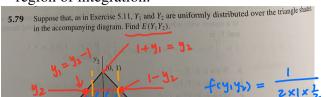
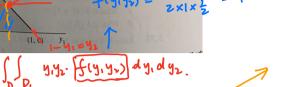
(Y1 , Y2)

EXAMPLE. Wackerly 7, Exercise 5.79. Note that if we are working with a bivariate uniform distribution, then $f(y_1, y_2)$ within the region of integration is the reciprocal of the area of the region of integration.



(y.y.) & support 0.W.



$$= \int_{0}^{1} \int_{y_{2}-1}^{1-y_{2}} y_{1}y_{2} dy_{1} dy_{2} = \int_{0}^{1} y_{2} \left(\frac{y_{1}^{2}}{2} \right) \frac{1-y_{2}}{y_{2}-1} dy_{2} = \int_{0}^{1} y_{2} \cdot 0 dy_{2} = 0$$

→ **EXAMPLE.** Wackerly 7, Exercise 5.81. Using the test of Notes Set 5, we can convince ourselves that Y_1 and Y_2 are independent random variables. option 2

In Exercise 5.18, Y_1 and Y_2 denoted the lengths of life, in hundreds of hours, for components of types I and II, respectively, in an electronic system. The joint density of Y_1 and Y_2 is

$$f(y_1, y_2) = \begin{cases} (1/8)y_1 e^{-(y_1 + y_2)/2}, & y_1 > 0, y_2 > 0, \\ 0, & \text{elsewhere.} \end{cases}$$

One way to measure the relative efficiency of the two components is to compute the ratio Y_2/Y_1 . Find $E(Y_2/Y_1)$. [Hint: In Exercise 5.61, we proved that Y_1 and Y_2 are independent.]

 $\int_{0}^{\infty} \int_{0}^{\infty} \frac{y_{2}}{y_{1}} f(y_{1}y_{2}) dy_{1} dy_{2} = ?$

exercise!

O support of
$$f(y_1, y_2) \Rightarrow$$
 rectangular.

(a) $f(y_1, y_2) = \frac{1}{8} y_1 \cdot e^{-\frac{y_1 + y_2}{2}}$

$$= \frac{1}{8} y_1 \cdot e^{-\frac{y_1}{2}} \cdot e^{-\frac{y_2}{2}}$$

$$= \frac{1}{8} y_1 \cdot e^{-\frac{y_1}{2}} \cdot e^{-\frac{y_2}{2}}$$

$$= \frac{1}{8} y_1 \cdot e^{-\frac{y_1}{2}} \cdot e^{-\frac{y_2}{2}}$$

$$E\left(\frac{Y_{1}}{Y_{1}}\right) = E\left(\frac{Y_{1}}{Y_{1}}, Y_{2}\right)$$
by

independence
$$= E\left(\frac{Y_{1}}{Y_{1}}\right) \cdot E(Y_{1})$$

$$E^{\times}P(2)$$

$$E(\frac{1}{Y_1}) \quad \text{first need to } f_1(y_1)$$

$$f_1(y_1) = \int_0^\infty f(y_1 y_2) \, dy_2$$

$$Check = \int_0^\infty \frac{1}{8} y_1 e^{-\frac{y_1}{2}} e^{-\frac{y_2}{2}} dy_2$$

$$E(Y_2) = \int_{D_2} y_2 - f_2(y_2) dy_2 = 2$$

$$f_2(y_1) = \int_{D_1} f(y_1, y_2) dy_1$$

$$= \int_{0}^{\infty} \frac{1}{8} y_{1} e^{-\frac{y_{1}}{2}} e^{-\frac{y_{2}}{2}} dy_{1}$$

