Sampling Distributions and the Central Limit Theorem Notes 16, ?

Associated Reading: Wackerly 7, Chapter 7, Sections 1-4

This chapter will conclude the discussion of functions of random variables that began in Chapter 5,
and lay the last groundwork that you need before learning about estimators, confidence intervals, and
hypothesis testing in Chapters 8-10.

The meta-idea here is that you’ve sampled iid r.v.’s {¥1, Y2, - - ,Y,;} from some population with
unknown parameters, parameters that you’d like to estimate by examining functions of the r.v.’s. Here
we remind ourselves of a definition:
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Just as a random variable is drawn from a pmf/pdf, a statistic is drawn from a sampling distribution,
which is derivable from the pmf’s or pdf’s of the individual data. Defining the concept of the
sampling distribution, and indicating how one may estimate it via simulation, is the subject of Section
7.1.
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In Section 7.2, we look specifically at cases where the sampling distributions are derivable from the
normal pdf, i.e., all our data are 11d normal r.v.’s. There are three theorems presented in this section

that are somewhat hard to contextualize when taken in isolation. Hence the /W
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We have seen Theorem 7.1 previously:

° I@: (1/n) sl ,, Y;, where the ¥;’s are iid samples from N(,u, o?), theOv ,u,O' ) ‘/

e This result, which directly relates to Theorem 6.3, was derlved on page 5 of Notes 8 via mgf’s.
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We hav¢ also s¢en Theorem 7.2 previously:

° If@ Q w/o, thenlz JL distributed as a chi-square r.v. with n degrees of freedom (dof).

e This is a rephrasing of Theorem 6.4, except that here we assume y; = Vi ando; = o Vi.
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— EXAMPLE. Wackerly 7, Exercise 7.23

7.23  Applet Exercise |
@ Use the applet Chi-Square Probabilities and Quantiles to find P[Y > E(Y)]w

2 distributions with 10, 40, and 80 df.

b What did you notice about P[Y > E(Y)] as the number of degrees of freedom

as in part (a)?

¢ How does what you observed in part (b) relate to the shapes of the x> densxtles

obtained in Exercise 7.22?
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l Theorem 7.3 lalso references the chi-square distribution: if we are given n iid r.v.’s s

N(u,0%), then
) N T
lex S:,,’_\_iﬂ(\{"\{)

Gonple Yowiome |

E§7

is distributed as chi-square for n — 1 dof. (Note that this uses the definition of sample variance given
in Chapter 1.) The proof of this is long and involved; see page 358 of Wackerly 7 for the case n = 2.

Theorem 7.3 tells us how S is distributed if we are dealing with iid data sampled, from a normal
distribution. It also allows us to specify the distribution from which M~ sampled, in
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r To derive the pdf of the ¢ distribution, one has to use methods outlined i%w which

we will not cover. (Specifically, one has to determine a Jacobian to transform a bivariate distribution
based on the combination of independent normal and y? r.v.’s to a univariate ¢ distribution.) The

— derivation is given in Casella & Berger, Statistical Inference (2" ed.), on pages 223-224.

A sequence of t-distributed random variables 71, 1o, ..., ordered by ascending sample size n, will, as
n — oo, converge in distribution to the standard normal. (What this really means is that as n — oo,
the difference between the true and estimated standard deviations goes to zero, i.e., |S — 0| — 0, so
one achieves nearly the same accuracy in probability calculations using either the ¢ distribution or the
standard normal distribution.) In practice, the rule of thumb for the amount of data you need to switch
from using the ¢ distribution to the standard normal distribution in n ~ 30, but this should always be

confirmed via simulations. {
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Another result that follows from Theorem 7.3 is the following:
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'Q Note that the derivation (ﬁfm_l"_d!stuhu.um pdf is similar to that for the ¢ distribution. More details
are given on page 225 of Casella & Berger, where it is also called the variance ratio distribution.

