, a, b) (CDF)
qunif(p, a, b) (Inverse CDF)
runif(k, a, b) (Sim. of k Uniform r.v.’s)
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As might be expected, E[Y ] and V [Y ] are exceptionally easy to compute:
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! EXAMPLE. Wackerly 7, Exercise 4.47

⌧
Modeling Physical Phenomena

⌧
The normal distribution is perhaps the most well-known family of probability distributions, for three
reasons: (1) the observed data of many physical phenomena are at least approximately normal, (2) it
is the limiting distribution of many other distributions and (3) it figures prominently in the Central
Limit Theorem (Chapter 7).
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The Normal Distribution

Notation: Y ⇠ N(µ,�2) µ: mean, �2: variance (and not standard deviation!)

PDF: f (y) = 1p
2⇡�2

exp
✓
� (y�µ)2

2�2

◆
y 2 (�1,1), µ 2 R,� 2 R+

CDF: F (y) = 1
2


1 + erf

✓
y�µp
2�

◆�
where erf(·) is the error function

Expected Value: E[Y ] = µ (by definition) Variance: V [Y ] = �2 (by definition)

R Functions: dnorm(y, mu, sigma) (PDF)

pnorm(y, mu, sigma) (CDF)

qnorm(p, mu, sigma) (Inverse CDF)

rnorm(k, mu, sigma) (Sim. of k Normal r.v.’s)

The CDF of the normal distribution includes the error function:a

Note that any normal random variable Y can be transformed to a standard normal random variable Z:

This is important for (historical) computational reasons:

aYou do not need to reproduce this derivation on a test.
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The Standard Normal Distribution

Notation: Z ⇠ N(0,1) µ = 0, �2 = 1

PDF: f (z) = 1p
2⇡

exp
⇣
� z2

2

⌘
z 2 (�1,1)

CDF: F (y) = 1
2


1 + erf

✓
zp
2

◆�
Inverse CDF: ��1(q) = z

where erf(·) is the error function and q 2 [0,1] is a quantile
Expected Value: E[Z ] = 0 Variance: V [Z ] = 1

R Functions: dnorm(z) (PDF)

pnorm(z) (CDF)

qnorm(p) (Inverse CDF)

rnorm(k) (Sim. of k Standard Normal r.v.’s)
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! EXAMPLE. Wackerly 7, Exercise 4.73

! EXAMPLE. Wackerly 7, Exercise 4.75

⌧
The gamma distribution is a skew distribution used to model phenomena yielding non-negative
random variables. For instance, we can model the time between events in a Poisson process (which
cannot be less than zero) with a particular subclass of the gamma distribution called the exponential
distribution.
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The Gamma Distribution

Notation: Y ⇠ Gamma(↵, �) or Y ⇠ �(↵, �) ↵: shape parameter, �: scale parameter

PDF: f (y) =
8><>:
y↵�1e�y/�
�↵�(↵) y 2 [0,1), (↵, �) 2 R+

0 otherwise
CDF: F (y) = 1

�(↵)�(↵, y� )

where �(↵, y� ) is the lower incomplete gamma function and

�(↵) =
R 1
0

y↵�1e�ydy

�(n) = (n � 1)! if n = 1,2,3, ...

Expected Value: E[Y ] = µ = ↵� Variance: V [Y ] = �2 = ↵�2

R Functions: dgamma(y, alpha, 1/beta) (PDF)

pgamma(y, alpha, 1/beta) (CDF)

qgamma(p, alpha, 1/beta) (Inverse CDF)

rgamma(k, alpha, 1/beta) (Sim. of k Gamma r.v.’s)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gamma Distributions

y

f(y
)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chi−Square Distributions

y

f(y
)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Exponential Distributions

y

f(y
)

! EXAMPLE. Wackerly 7, Exercise 4.81
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Here we lay out the derivation of E[Y ] and V [Y ]:

! EXAMPLE. Wackerly 7, Exercise 4.105
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The exponential distribution can be used to model the time di↵erence between two successive events
in a Poisson process. (The Erlang distribution generalizes this to the time between k events.)

! EXAMPLE. Wackerly 7, Exercise 4.91

⌧
The chi-square distribution is especially important in fitting models to observed data:
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The beta distribution is superficially related to the gamma distribution, with the most notable
di↵erence being that it is defined over the range 0  y  1.

Does this range limit the use of the beta distribution?

The Beta Distribution

Notation: Y ⇠ Beta(↵, �) ↵: shape parameter, �: scale parameter

PDF: f (y) =
8><>:
y↵�1(1�y)��1

B(↵,�) y 2 [0,1], (↵, �) 2 R+
0 otherwise

CDF: F (y) = B(y;↵,�)
B(↵,�)

where B(y; ↵, �) is the incomplete beta function and

B(↵, �) =
R 1

0
y↵�1(1 � y) ��1dy = �(↵)�(�)/�(↵ + �)

Expected Value: E[Y ] = µ = ↵/(↵ + �)
Variance: V [Y ] = �2 = ↵�/[(↵ + �)2(↵ + � + 1)]
R Functions: dbeta(y, alpha, beta) (PDF)

pbeta(y, alpha, beta) (CDF)
qbeta(y, alpha, beta) (Inverse CDF)
rbeta(k, alpha, beta) (Sim. of k Beta r.v.’s) 0.0 0.2 0.4 0.6 0.8 1.0
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The CDF of the beta distribution is the incomplete beta function, which achieves a “simpler" form
when ↵, � 2 Z+:
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Here we lay out the derivation of E[Y ]:

! EXAMPLE. Wackerly 7, Exercise 4.131
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! EXAMPLE. Wackerly 7, Exercise 4.133

36-225 � Introduction to Probability Theory � Fall 2020

O Bettie.it

DFF.s fyEs j 7É 105

use 127 2 1 for a integer

b ELY Ip I
c V14 Effy 6 55
d Pl Y Mt 26

p Yz 2 Esa
I pbeta It Eg 2 3 8 5

f0 HW answer

Suppose B Br Bn form partition of S
Bin Bi lo is



12

We concluded the last set of notes by demonstrating how the Law of Total Probability has a role in
probabilistic modeling outside of when we work with sample spaces. In that demonstration, we
assumed that we were working with two discrete distributions. Here, we generalize to the case where
either one or both of the distributions is continuous.

There are three cases:

1) The conditional distribution is discrete, and the unconditional distribution is continuous:

2) The conditional distribution is continuous, and the unconditional distribution is discrete:

3) Both distributions are continuous:

! EXAMPLE. Consider the following two-step experiment. First, X is drawn from a beta
distribution with parameters ↵ and �. Then Y is drawn from a binomial distribution with the
number of trials being n and the probability of success being X . Determine P[Y = y].
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