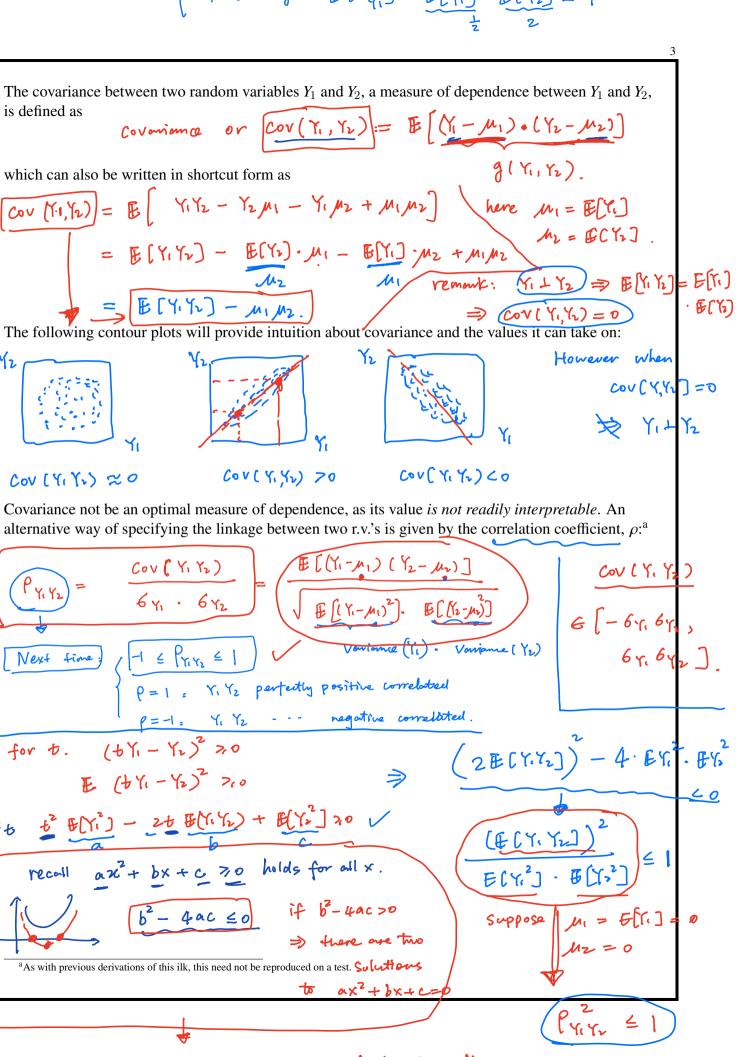
$$= \frac{1}{8} e^{-\frac{y_{2}}{2}} \int_{0}^{8} y_{1} e^{-\frac{y_{1}}{2}} dy_{1} = e^{\frac{y_{2}}{2}} \frac{1}{8} \cdot 2^{2} \Gamma(2) \int_{0}^{8} e^{-\frac{y_{1}}{2}} dy_{1} dy_{2}$$

$$\frac{y_1}{y_1} dy_1 = e^{\frac{y_1}{2}} dy_1 = e^{\frac{y_1}{2}} dy_1 = e^{\frac{y_1}{2}} dy_1$$

$$\sim Gamma (d = 2, \beta = 2) \qquad exacting$$

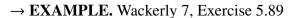
$$pdf \ Fxp(2) = \frac{1}{2} e^{-\frac{y_2}{2}}$$

in sumary: E(Y2) = E(Y), E(Y) -



is defined as

4, 42



In Exercise 5.1, we determined that the joint distribution of Y_1 , the number of contracts awarded to firm A, and Y2, the number of contracts awarded to firm B, is given by the entries in the following table.

		<i>y</i> ₁	
y ₂	0	1	2
0	1/9 2/9	2/9	1/9
1	2/9	2/9	0
2	1/9	0	0

compute Cov (Y1, Y2).

$$\begin{array}{rcl} (cov(Y,Y_2) = & \mathbb{E}(Y_1,Y_2) - & \mathbb{E}(Y_1) \cdot & \mathbb{E}(Y_2) \\ \mathbb{E}(Y_1,Y_2) = & \mathbb{E}(Y_1,Y_2) - & \mathbb{E}(Y_1,Y_2) \\ \mathbb{E}(Y_1,Y_2) = & \mathbb{E}(Y_1,Y_2) - & \mathbb{E}(Y_1,Y_2) \\ \mathbb{E}(Y_1,Y_2) = & \mathbb{E}(Y_1,Y_2) - & \mathbb{E}(Y_1,Y_2) - & \mathbb{E}(Y_1,Y_2) \\ \mathbb{E}(Y_1,Y_2) = & \mathbb{E}(Y_1,Y_2) - & \mathbb{E}(Y_1,Y_2) - & \mathbb{E}(Y_1,Y_2) - & \mathbb{E}(Y_1,Y_2) \\ \mathbb{E}(Y_1,Y_2) = & \mathbb{E}(Y_1,Y_2) - & \mathbb{E}(Y_1,Y_2,Y_2) - & \mathbb{E}(Y_1,Y_2) - & \mathbb{E}(Y_1,Y_2) - & \mathbb{E}(Y_1,Y_2) - & \mathbb{E}(Y_1,Y_2) - & \mathbb$$

