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Sampling Distributions and the Central Limit Theorem Notes 10

Associated Reading: Wackerly 7, Chapter 7, Sections 1-4

This chapter will conclude the discussion of functions of random variables that began in Chapter 5,

and lay the last groundwork that you need before learning about estimators, confidence intervals, and

hypothesis testing in Chapters 8-10.

The meta-idea here is that you’ve sampled iid r.v.’s {Y1,Y2, · · · ,Yn} from some population with

unknown parameters, parameters that you’d like to estimate by examining functions of the r.v.’s. Here

we remind ourselves of a definition:

Just as a random variable is drawn from a pmf/pdf, a statistic is drawn from a sampling distribution,

which is derivable from the pmf’s or pdf’s of the individual data. Defining the concept of the

sampling distribution, and indicating how one may estimate it via simulation, is the subject of Section

7.1.

⌧
In Section 7.2, we look specifically at cases where the sampling distributions are derivable from the

normal pdf, i.e., all our data are iid normal r.v.’s. There are three theorems presented in this section

that are somewhat hard to contextualize when taken in isolation. Hence the following picture:
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We have seen Theorem 7.1 previously:

• If Ȳ = (1/n)
Pn

i=1 Yi, where the Yi’s are iid samples from N(µ,�2), then Ȳ ⇠ N

⇣
µ,�2/n

⌘
.

• This result, which directly relates to Theorem 6.3, was derived on page 5 of Notes 8 via mgf’s.

! EXAMPLE. Wackerly 7, Exercise 7.11 (here, we assume � = 4)

We have also seen Theorem 7.2 previously:

• If Zi = (Yi � µ)/�, then
Pn

i=1 Z2
i is distributed as a chi-square r.v. with n degrees of freedom (dof).

• This is a rephrasing of Theorem 6.4, except that here we assume µi = µ 8 i and �i = � 8 i.

• This result was also derived using mgf’s, on page 5 of Notes 8.

The Chi-Square Distribution

Notation: Y ⇠ �2(⌫) ⌫: number of degrees of freedom (dof)

PDF: f (y) =
y⌫/2�1e�y/2

2⌫/2�(⌫/2)
y 2 [0,1),⌫ 2 Z+

Expected Value: E[Y ] = µ = ⌫ Variance: V [Y ] = �2 = 2⌫
R Functions: dchisq(y,nu) (PDF)

pchisq(y,nu) (CDF)

qchisq(p,nu) (Inverse CDF)

rchisq(k,nu) (Simulation of k �2 r.v.’s)
0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Chi−Square: nu = 3

y

f(y
)

! EXAMPLE. Wackerly 7, Exercise 7.23
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Theorem 7.3 also references the chi-square distribution: if we are given n iid r.v.’s sampled from

N (µ,�2), then

(n � 1)S2

�2
=

1

�2

nX

i=1

(Yi � Ȳ )
2

is distributed as chi-square for n � 1 dof. (Note that this uses the definition of sample variance given

in Chapter 1.) The proof of this is long and involved; see page 358 of Wackerly 7 for the case n = 2.

Theorem 7.3 tells us how S2
is distributed if we are dealing with iid data sampled from a normal

distribution. It also allows us to specify the distribution from which
p

n(Ȳ � µ)/S is sampled, in

situations where we wish to infer µ with � being unknown:

Student’s t Distribution

Notation: Y ⇠ t(⌫) ⌫: number of degrees of freedom

PDF: f (y) =
�[(⌫+1)/2]p
⌫⇡�(⌫/2)

✓
1 + y2

⌫

◆�⌫+1
2

y 2 (�1,1),⌫ 2 Z+
Expected Value: E[Y ] = µ = 0
Variance: V [Y ] = �2 = ⌫/(⌫ � 2) for ⌫ > 2
R Functions: dt(y,nu) (PDF)

pt(y,nu) (CDF)

qt(p,nu) (Inverse CDF)

rt(k,nu) (Simulation of k t r.v.’s)
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To derive the pdf of the t distribution, one has to use methods outlined in Chapter 6, Section 6, which

we will not cover. (Specifically, one has to determine a Jacobian to transform a bivariate distribution

based on the combination of independent normal and �2 r.v.’s to a univariate t distribution.) The

derivation is given in Casella & Berger, Statistical Inference (2
nd

ed.), on pages 223-224.

A sequence of t-distributed random variables T1, T2, ..., ordered by ascending sample size n, will, as

n ! 1, converge in distribution to the standard normal. (What this really means is that as n ! 1,

the di↵erence between the true and estimated standard deviations goes to zero, i.e., |S � � | ! 0, so

one achieves nearly the same accuracy in probability calculations using either the t distribution or the

standard normal distribution.) In practice, the rule of thumb for the amount of data you need to switch

from using the t distribution to the standard normal distribution in n ⇡ 30, but this should always be

confirmed via simulations.
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! EXAMPLE. Wackerly 7, Exercise 7.11 (here, we assume S = 4)

Another result that follows from Theorem 7.3 is the following:

Snedecor’s F Distribution

Notation: Y ⇠ F(⌫1,⌫2) ⌫1,⌫2: number of dof

PDF: f (y) =
�[(⌫1+⌫2)/2]
�(⌫1/2)�(⌫2/2)

⇣
⌫1
⌫2

⌘ ⌫1/2 y⌫1/2�1

[1+(⌫1/⌫2)y](⌫1+⌫2)/2

y 2 [0,1), (⌫1,⌫2) 2 Z+
Expected Value: E[Y ] = µ = ⌫2/(⌫2 � 2) for ⌫2 > 2

Variance: V [Y ] = �2 = 2⌫22 (⌫1+⌫2�2)

⌫1(⌫2�2)2(⌫2�4)
for ⌫2 > 4

R Functions: df(y,nu1,nu2) (PDF)

pf(y,nu1,nu2) (CDF)

qf(p,nu1,nu2) (Inverse CDF)

rf(k,nu1,nu2) (Simulation of k F r.v.’s)
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Note that the derivation of the F distribution pdf is similar to that for the t distribution. More details

are given on page 225 of Casella & Berger, where it is also called the variance ratio distribution.
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! EXAMPLE. Wackerly 7, Exercise 7.27

! EXAMPLE. Wackerly 7, Exercise 7.19

! EXAMPLE. Wackerly 7, Exercise 7.33

! EXAMPLE. Wackerly 7, Exercise 7.37
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And now we move into Section 7.4 and consider Theorem 7.4, the central limit theorem:

Proving Theorem 7.4 involves the use of mgf’s:

! EXAMPLE. Wackerly 7, Exercise 7.45

! EXAMPLE. Wackerly 7, Exercise 7.49
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We conclude this set of notes by mentioning two concepts that are associated with the central limit

theorem.

Let X1, X2, ..., be iid random variables, with mean µ and variance �2 < 1 (i.e., finite variance
a
). Let

X̄ = (1/n)
Pn

i=1 Xi. Then, for every ✏ > 0, we have that

This is the weak law of large numbers. This di↵ers from the CLT in that here, the sample mean X̄
“converges in probability" to µ. It says nothing about the distribution of X̄ . (In 226-speak, the weak

law says that X̄ is a consistent estimator of µ.)

The strong law of large numbers tweaks the weak law:

Instead of saying that X̄ “converges in probability" to µ (weak law), it says that X̄ “converges almost

surely" to µ (which is a stronger statement).

What, e↵ectively, is the di↵erence between these two laws?

a
counterexample: the Cauchy distribution...
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