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Distributions of Functions of Random Variables Notes 07

Associated Reading: Wackerly 7, Chapter 6, Sections 1-4

Let’s start by blishing the point of this chapter. You’ve conducted an experiment which yields
observed da@ e nd now you need to analyze these data. What do you do?

1. You determine what property of the underlying conceptual population that you want to
statistically infer. (For instance, your Y’s may all be drawn from some known or unknown

distribution who is i, and you want to use your data to infer yu.)

2. You select @( the property you want to infer. (For instance, you might select the
sample mearras a imator of the population mean.)

3. As your chosen estimator is a function of the random variables Y, it itself is a random variable,
sampled from some distribution. In order to perform precise statistical inference, you need to

determine this distribution. Not just its mean, or its mean and variance, but its actual shape. (Up
until now, we’ve fallen back on imprecise inference using Tchebyshefl’s Theorem. No more!)

Here’s a motivating example:
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What we will look at in Chapter 6 are three methods that one can use to try to determine the pmf/pdf
of an estimator (or any other function of random variables, for that matter):

¢ \/0 the method of distribution functions; Cﬁ[‘f - Po(f

o the method of transformations (which is really just a simplified form of the preceding method);
and
o the method of moment-generating functions (or mgfs). — Note g

In this notes set, we’ll work through examples of the first two methods, and in the next set of notes,
we’ll turn to mgfs.
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Twplies methods that you have already learned up to now in this

class. The main issue with it is its apparent complexity. I’ll break it down into steps here:
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To internalize these details, there is, as usual, no substitute to working through problems.
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— EXAMPLE. Wackerly 7, Exercise 6.3(a,b)
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— EXAMPLE. Wackerly 7, Exercise 6.9(a,b)
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— EXAMPLE. Wackerly 7, Exercise 6.7
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There is another application of this methodology that is useful for sinedeTTe®Gawd. Let’s say you want Auin Y
to simulate a datum Y from an arbitrary distribution. One way to do this is to simulate a datum U ’
from a Uniform(0,1) distribution (which is easy to do given any random number generator), and then
trariSform that datum such that Y = g(U) is sampled from the distribution of your choice.
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The method of transformations is, as mentioned, a simplified version of the method of distribution
functions that one can apply when the function U = h(Y) is strictly increasing or strictly decreasing
over the support of f(y). For instance, if the support of f(y) istherange -1 <y < land U = Y?,
you cannot use the method of transformations, because 4(Y) decreases over the range -1 <y <0
and increases over the range 0 < y < 1. But if the support of f(y) istherange 0 < y < land U = Y2,
you can use the method of transformations, as 4(Y) is strictly increasing.
The method of transformations is based on the following algorithm:
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