Suppose that, as in Exercises 5.11 and 5.79, Y_1 and Y_2 are uniformly distributed over the triangle shaded in the accompanying diagram.

→ **EXAMPLE.** Wackerly 7, Exercise 5.93

$$P(Y_i=0) = \underbrace{\xi}_{y_2} P(0,y_2)$$

$$= \underbrace{\psi}_{q}$$

$$P(Y_i=1) = \underbrace{\psi}_{q}$$

$$P(Y_i=2) = \underbrace{\frac{1}{q}}_{q}$$

$$=\frac{2}{3}$$

large value of 4

associated with smaller value of Yz Vice - versa

=> not independent because shape of support is not rectorgular.

notes 5.

c) $P_{Y_1 Y_2} = \frac{cov(Y_1, Y_2)^2}{6Y_1 \cdot 6Y_2} = 0$ d) not: cov(Y, Y2) = 0

 $f(y,y) = \frac{1}{area(suppost)}$

E[Y1] = \ \(\text{bifiles} \) \(\text{dy} \) \(\text{fils} \) = \(y_1. \int f(4, y_2) dy_2 dy_1 = \int y_1.f(y, y_3) dy, dy_2

\$ YIL VE.

- → EXAMPLE. Wackerly 7, Exercise 5.97 = [[["y, fig.y,)dy dy] The random variables Y_1 and Y_2 are such that $E(Y_1) = 4$, $E(Y_2) = -1$, 5.97
- $V(Y_2) = 8.$
 - a What is $Cov(Y_1, Y_1)$?
 - **b** Assuming that the means and variances are correct, as given, is it possible that $Cov(Y_1, X_2)$ Y_2) = 7? [Hint: If $Cov(Y_1, Y_2) = 7$, what is the value of ρ , the coefficient of correlation?]
 - c Assuming that the means and variances are correct, what is the largest possible value for $Cov(Y_1, Y_2)$? If $Cov(Y_1, Y_2)$ achieves this largest value, what does that imply about the relationship between Y_1 and Y_2 ?

a)
$$(GV(Y_i,Y_i)) = E[Y_i \cdot Y_i] - E[Y_i] \cdot E[Y_i] = E[Y_i] \cdot (EY_i)^2 = V[Y_i] + 2$$

b)
$$Cov(Y_1 Y_2) = 7 ?$$

$$-(4) Y_1 Y_2 = \frac{Cov(Y_1 Y_2)}{6Y_1 6Y_2} \le 1 \Rightarrow Cov(Y_1 Y_2) \in [-6Y_1 6Y_2, 6Y_1 6Y_2]$$

=> Y. Yz are pertextly positive correlated. Let $U_1 = \sum_{i=1}^n a_i V_i$ and $U_2 \neq \sum_{j=1}^m b(X_j)$ be linear functions of the *n* r.v.'s Y_i and the *m* r.v.'s X_j . The following statement is always true, regardless of whether the individual r.v.'s are independent:

E[VI] = Z ai E[Yi] (linearity of expectation operator). E[Vz] = 1 5 EX

This next statement is also always true, with the second term being zero if the r.v.'s are independent: $V[V_1] \neq V[\underbrace{\xi}_{a_i} Y_i] = \underbrace{\xi}_{a_i} V(Y_1] + 2\xi \underbrace{\xi}_{a_i} \underbrace{\alpha_j}_{a_j} \underbrace{cov(Y_i, Y_j)}_{claim}$ E((Eair) · (Eair)) = E[EE aias cov(Yi Ys)]

This formula is the usual one that is presented in beginning mathematical statistics textbooks, since they generally assume that the reader has no knowledge of matrices. However, practicing statisticians by-and-large only use the matrix version of the formula. Hence I will present it below, right after I provide...

