Sampling Distributions and the Central Limit Theorem

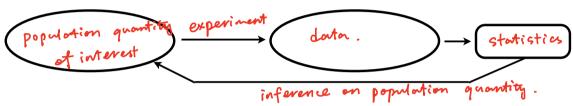
Notes 19, 9

Associated Reading: Wackerly 7, Chapter 7, Sections 1-4

This chapter will conclude the discussion of functions of random variables that began in Chapter 5, and lay the last groundwork that you need before learning about estimators, confidence intervals, and hypothesis testing in Chapters 8-10.

The meta-idea here is that you've sampled iid r.v.'s $\{Y_1, Y_2, \dots, Y_n\}$ from some population with unknown parameters, parameters that you'd like to estimate by examining functions of the r.v.'s. Here we remind ourselves of a definition:

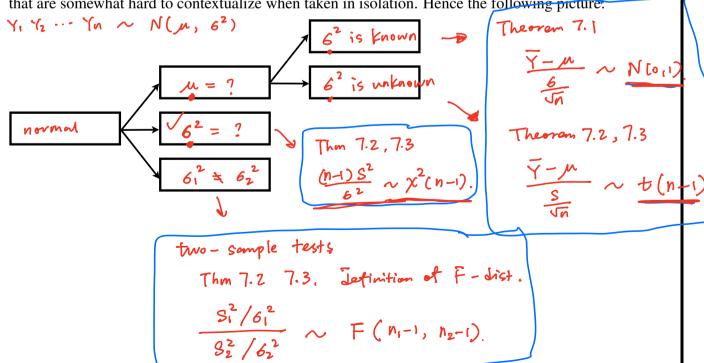
startistic, a function of dorta, i.e. function of r.V.s.



Just as a random variable is drawn from a pmf/pdf, a statistic is drawn from a **sampling** distribution, which is derivable from the pmf's or pdf's of the individual data. Defining the concept of the sampling distribution, and indicating how one may estimate it via simulation, is the subject of Section 7.1.

X

In Section 7.2, we look specifically at cases where the sampling distributions are derivable from the normal pdf, i.e., all our data are iid normal r.v.'s. There are three theorems presented in this section that are somewhat hard to contextualize when taken in isolation. Hence the following picture:



We have seen Theorem 7.1 previously:

- If $Y = (1/n) \sum_{i=1}^{n} Y_{i}$, where the Y_{i} 's are iid samples from $N(\mu, \sigma^{2})$, then $Y \sim N(\mu, \sigma^{2}/n)$.
- This result, which directly relates to Theorem 6.3, was derived on page 5 of Notes 8 via mgf's.
- \rightarrow **EXAMPLE.** Wackerly 7, Exercise 7.11 (here, we assume $\sigma = 4$)

A forester discovered the average basal area follows normal distribution with 6 = 4. If the forester samples n=9 trees find the probability that

Twill be 2 square inches of population We have also seen Theorem 7.2 previously:

= 更(产)-更完)= 理(产)-

Fact: 0 Z~ N(011) 32~ x2(1)

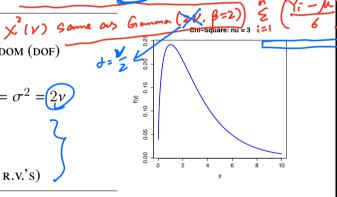
- If $Z_i = (Y_i \mu)/\sigma$, then $\sum_{i=1}^n Z_i^2$ is distributed as a chi-square r.v. with n degrees of freedom (dof).
- This is a rephrasing of Theorem 6.4, except that here we assume $\mu_i = \mu \ \forall i$ and $\sigma_i = \sigma \ \forall i$.
- This result was also derived using mgf's, on page 5 of Notes 8.

THE CHI-SQUARE DISTRIBUTION

Notation: $Y \sim \chi^2(v)$ ν : number of degrees of freedom (dof) PDF: $\underline{f(y)} = \frac{y^{\nu/2-1}e^{-y/2}}{2^{\nu/2}\Gamma(\nu/2)}$ $y \in [0,\infty), \nu \in \mathbb{Z}^+$

Expected Value: $E[Y] = \mu = v$ Variance: $V[Y] = \sigma^2 = 2v$

R Functions: (dchisq(y,nu) (PDF) pchisq(y,nu) (CDF) qchisq(p,nu) (Inverse CDF) rchisq(k,nu) (Simulation of $k \chi^2$ R.v.'s)



→ **EXAMPLE.** Wackerly 7, Exercise 7.23

7.23 Applet Exercise

- (a) Use the applet Chi-Square Probabilities and Quantiles to find P[Y > E(Y)] when Y has χ^2 distributions with 10, 40, and 80 df.
- What did you notice about P[Y > E(Y)] as the number of degrees of freedom increases as in part (a)?
- c How does what you observed in part (b) relate to the shapes of the χ^2 densities that you obtained in Exercise 7.22?

