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Multivariate Distributions � Expected Value Notes 06

Associated Reading: Wackerly 7, Chapter 5, Sections 5-8 and 11

In Chapters 3 and 4, you were introduced to the expected value operator, which takes the weighted

average of a random variable (or a function of that random variable) with respect to an assumed

probability distribution. Now we will lay out definitions related to the expected value operator and

how it acts upon multivariate distributions.

First, we combine Theorems 5.6-5.8 into one statement:

Second, we note Theorem 5.9, which indicates to us that in general, E[Y1Y2] , E[Y1]E[Y2]:

These definitions, given in Sections 5.5 and 5.6, will be applied to two specific cases in Sections 5.7

and 5.8:
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! EXAMPLE. Wackerly 7, Exercise 5.79. Note that if we are working with a bivariate uniform

distribution, then f (y1, y2) within the region of integration is the reciprocal of the area of the

region of integration.

! EXAMPLE. Wackerly 7, Exercise 5.81. Using the test of Notes Set 5, we can convince ourselves

that Y1 and Y2 are independent random variables.

36-225 � Introduction to Probability Theory � Fall 2020


































































































































YY

fly yo
p
metaphor HYDEsupport

o o w

i F
Info yy dydyI in 1 m no

optionZ

D J If fly ya dy dying

fly y gty e É

i

E14 ELI Ya
t

his I fly g dy
142 1 ya t dya f this VQ 1

n Gamma 2 2So fly M dy

S j y e é dy

YEE
pdfExp 2 a Ié

insm EI.EE T



3

The covariance between two random variables Y1 and Y2, a measure of dependence between Y1 and Y2,

is defined as

which can also be written in shortcut form as

The following contour plots will provide intuition about covariance and the values it can take on:

Covariance not be an optimal measure of dependence, as its value is not readily interpretable. An

alternative way of specifying the linkage between two r.v.’s is given by the correlation coe�cient, ⇢:a

a
As with previous derivations of this ilk, this need not be reproduced on a test.
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! EXAMPLE. Wackerly 7, Exercise 5.89

! EXAMPLE. Wackerly 7, Exercise 5.93

! EXAMPLE. Wackerly 7, Exercise 5.97
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Let U1 =
Pn

i=1 aiYi and U2 =
Pm

j=1 bj Xj be linear functions of the n r.v.’s Yi and the m r.v.’s Xj . The

following statement is always true, regardless of whether the individual r.v.’s are independent:

This next statement is also always true, with the second term being zero if the r.v.’s are independent:

This formula is the usual one that is presented in beginning mathematical statistics textbooks, since

they generally assume that the reader has no knowledge of matrices. However, practicing statisticians

by-and-large only use the matrix version of the formula. Hence I will present it below, right after I

provide...

! A Very Short Introduction to Matrices.a

a
The following is written assuming no knowledge of matrices at all, which is appropriate since linear algebra is not a pre- or co-requisite for this

course. If you are already familiar with matrices, you can safely ignore this material. If you are not familiar with matrices, note that in addition to what

follows here I have also written up an introductory document on matrices, which I have put on Canvas, under “Math." Note that in that document I provide

examples of how to define and work with matrices in R, which may be useful for anyone in the class.
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The covariance between two random variables Yi and Yj is Cov(Yi,Yj ) = E[YiYj ] � E[Yi]E[Yj ] =
⇢i j�i� j . If one has k random variables, one can populate a matrix ⌃ with all pairwise covariances:

Note that this matrix is symmetric; e.g., ⌃i,j = ⌃ j,i, where the first and second subscripts denote the

row and column of the matrix, respectively.

Now, let’s look at a linear function of two random variables, U = a1Y1 + a2Y2. Now define two

matrices with the coe�cients a1 and a2:

Then the variance of U is

Does this match the result you’d get using the book’s formulation? (Yes.)

Last, this statement for Cov(U1,U2) is always true, but it is equal to zero if the Y 0i s and X 0j s are all

independent of each other:
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! EXAMPLE. Wackerly 7, Exercise 5.103

! EXAMPLE. Wackerly 7, Exercise 5.111(a)

! EXAMPLE. Wackerly 7, Exercise 5.115(b,c)
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Recall that the conditional pmf and pdf are written as p(y1 |y2) and f (y1 |y2). We can now extend the

concept of the conditional by combining it with the Law of the Unconscious Statistician:

The following will help illustrate the concept of conditional expectation:
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Perhaps you are given a situation where you are given (or can derive) E[Y1 |Y2]. Then, assuming Y1 and

Y2 are continuous r.v.’s, we can write the unconditional expectation as:
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! EXAMPLE. Wackerly 7, Exercise 5.133

! EXAMPLE. Wackerly 7, Exercise 5.139
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The last topic we will touch upon in these notes is the concept of conditional variance. (We follow the

book by not generalizing this to the conditional variance of g(Y1)...and for notational simplicity we

change “Y2 = y2” to “Y2.”)

Given V [Y1 |Y2], we can state the unconditional variance V [Y1].a

E[Y1|Y2]

E[Y1|Y2=y2]

sqrt(V[Y1|Y2=y2])

y1

y 2

! EXAMPLE. Wackerly 7, Exercise 5.135

a
See Wackerly 7, p. 287 for the derivation.
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! EXAMPLE. Wackerly 7, Exercise 5.141
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