→ A Very Short Introduction to Matrices.^a

matrix: a rectangular array of numbers. Single element: X (row), kolama.

eg.
$$X_{21} = 2$$
 $X_{12} = 3$.

What we need to know for now.

- the vector of coefficients { a, az ... an } is eq. a = an nx1 matrix.
- a matrix transpose reverses the rows & (z) columns of the original matrix.

3) matrix produit.

Let $Y = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}$ [x2+3x]

^aThe following is written assuming no knowledge of matrices at all, which is appropriate since linear algebra is not a pre- or co-requisite for this course. If you are already familiar with matrices, you can safely ignore this material. If you are not familiar with matrices, note that in addition to what follows here I have also written up an introductory document on matrices, which I have put on Canvas, under "Math." Note that in that document I provide examples of how to define and work with matrices in R, which may be useful for anyone in the class.

The devariance between two random variables Y_i and Y_i is $Cov(Y_i, Y_i) = E[Y_i Y_i] - E[Y_i]E[Y_i] =$ $\rho_{ij}\sigma_i\sigma_i$. If one has k random variables, one can populate a matrix Σ with all pairwise covariances:

covariance matrix (Y1, Y2, ... Yn).

Covariance matrix
$$(Y_1, Y_2, \dots, Y_n)$$
.

$$\sum = \begin{pmatrix} cov(Y_1 Y_1) & cov(Y_1 Y_n) \\ \vdots & cov(Y_1 Y_1) \end{pmatrix} = \begin{pmatrix} 6_1^2 & l_1 26_1 6_2 & \cdots & l_{1n} 6_1 6_n \\ l_{12} 6_1 6_2 & 6_2^2 & \vdots \\ l_{12} 6_1 6_2 & 6_2^2 & \vdots \\ l_{12} 6_1 6_2 & 6_2^2 & \vdots \\ l_{13} 6_1 6_n & l_{13} 6_n^2 \end{pmatrix}$$
Note that this matrix is $symmetric$; e.g., $\Sigma_{i,i} = \Sigma_{i,i}$, where the first and second subscripts denote the

Note that this matrix is symmetric; e.g., $\Sigma_{i,j} = \Sigma_{j,i}$, where the first and second subscripts denote the row and column of the matrix, respectively.

Now, let's look at a linear function of two random variable, $U = a_1Y_1 + a_2Y_2$. Now define two matrices with the coefficients a_1 and a_2 :

$$a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
 $a^T = (a, a_2)$

Then the variance of U is

Clerin:
$$V[U] = a^{T} \ge a \in \mathbb{R}^{1}$$

Does this match the result you'd get using the book's formulation? (Yes.)

$$V[U] = V[\alpha_1 Y_1 + \alpha_2 Y_2] = \sum_{i=1}^{2} \alpha_i^2 V[Y_i] + 2 \sum_{1 \le i < j \le d} \alpha_i \alpha_j cov(Y_i Y_j)$$

I from before)

$$= (a_1^2 V(Y_1) + a_1^2 V(Y_2) + 2 a_1 a_2 c_1 V(Y_1)$$

matrix notation: $\begin{bmatrix} a \\ Ea \end{bmatrix} = \begin{bmatrix} a_1 & a_2 \end{bmatrix} \begin{bmatrix} V(Y_1) & Cov(Y_1 & Y_2) \\ Cov(Y_1 & Y_2) & V(Y_2) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$

Last, this statement for $Cov(U_1, U_2)$ is always true, but it is equal to zero if the Y_i 's and X_i 's are all independent of each other:

dependent of each other:

$$U_1 = \sum_{i=1}^{n} a_i Y_i = (a_i a_2 \cdots a_n) \begin{pmatrix} Y_i \\ Y_3 \\ \vdots \end{pmatrix}$$
 $C.d$ one two constant

$$\bigcirc Cov[U_1+C, U_2+d]$$

$$U_{2} = \underbrace{\sum_{j=1}^{m} b_{j} \times_{j}}_{j} = \underbrace{(b_{1} - \cdots b_{m}) \begin{pmatrix} x_{1} \\ \vdots \\ x_{m} \end{pmatrix}}_{x_{m}}$$

$$V(V_{1}) = a^{T} \leq_{Y} a \qquad \leq_{Y} = \begin{cases} Cov(Y_{1} Y_{1}) & ... & cov(Y_{1} Y_{n}) \\ \vdots & \vdots & \vdots \\ cov(Y_{n} Y_{1}) & cov(Y_{n} Y_{n}) \end{cases} = Cov[U_{1}, U_{2}]$$