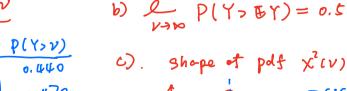
a)
$$P(Y>BY)$$
 $Y\sim \chi^2(\nu)$ $E[Y]=\nu$

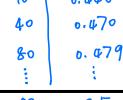
$$= P(Y>\nu)$$

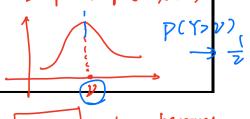
$$= P(Y<\nu)$$

$$= P(Y<\nu)$$

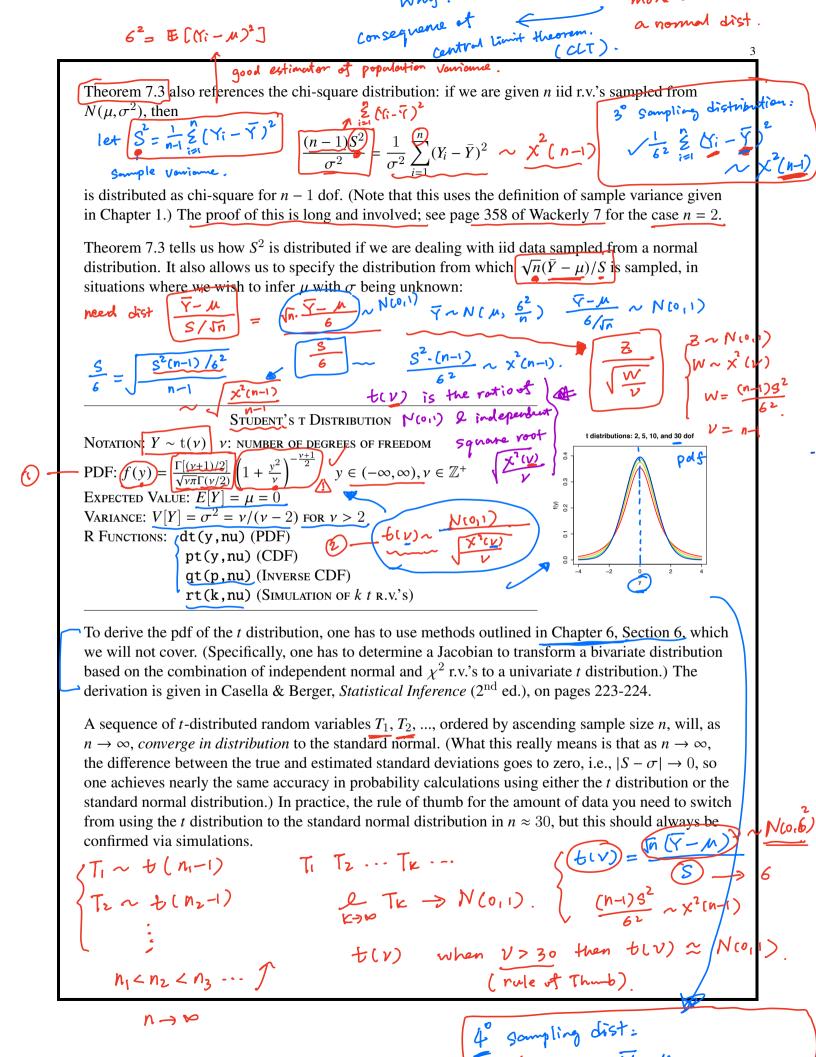
$$= 0.4$$







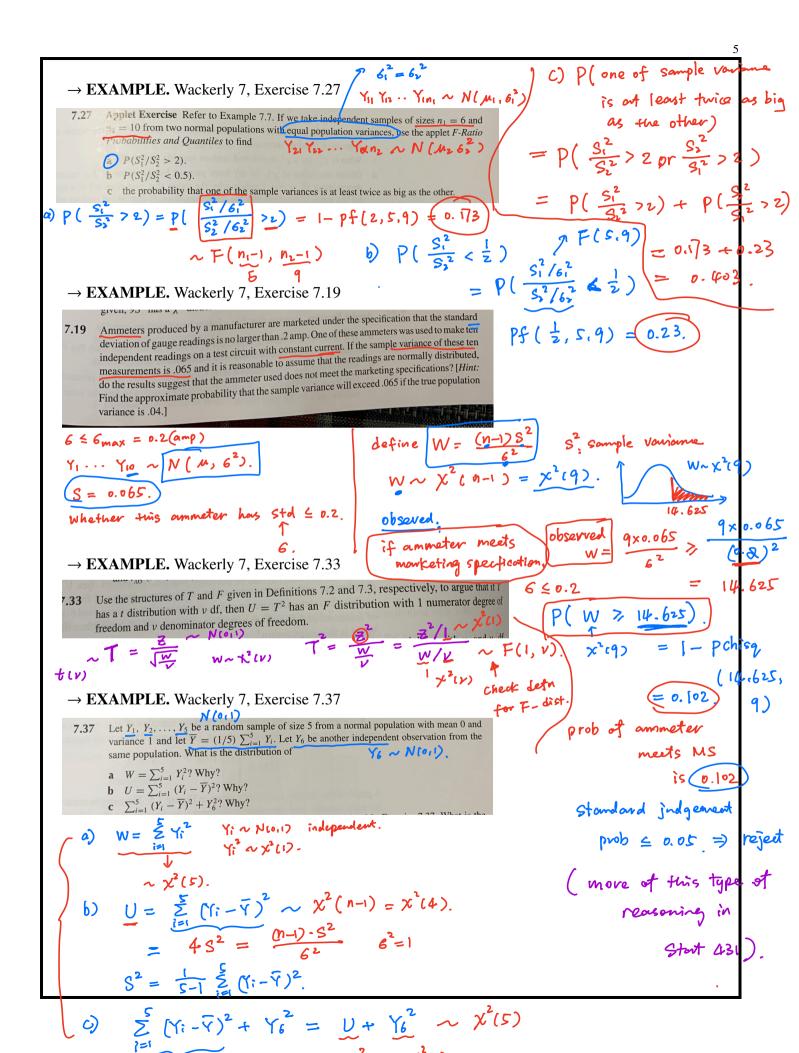
shape becomes



5/m 6/5m. \rightarrow **EXAMPLE.** Wackerly 7, Exercise 7.11 (here, we assume S=4) S=4. Y. Y2 ... Yn ~ N(M,62) A forester discovered the average basal n=9 S=4 area follows normal distribution P(| Y-M (52) = P(N-2 5 \ \frac{1}{2} \ 2+ M) 1f the forester samples $= P\left(\frac{-2}{5/\sqrt{n}} \le \frac{\sqrt{\gamma} - \mu}{5/\sqrt{n}} \le \frac{2}{5/\sqrt{n}}\right)$ n=9 trees, find the probability that $= P\left(-\frac{3}{2} \leq \frac{\overline{Y} \cdot \mu}{2/\overline{\mu}} \leq \frac{3}{2}\right)$ T will be 2 square inches of population mean M. p([Y-M] = 2). $Pt\left(\frac{3}{2}, 8\right) - Pt\left(-\frac{3}{2}, 8\right) = 0.828$ Another result that follows from Theorem 7.3 is the following: If $W_1 \sim \chi^2(v_1)$ $W_2 \sim \chi^2(v_2)$ $W_1 \perp W_2$ then: $\frac{W_1/v_1}{W_2/v_2} \sim F(v_1, v_2)$. Suppose YII Yiz ··· Ying id N(M1.612). J (Y11 ··· Yini) II (Y21 ··· Y2n2) Y21 Y22 -- Y2n2 ~ N(M2, 62). $(n_i-1)S_i^2 \sim \chi^2(n_i-1), \text{ where } S_i^2 = \frac{1}{n-1}\sum_{i=1}^{n} (Y_{in}-Y_{i-1})^2 \text{ sample variance}$ $(n_2-1)S_2$ $\sim \chi^2(n_2-1)$ where $S_2^2 = 5$ comple various of Y_2 : $(n_1-1)S_2 \sim \chi^2(n_2-1)$ So: $(n_2 + 1) S_{\nu}^2 / 6_{\nu}^2 / (n_2 - 1)$ SNEDECOR'S F DISTRIBUTION $F(4,6) \Rightarrow F(2,3)$ Notation: $Y \sim F(\nu_1, \nu_2) / \nu_1, \nu_2$: number of doe PDF: $f(y) = \frac{\Gamma[(\nu_1 + \nu_2)/2]}{\Gamma(\nu_1/2)\Gamma(\nu_2/2)} (\frac{\nu_1}{\nu_2})^{\nu_1/2} \frac{y^{\nu_1/2-1}}{[1 + (\nu_1/\nu_2)y]^{(\nu_1 + \nu_2)/2}}$ $y \in [0, \infty), (v_1, v_2) \in \mathbb{Z}^+$ Expected Value: $E[Y] = \mu = v_2/(v_2 - 2)$ for $v_2 > 2$ Variance: $V[Y] = \sigma^2 = \frac{2v_2^2(v_1 + v_2 - 2)}{v_1(v_2 - 2)^2(v_2 - 4)}$ for $v_2 > 4$ R Functions: /df(y,nu1,nu2) (PDF) pf(y,nu1,nu2) (CDF) qf(p,nu1,nu2) (Inverse CDF) rf(k,nu1,nu2) (Simulation of k F R.v.'s)