S

© |
S

fy)

N




5

C) P( one of Smple Vo

£|z= ‘y“

— EXAMPLE. Wackerly 7, Exercise 7.27 /
]

2
.. ~ - - .
I Yo - Yiny ~ N, 8) e o [eost twice o»sbuj
TA2 7. A g::,elo fxercnse Refer to Example 7.7. If w samples of sizes n; = 6 and G4 Hre ot
qy = rom two normal populations wi ual lati ; = : 0
“TTobabilities and Quantiles to find \;q POpyation varlances, pse the applet F-R;‘tw 2 2
e 21 Y - Yﬂ"; A% N [#1. 63 ) — < g)
@ reisigd = Pl 2x>2pr3=>4)
b P(S7/S:i<05)8 gz, 911
¢ the probability that sample variances is at least twice as big as the other. S z
= |

Sc/62

) P(%}T?‘L}:z[ ?2’/6}-

| >2) = 1- pF(2,5.9)

2
~MF(o,med D PUSE s = 04]3 «¢.23
& 9 ? S\ /6. | 0. o)
— EXAMPLE. Wackerly 7, Exercise 7.19 = P( /e L3 ] :

Brvviy, 2o

Ammeters produced by 2 manufacturer
deviation of gauge readings 1 no.larg.ertpm .2 amp. ;
independent readings on a test circult with constant current.

measurements is .065
do the results suggest that the
Find the approximate probability that the
variance is .04.]

a0 w op

are marketed under the specification that the smndari
One of these ammeters was used to make terr
If the sample variance of these ten
are normally distributed,
et the marketing specifications? [Hint:
will exceed .065 if the true population

7.19

and it is reasonable to assume that the readings

ammeter used does not me
sample variance

€ % Epox = 0-2(a~p)

= 0.96%.

Whether Hhs ommeler how ;1{;4 ¢ 0.2,

xlo.0 68
¢ | obsevved | gxo0.06S .1_ -
‘ 2
— EXAMPLE. Wackerly 7, Exercise 7.33 e )
7.33  Use the structures of T and F given in Definitions 7.2 and 7.3,' respejctively, to i 6§ <0.2 = 14 425
has a 7 distribution with v df, then U = 72 has an F distribution with 1 nume
" freedom and v denominator degrees of freedom. . o \(ﬁ(’ W 7 W. 613) .
2~ No) 2 G o . T ,—/]
T = — 2 T=w = - F(1, v) * = chls
~ ,l%— W~ K (V) .3 .‘LV/K ~ 5 \ xcq) = ‘.— P ?
Hv) I 32
P ok Ledn (1¢628,
— EXAMPLE. Wackerly 7, Exercise 7.37 drst- = o.[o2
N(oc) for F- Q 1)
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Proving Theorem 7.4 involves the use of mgf’s:
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EXAMPLE. Wackerly 7, Exercise 7.49 as QC 5 /(7%

7.49  The length of time required for the periodic maintenance of an automobile or another machine _ é C —1.6 ) = 0.0 f 4— .
usually has a mound-shaped probability distribution. Because some occasional long service — — —_—
times will occur, the distribution tends to be skewed to the right. Suppose that the length of time
required to run a 5000-mile check and to service an automobile has mea and standard o pr owre w(‘ i o. OS. .
deviation .7 hour. Suppose also that the service department plans to service S0 automobiles pe -

8-hour day and that, in order to do so, it can spend a maximum average service time of on}§
hours per automobile. On what proportion of all workdays will the service department have to

work overtime?
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We conclude this set of notes by mentioning two concepts that are associated with the central limit
theorem. Low o Lovge nwwbevs ( LLN)

Let X1, Xo, ..., be iid random variables, with mean u and variance o2
—— — —

< oo (i.e., finite variance?). Let
X = (1/n) 2.i—1 X;. Then, for’every € > 0, we have that
= P
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This is the{weak law of large numbeﬂ This differs from the CLT in that here, the sample mean X
“converges in probability" to u. It says nothing about the distribution of X. (In 226-speak, the weak
law says that X is a consistent estimator of y.)

The Etrong law of large numbers ﬂ/eaks the weak law:

NS,
P(Lx=m)=1 o X —m

- B P((2) % -pi52) = 0

Instead of saying that X “converges in prebability" to u (weak law), it says that X “converges almost
surely" to u (which is a stronger statement).

What, effectively, is the difference between these two laws?
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4counterexample: the Cauchy distribution...
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