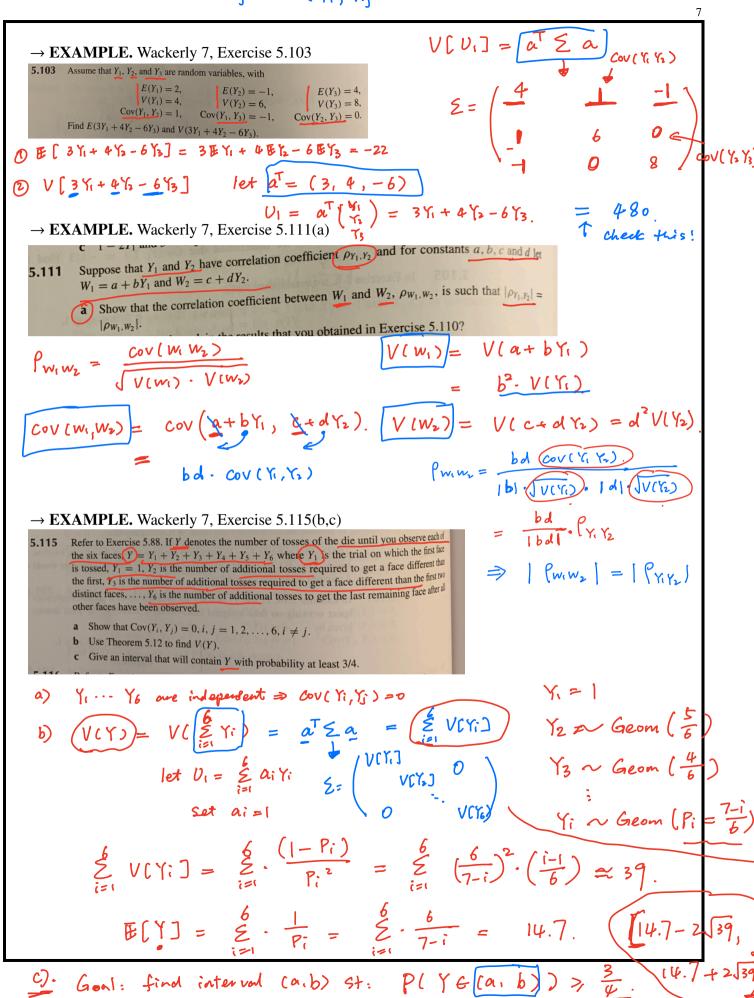
$$V(U_{2}) = b^{T} \leq_{X} b \qquad \leq_{X} = \begin{cases} Cov(X_{1} X_{1}) & ... & cov(X_{1} X_{m}) \\ \vdots & \vdots & \vdots \\ Cov(X_{m} X_{1}) & ... & cov(X_{m} X_{m}) \end{cases} = ab \cdot Cov[U_{1}, U_{2}]$$

$$Cov(X_{m} X_{1}) & ... & ... & ... & ... & ... \\ Cov(X_{m} X_{n}) & ... & ... & ... & ... \\ Cov(X_{m} X_{m}) & ... & ... & ... \\ Cov(X_{m} X_{m}) & ... & ... & ... \\ Cov(X_{m} X_{m}) & ... & ... & ... \\ Cov(X_{m} X_{m}) & .$$