 $- \sim t(n-1)$

Note that the derivation of the *F* distribution pdf is similar to that for the *t* distribution. More details are given on page 225 of Casella & Berger, where it is also called the *variance ratio* distribution.



woitness

And now we move into Section 7.4 and consider Theorem 7.4, the central limit theorem:

P) some dist P).

"[oosely speaking

mean M Variance 62

Proving Theorem 7.4 involves the use of mgf's:

 $\frac{Y_i - \mu}{6} \quad \text{E[V_i]} = 0 \quad \text{V[V_i]} = 1.$

m v; (1/n t) =

→ **EXAMPLE.** Wackerly 7, Exercise 7.45

Workers employed in a large service industry have an average wage of \$7.00 per hour with a standard deviation of \$.50. The industry has 64 workers of a certain ethnic group. These workers have an average wage of \$6.90 per hour. Is it reasonable to assume that the wage rate of the ethnic group is equivalent to that of a random sample of workers from those employed in the service in t

in the service industry? [Hint: Calculate the probability of obtaining a sample mean less than or equal to \$6.90 per hour.]

by CLT. n=64 ~ N(0,1) (Q (1+ a/n) =

→ **EXAMPLE.** Wackerly 7, Exercise 7.49

7.49 The length of time required for the periodic maintenance of an automobile or another machine usually has a mound-shaped probability distribution. Because some occasional long service times will occur, the distribution tends to be skewed to the right. Suppose that the length of time required to run a 5000-mile check and to service an automobile has mean 1.4 hours and standard deviation .7 hour. Suppose also that the service department plans to service 50 automobiles per 8-hour day and that, in order to do so, it can spend a maximum average service time of only 1.6 hours per automobile. On what proportion of all workdays will the service department have to work overtime?

 $\Phi(-1.6) = 0.054$ compare with 0.05.

use clt. $\frac{\overline{Y}-\mu}{6.6} \sim N(6.1)$

N=50730

We conclude this set of notes by mentioning two concepts that are associated with the central limit theorem.

Low of Longe numbers (LLN)

Let $X_1, X_2, ...$, be iid random variables, with mean μ and variance $\sigma^2 < \infty$ (i.e., finite variance^a). Let $\bar{X} = (1/n) \sum_{i=1}^n X_i$. Then, for every $\epsilon > 0$, we have that

$$P(|\overline{X}_n - \mu| > \varepsilon) = 0 \text{ or } \overline{X}_n \xrightarrow{P} \mu$$

This is the *weak law of large numbers*. This differs from the CLT in that here, the sample mean \bar{X} "converges in probability" to μ . It says nothing about the *distribution* of \bar{X} . (In 226-speak, the weak law says that \bar{X} is a *consistent* estimator of μ .)

The strong law of large numbers tweaks the weak law:

$$P\left(\begin{array}{c} \overline{X_n} = \mathcal{M} \right) = 1 \quad \text{or} \quad \overline{X_n} \quad \xrightarrow{\alpha \in S}.$$
or
$$P\left(\begin{array}{c} \overline{X_n} - \mathcal{M} \mid 3\mathcal{E} \right) = 0 \quad \text{ing that } \overline{X} \text{ "converges in probability" to } \mathcal{M} \text{ (weak law) it says that}$$

Instead of saying that \bar{X} "converges in probability" to μ (weak law), it says that \bar{X} "converges almost surely" to μ (which is a stronger statement).

What, effectively, is the difference between these two laws?

interpretation of weak LLN _> go back to sample strong LIN space!

advanced prob class.

^acounterexample: the Cauchy distribution...