$$\begin{array}{lll}
\text{2} & CoV \left[\text{a} V_{i}, \text{b} V_{z} \right] \\
\text{3} & \text{4} & \text{5} & \text{6} & \text{6} & \text{6} \\
\text{4} & \text{6} & \text{6} & \text{6} & \text{6} & \text{6} & \text{6} \\
\text{5} & \text{6} \\
\text{6} & \text{6} \\
\text{6} & \text{6} \\
\text{6} & \text{6} \\
\text{7} & \text{6} \\
\text{7} & \text{6} \\
\text{8} & \text{6} \\
\text{9} & \text{6} \\
\text{9} & \text{6} \\
\text{9} & \text{6} \\
\text{9} & \text{6} \\
\text{9} & \text{6} \\
\text{9} & \text{6} \\
\text{9} & \text{6} \\
\text{9} & \text{6} \\
\text{9} & \text{6} \\
\text{9} & \text{6} \\
\text{9} & \text{6} \\
\text{9} & \text{6} \\
\text{9} & \text{6} \\
\text{9} & \text{6} \\
\text{9} & \text{6} \\
\text{9} & \text{6} \\
\text{9} & \text{6} \\
\text{9} & \text{6} \\
\text{9} & \text{9} \\
\text{9} & \text{9} \\
\text{9} & \text{9} & \text{9} & \text{9} & \text{9} &$$

$$V(v_2) = b^T \Sigma_X b$$

 $\sum_{i,j} = cov(Y_i, X_j)$ $cov(Y_i, X_i)$ $cov(Y_i, X_m)$



Recall that the conditional pmf and pdf are written as $p(y_1|y_2)$ and $f(y_1|y_2)$. We can now extend the concept of the conditional by combining it with the Law of the Unconscious Statistician:

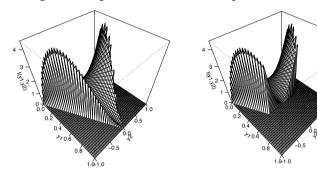
$$P(Y_1|Y_2) = \frac{P(Y_1|Y_2)}{P_2(Y_2)} = \frac{P(Y_1,Y_2)}{E_1} \frac{P(Y_1|Y_2)}{P_2(Y_2)}$$

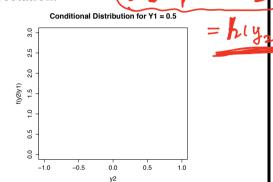
$$f(Y_1|Y_2) = \frac{f(Y_1|Y_2)}{f_2(Y_2)} = \frac{f(Y_1,Y_2)}{(f(Y_1|Y_2))dy_1}$$

$$P(y_1|y_2) = \frac{P(y_1,y_2)}{P_2(y_2)} = \frac{P(y_1,y_2)}{P_2(y_2)} \frac{j_0inb}{pont}$$

$$F(y_1|y_2) = \frac{f(y_1,y_2)}{f_2(y_2)} = \frac{f(y_1,y_2)}{f_2(y_2)} \frac{f(y_1,y_2)}{f_2(y_2)} = \frac{$$

The following will help illustrate the concept of conditional expectation:





Perhaps you are given a situation where you are given (or can derive) $E[Y_1|Y_2]$. Then, assuming Y_1 and Y_2 are continuous r.v.'s, we can write the unconditional expectation as:

$$E[Y_{1}] = \int_{D_{1}} y_{1} f_{1}(y_{1}) dy_{1}$$

$$= \int_{D_{1}} y_{1} \int_{D_{2}} f(y_{1}|y_{2}) f_{2}(y_{2}) dy_{2} dy_{1}$$

$$= \int_{D_{1}} y_{1} \int_{D_{2}} f(y_{1}|y_{2}) f_{2}(y_{2}) dy_{2} dy_{1}$$

$$= \int_{D_{2}} f_{2}(y_{2}) \int_{D_{1}} y_{1} f(y_{1}|y_{2}) dy_{1} dy_{2},$$

$$E[Y_{1}|Y_{2} = y_{2}]$$

$$= \int_{D_{2}} f_{2}(y_{2}) \cdot E[Y_{1}|Y_{2} = y_{2}] dy_{2}.$$

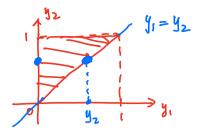
$$with respect to Y_{2} h(Y_{2}).$$
with respect to Y₂

→ **EXAMPLE.** Wackerly 7, Exercise 5.133

$$f(y_1, y_2) = \begin{cases} 6(1 - y_2), & 0 \le y_1 \le y_2 \le 1\\ 0, & \text{elsewhere} \end{cases}$$

is a valid joint probability density function

- a Find $E(Y_1|Y_2 = y_2)$.
- Use the answer derived in part (a) to find $E(Y_1)$. (Compare this with the answer found in



a)
$$\mathbb{E}[Y_1|Y_2=y_2] = \int y_1 f(y_1|y_2) dy_1$$

$$= \int y_1 \cdot \frac{f(y_1, y_2)}{f_2(y_2)} dy_1.$$

$$f_2(y_0) = \int_{D_1} f(y_0, y_0) dy_1 = \int_0^{y_2} 6(1-y_0) dy_1 = 6(1-y_2) \cdot y_2.$$

$$\mathbb{E}[Y_1|Y_2=y_2] = \int_0^{y_2} y_1 \frac{6(1-y_2)}{6(1-y_1)\cdot y_2} dy_1 = \frac{y_2}{2} \left(\text{for } 0 \leq y_1 \leq 1 \right)$$

b).
$$E(Y_1) = E[E[Y_1|Y_2]]$$
.

$$\mathbb{E}\left[\begin{array}{c} \frac{Y_2}{2} \end{array}\right] = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right) \cdot \frac{Y_2}{2} d\underline{y}_2 = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}\right)$$

$$E[Y_{1}|Y_{2}=y_{1}] = \int_{0}^{2} y_{1} \frac{\delta(1-y_{2})}{\delta(1-y_{1})\cdot y_{2}} dy_{1} = \frac{y_{2}}{2}$$

$$= E[Y_{1}|Y_{2}] = \int_{0}^{2} f_{2}(y_{2}) \cdot \frac{y_{1}}{2} dy_{2} = 3 \cdot B(3, 2).$$

$$= E[\frac{Y_{2}}{2}] = \int_{0}^{2} f_{2}(y_{2}) \cdot \frac{y_{1}}{2} dy_{2} = 3 \cdot B(3, 2).$$

$$Beta(d=3, \beta=2) = 3. \frac{F(3) \cdot F(2)}{F(5)} = \frac{1}{4}.$$

$$Ase F(n) = (n-1)!$$

→ **EXAMPLE.** Wackerly 7, Exercise 5.139

- Suppose that a company has determined that the number of jobs per week, N, varies from week to week and has a Poisson distribution with mean λ . The number of hours to complete each job Y_i , is gamma distributed with parameters α and β . The total time to complete all jobs in a week is $T = \sum_{i=1}^{N} Y_i$. Note that T is the sum of a random number of random variables What is

 - **b** E(T), the expected total time to complete all jobs?

$$T = \begin{pmatrix} N \\ \sum_{i=1}^{N} Y_i \end{pmatrix}$$

a).
$$\mathbb{E}\left(T \mid N=n\right) = \mathbb{E}\left[\sum_{i=1}^{n} Y_i \mid N=n\right] = \sum_{i=1}^{n} \mathbb{E}\left[Y_i \mid N=n\right]$$

b)
$$E[T] = E[E[T|N]] = \lambda \beta E[N] = \lambda \cdot \alpha \cdot \beta$$
.

$$P(N, Y_i, T) \Rightarrow P(T) \Rightarrow E[T]$$

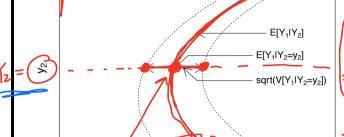
y? p(Y, | Y2) dy,

The last topic we will touch upon in these notes is the concept of conditional variance. (We follow the book by not generalizing this to the conditional variance of $g(Y_1)$...and for notational simplicity we

change " $Y_2 = y_2$ " to " Y_2 .")

Given $V[Y_1|Y_2]$, we can state the unconditional variance $V[Y_1]$.

(Short - cut formula



 $V(\mathcal{X})$ works) E(V[1/3]) + V(E[1/1/2))

VLYD

overage fh intion V(Y1/2). Variation in 形(公)

■ [V[Y:1Y:3] ⇒ V [■ [Y:1Y:3]. → EXAMPLE. Wackerly 7, Exercise 5.135

E[V[KIK]] E E(Y12 [Y2] - (ECY1 Y2)2]

E(x2) - E[E(Y1X2)2]

V [E[Y1182])

E (F(Y11/2))2 - (E[E[Y11/2]]

N= E[E[LYTI]] (E[LI])5

 $= \left(\mathbb{E}(Y_1^2) - \left(\mathbb{E}Y_1 \right)^2 \right)$

- In Exercise 5.41, we considered a quality control plan that calls for randomly selecting three items from the daily production (assumed large) of a certain machine and observing the number of defectives. The proportion p of defectives produced by the machine varies from day to day and has a uniform distribution on the interval (0, 1). Find the
 - expected number of defectives observed among the three sampled items.
 - variance of the number of defectives among the three sampled.

Pr Unif (0,17).

Y: # of defeative items.

Y|P ~ Bin (n=3, P).

$$E(P) = \frac{1}{2} V(P) = \frac{1}{12}.$$

= E[E[Y[P]]

 $\mathbb{E}[3\times P.] = 3\mathbb{E}[P] = \frac{3}{2}$

b).

V(Y)

E[Y]

E[V(YIP]] + V[E(YIP]]. $= \mathbb{E}\left[3p(i-p)\right] + \mathbb{V}\left[3\times p\right].$

 $= 3 \mathbb{E}(P-P^2) + 9 \cdot VCP$

 $3.(1 + 10^{2}) + 9.1(0) = \frac{5}{100}$

^aSee Wackerly 7, p. 287 for the derivation.

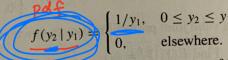
$$(E(P))^2 + V(P)$$
 $\frac{1}{12}$.

42= 41

→ **EXAMPLE.** Wackerly 7, Exercise 5.141

5.141 Let
$$Y_1$$
 have an exponential distribution with mean λ and the conditional density of Y_2 given

$$Y_1 = y_1$$
 be



Find $E(Y_2)$ and $V(Y_2)$, the unconditional mean and variance of Y_2 .

$$Y_i \sim Exp(\lambda)$$

 $Y_2 \mid Y_i \sim Unif(0, Y_i)$

a)
$$\mathbb{E}[Y_2] = \mathbb{E}\left[\mathbb{E}[Y_2|Y_1]\right] = \frac{1}{2}\mathbb{E}[Y_1] = \frac{1}{2}\lambda$$

$$\frac{Y_1}{2} = \frac{1}{2}(\lambda)$$

b)
$$V(Y_2) = \mathbb{E}[V(Y_2|Y_1)] + V(\mathbb{E}(Y_2|Y_1)].$$

$$\mathbb{E}\left[V(Y_{1},Y_{1},Y_{1})\right] = \mathbb{E}\left[\frac{1}{12}Y_{1}^{2}\right] = \frac{1}{12}\mathbb{E}\left[Y_{1}^{2}\right] = \frac{\lambda^{2}}{6}$$

$$Y_{1}(Y_{1}, \chi_{1}, Y_{0}) = \mathbb{E}\left[\frac{1}{12}Y_{1}^{2}\right] = \mathbb{E}\left[\frac{1}{12}Y_{1}^{2}\right] = \frac{\lambda^{2}}{6}$$

$$Y_{\lambda}|Y_{\lambda} \sim V_{\alpha}if(0, Y_{\lambda})$$

$$V[E(Y_{\lambda}|Y_{\lambda})] = V[\frac{1}{2}Y_{\lambda}] = \frac{1}{4} \cdot V(Y_{\lambda}) = \frac{1}{4}$$

$$\Rightarrow V(Y_2) = \frac{\lambda^2}{4} + \frac{\lambda^2}{6} = \frac{5}{12}\lambda^2.$$

an equivalent
$$f_2(y_2|y_1) = \frac{1}{y_1} (y_x \leq y_1)$$

way:

$$f(y_1y_2) = f(y_1)f_2(y_2|y_1) = \left(\frac{1}{\lambda y_1}\exp(-\frac{y_1}{\lambda y_1})\right)$$

$$\mathbb{E}[Y_1] = \int_{Y_2} y_2 \int_{Y_2(y_1, y_2)} dy_1 dy_2$$

double integration

facy2)

\ (m) = ...

///